73 research outputs found

    Qualitative Investigation of the Performance of Real-Time Application of IEEE 802.16e standard WiMAX Relay Networks

    Get PDF
    The ability of an application to adapt its behavior to changing network conditions depends on the available bandwidth, throughput, delay and packet loss in a network path. These are of major importance in congestion control, streaming applications, quality of service verification, relay selection and many other areas in WiMAX relay stations. Mobile WiMAX, which is based on the IEEE 802.16e standard, provides support for and enables full mobility to users. In an effort to optimize and enhance the overall network throughput, this paper will propose a mobile relay framework. WiMAX is based on the IEEE 802.16e standard, and can support various types of handovers, while allowing for full mobility from the user endpoint. Different methodologies were used to compare different aspects of WiMAX relay stations including throughput, delay, SNR and network load. OPNET modular was used to develop and measure these set of network performance metrics. To accurately measure and evaluate the aforementioned network parameters we employed techniques that were able to process large amounts of data, this aided in provision of much more informed recommendations as to the type of relay station modes that should be installed engender enhanced, improved and optimal Quality of Service (QoS) within the network perimeter. This paper measured the overall network throughput, delay, SNR and network load of relay networks comprising mainly of multimedia applications. Keywords: WiMAX, QoS, Relay Station, Simulation, Topology, Throughput, Delay, Packet Los

    Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

    Get PDF

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Relay selection in mobile multihop relay network

    Get PDF
    Mobile Multihop Relay (MMR) network is an attractive and low-cost solution for expanding service coverage and enhancing throughput of the conventional single hop network. However, mobility of Mobile Station (MS) in MMR network might lead to performance degradation in terms of Quality of Service (QoS). Selecting an appropriate Relay Station (RS) that can support data transmission for high mobility MS to enhance QoS is one of the challenges in MMR network. The main goal of the work is to develop and enhance relay selection mechanisms that can assure continuous connectivity while ensuring QoS in MMR network using NCTUns simulation tools. The approach is to develop and enhance relay selection that allows cooperative data transmission in transparent relay that guarantees continuous connectivity. The proposed relay selection defined as Co-ReSL depends on weightage of SNR, α and weightage of Link Expiration Time (LET), β. The QoS performances of the proposed relay selections are in terms of throughput and average end-to-end (ETE) delay. The findings for Co-ReSL shows that at heavy traffic load, throughput increases up to 5.7% and average ETE delay reduces by 7.5% compared to Movement Aware Greedy Forwarding (MAGF) due to cooperative data transmission in selective links. The proposed relay selection mechanisms can be applied in any high mobility multi-tier cellular network

    An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks

    Get PDF
    With high speed access network technology like WIMAX, there is the need for efficient management of radio resources where the throughput and Qos requirements for Multicasting Broadcasting Services (MBS) for example TV are to be met. An enhanced feedback-base downlink Packet scheduling algorithm that can be used in IEEE 802.16d/e networks for mobile TV “one way traffic”(MBS) is needed to support many users utilizing multiuser diversity of the broadband of WIMAX systems where a group of users(good/worst channels) share allocated resources (bandwidth). This paper proposes a WIMAX framework feedback-base (like a channel-awareness) downlink packet scheduling algorithm for Mobile TV traffics in IEEE806.16, in which network Physical Timing Slots (PSs) resource blocks are allocated in a dynamic way to mobile TV subscribers based on the Channel State information (CSI) feedback, and then considering users with worst channels with the aim of improving system throughput while system coverage is being guaranteed. The algorithm was examined by changing the PSs bandwidth allocation of the users and different number of users of a cell. Simulation results show our proposed algorithm performed better than other algorithms (blind algorithms) in terms of improvement in system throughput performance. Doi: 10.12777/ijse.5.1.55-62 [How to cite this article: Oyewale, J. and , Juan, L.X.. (2013). An Enhanced Feedback-Base Downlink Packet Scheduling Algorithm for Mobile TV in WIMAX Networks. International Journal of Science and Engineering, 5(1),55-62. Doi: 10.12777/ijse.5.1.55-62

    Performance enhancements in next generation wireless networks using network coding : a case study in WiMAX

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 125-130).In this thesis, we design and implement a network-coding-enhanced network architecture for next generation wireless networks. The architecture applies intra-session random linear network coding as a packet erasure code below the IP layer. Using WiMAX as a case study, a series of point-to-point single-interface experiments are conducted to compare the performance of the architecture to that of HARQ and ARQ mechanisms. The performance measures are packet loss percentage, throughput and file transfer delay. The experiments use the Global Environment for Network Innovations (GENI) WiMAX platforms. UDP traffic considered; Iperf and UDP based File Transfer Protocol (UFTP) are used as measurement applications. The proposed architecture substantially decreases packet loss percentage from around 11-32% to nearly 0%. Compared to HARQ and ARQ mechanisms, the architecture can offer up to 5.9 times gain in throughput and 5.5 times reduction in end-to-end fi le transfer delay.by Surat Teerapittayanon.M.Eng

    Evolving military broadband wireless communication systems: WiMAX, LTE and WLAN

    Get PDF
    © 2016 IEEE. This version of the paper has been accepted for publication. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The final published paper is available online at: https://doi.org/10.1109/ICMCIS.2016.7496570.[Abstract]: Emerging technologies for mobile broadband wireless are being considered as a Commercial Off-The-Shelf solution to cover the operational requirements of the future warfare. The capabilities of these technologies are being enhanced to meet the growing market demands on performance. In this context, several standards such as WiMAX, LTE or WLAN are introducing themselves as strong candidates to fulfill these requirements. This paper presents an innovative scenario-based approach to develop a Military Broadband Wireless Communication System (MBWCS). Its main objective is to analyze how similar a military MBWCS can be to the identified civil standards, taking operational and high level technical requirements into account. This specification will be used for analyzing the applicability and the modifications of each of the standards layers individually. Proving the feasibility and aptitude of each standard provides strong foundations to address a MBWCS in the most efficient way.This work has been funded by MINECO of Spain under grant TEC2013-47141-C4-1-R and Indra Sistemas S.A. The authors acknowledge to Colin Brown, Mehmet Hayri K üçüktabak and Matthias Tschauner their collaboration in the NATO IST-ET-068
    corecore