3 research outputs found

    Smartphone’s off grid communication network by using Arduino microcontroller and microstrip antenna

    Get PDF
    After a major disaster, the present communication system fails in providing the services in the affected area. No means of communication proves to be more dangerous as the rescue and relief operations become more difficult. Our current research is about establishing a network in such a disaster-prone area, which would facilitate to communicate and carry out the rescue missions. This research project used Java to create a fire-chat application and used it with the smartphone android system. It used Bluetooth model HC-05 linked with Arduino UNO by the SPI interface to connect Arduino with the smartphone. The FR-model HCW69 connected with Arduino by using UART to transceiver the message. The microstrip antenna 915 MHz connected with the FR-model HCW69 to give us more distance. The maximum effective range of the transceiver was 1 kilometer, to communicate by forming a mesh network. This application is helpful in the case when the smartphone is out of service; it (smartphone) can be communicated connected to the other nearby users with a message

    Smartphone’s off grid communication network by using Arduino microcontroller and microstrip antenna

    Get PDF
    After a major disaster, the present communication system fails in providing the services in the affected area. No means of communication proves to be more dangerous as the rescue and relief operations become more difficult. Our current research is about establishing a network in such a disaster-prone area, which would facilitate to communicate and carry out the rescue missions. This research project used Java to create a fire-chat application and used it with the smartphone android system. It used Bluetooth model HC-05 linked with Arduino UNO by the SPI interface to connect Arduino with the smartphone. The FR-model HCW69 connected with Arduino by using UART to transceiver the message. The microstrip antenna 915 MHz connected with the FR-model HCW69 to give us more distance. The maximum effective range of the transceiver was 1 kilometer, to communicate by forming a mesh network. This application is helpful in the case when the smartphone is out of service; it (smartphone) can be communicated connected to the other nearby users with a message

    Prototype of Long-Range Radio Communication for e-Nelayan Devices using LoRaWAN

    Get PDF
    In this paper, development progress of a long-range radio communication-based fishing assistant system called e-Nelayan is reported. The purpose of the system is to increase the productivity, safety, and welfare of fishermen using mobile phone and long-range radio based system that enables them to report maritime violations, access and exchange information regarding weather, fishing area, and marketplace, as well as communicate with mainland using Android-based mobile phone within extended range. We used LoRaWAN as a base technology for long-range communication scheme. In this work, the test conducted to obtain an insight to e-Nelayan device (LoRa-based) received RSSI and its packet loss. The received data collected in a server also includes the GPS tracking data. The test results show that our system can reach about 5 km of distance between end-node to the LoRa Gateway within urban area (LoS configuration) and about 2 km for NLOS configuration
    corecore