6 research outputs found

    Design of a Mobile Agent for Monitoring Activities of Users

    Get PDF
    Monitoring is an aspect of network management aimed at ensuring optimal performance of the network and that the users play by the rules. This paper presents the design of a mobile agent for monitoring the activities of users in a network. Users’ activities can be localized on their personal workstation or extended to the enterprise network and the Internet, in which case it can impact on the subscribed bandwidth, which is a shared resource of the corporate entity that they represent. All users hope to work in an environment of unlimited resources, including disk space, RAM and bandwidth. However, though the cost of these computing resources have reduced significantly owning to advances in microelectronic technology, they are still far from being free and inexhaustible. In this research, we design a mobile agent tool that can monitor users’ activities in a network environment with a view to enhancing the effective utilisation of system resources, and in particular, the physical memory. The aim is to enable optimal resource utilisation in the network environment. In this paper, we define a mathematical formulation of user activities, load overhead of mobile agents and itinerary partition to avoid the over-bloating problem. The architecture of the mobile agent is explained. Keywords: Mobile Agent; System resources; Computer network; Code Mobility; Monitorin

    Design of a Mobile Agent for Monitoring Activities of Users

    Get PDF
    Monitoring is an aspect of network management aimed at ensuring optimal performance of the network and that the users play by the rules. This paper presents the design of a mobile agent for monitoring the activities of users in a network. Users’ activities can be localized on their personal workstation or extended to the enterprise network and the Internet, in which case it can impact on the subscribed bandwidth, which is a shared resource of the corporate entity that they represent. All users hope to work in an environment of unlimited resources, including disk space, RAM and bandwidth. However, though the cost of these computing resources have reduced significantly owning to advances in microelectronic technology, they are still far from being free and inexhaustible. In this research, we design a mobile agent tool that can monitor users’ activities in a network environment with a view to enhancing the effective utilisation of system resources, and in particular, the physical memory. The aim is to enable optimal resource utilisation in the network environment. In this paper, we define a mathematical formulation of user activities, load overhead of mobile agents and itinerary partition to avoid the over-bloating problem. The architecture of the mobile agent is explained. Keywords: Mobile Agent, System resources, Computer network, Code Mobility, Monitorin

    A review on the application of evolutionary computation to information retrieval

    Get PDF
    In this contribution, different proposals found in the specialized literature for the application of evolutionary computation to the field of information retrieval will be reviewed. To do so, different kinds of IR problems that have been solved by evolutionary algorithms are analyzed. Some of the specific existing approaches will be specifically described for some of these problems and the obtained results will be critically evaluated in order to give a clear view of the topic to the reader.CICYT under project TIC2002-03276University of Granada under project ‘‘Mejora de Metaheur ısticas mediante Hibridaci on y sus Aplicaciones

    Architectural components for the efficient design of mobile agent systems

    Get PDF
    Over the past eighteen months, there has been a renewed interest in mobile agent technology due to the continued exponential growth of Internet applications, the establishment of open standards for these applications, as well as the semantic web developments. However, the lack of a standardised programming model addressing all aspects of mobile agent systems prevents widespread deployment of the potentially useful technology. The architectural requirements dealing with all aspects of a mobile agent system are not clearly stipulated. As a result, the commercially available mobile agent systems and mobile agent tool kits address different mobile agent issues, and little reuse of available technologies and architectures takes place. The purpose of this paper is to describe an architectural model that identifies the components representing the essential aspects of a mobile agent system. Due to the intensive nature of development, implementation and testing of this model, we describe preliminary work. However, in the meanwhile, there are benefits associated with this preliminary model, namely that it provides a clear understanding of the architectural issues of mobile agent computing, giving novice researchers and practitioners who enters the field for the first time a foundation for making sensible decisions when researching, designing and developing mobile agents. The model is also significant in that it provides a benchmark for researchers and developers to measure the capabilities of mobile agents created by commercially available tool kits.Mobile Agent Systems, Software architecture modelSchool of Computin

    An Agent-Based Variogram Modeller: Investigating Intelligent, Distributed-Component Geographical Information Systems

    Get PDF
    Geo-Information Science (GIScience) is the field of study that addresses substantive questions concerning the handling, analysis and visualisation of spatial data. Geo- Information Systems (GIS), including software, data acquisition and organisational arrangements, are the key technologies underpinning GIScience. A GIS is normally tailored to the service it is supposed to perform. However, there is often the need to do a function that might not be supported by the GIS tool being used. The normal solution in these circumstances is to go out and look for another tool that can do the service, and often an expert to use that tool. This is expensive, time consuming and certainly stressful to the geographical data analyses. On the other hand, GIS is often used in conjunction with other technologies to form a geocomputational environment. One of the complex tools in geocomputation is geostatistics. One of its functions is to provide the means to determine the extent of spatial dependencies within geographical data and processes. Spatial datasets are often large and complex. Currently Agent system are being integrated into GIS to offer flexibility and allow better data analysis. The theis will look into the current application of Agents in within the GIS community, determine if they are used to representing data, process or act a service. The thesis looks into proving the applicability of an agent-oriented paradigm as a service based GIS, having the possibility of providing greater interoperability and reducing resource requirements (human and tools). In particular, analysis was undertaken to determine the need to introduce enhanced features to agents, in order to maximise their effectiveness in GIS. This was achieved by addressing the software agent complexity in design and implementation for the GIS environment and by suggesting possible solutions to encountered problems. The software agent characteristics and features (which include the dynamic binding of plans to software agents in order to tackle the levels of complexity and range of contexts) were examined, as well as discussing current GIScience and the applications of agent technology to GIS, agents as entities, objects and processes. These concepts and their functionalities to GIS are then analysed and discussed. The extent of agent functionality, analysis of the gaps and the use these technologies to express a distributed service providing an agent-based GIS framework is then presented. Thus, a general agent-based framework for GIS and a novel agent-based architecture for a specific part of GIS, the variogram, to examine the applicability of the agent- oriented paradigm to GIS, was devised. An examination of the current mechanisms for constructing variograms, underlying processes and functions was undertaken, then these processes were embedded into a novel agent architecture for GIS. Once the successful software agent implementation had been achieved, the corresponding tool was tested and validated - internally for code errors and externally to determine its functional requirements and whether it enhances the GIS process of dealing with data. Thereafter, its compared with other known service based GIS agents and its advantages and disadvantages analysed

    Mobile agent evolution computing

    No full text
    [[notice]]補正完
    corecore