
Author Addresses:
M. A Schoeman, Department of Computer Science and Information Systems, University of South Africa, P O Box 392, UNISA, 0003, South Africa;
schoema@unisa.ac.za.
E. Cloete, Department of Computer Science and Information Systems, University of South Africa, P O Box 392, UNISA, 0003, South Africa;
cloete@unisa.ac.za.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that the copies are
not made or distributed for profit or commercial advantage, that the copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than SAICSIT or the ACM must be honoured. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 2003 SAICSIT

Proceedings of SAICSIT 2003, Pages 48 – 58

Architectural Components for the Efficient Design of Mobile Agent Systems

MARTHIE SCHOEMAN
AND
ELSABÉ CLOETE
University of South Africa

Over the past eighteen months, there has been a renewed interest in mobile agent technology due to the continued exponential growth of Internet
applications, the establishment of open standards for these applications, as well as the semantic web developments. However, the lack of a
standardised programming model addressing all aspects of mobile agent systems prevents widespread deployment of the potentially useful
technology. The architectural requirements dealing with all aspects of a mobile agent system are not clearly stipulated. As a result, the commercially
available mobile agent systems and mobile agent tool kits address different mobile agent issues, and little reuse of available technologies and
architectures takes place. The purpose of this paper is to describe an architectural model that identifies the components representing the essential
aspects of a mobile agent system. Due to the intensive nature of development, implementation and testing of this model, we describe preliminary
work. However, in the meanwhile, there are benefits associated with this preliminary model, namely that it provides a clear understanding of the
architectural issues of mobile agent computing, giving novice researchers and practitioners who enters the field for the first time a foundation for
making sensible decisions when researching, designing and developing mobile agents. The model is also significant in that it provides a benchmark
for researchers and developers to measure the capabilities of mobile agents created by commercially available tool kits.

Categories and Subject Descriptors: H.1[Information Systems]: Models and Principles - General; D.0 [Software]: General
General Terms: Design; Standardisation
Additional Key Words and Phrases: Mobile Agent Systems, Software architecture model

1. INTRODUCTION

In 1999, Kotz and Gray [1999] predicted that many major Internet sites will accept mobile agents within a few years,
while Milojicic [1999] claimed that although mobile agent technology has raised considerable interest in the research
community and in industry, the promised deployment has not yet and may not even emerge. The number of publications
on the topic between 1996 and 1999 and the subsequent noticeable decline between 1999 and 2001 support Milojicic’s
point. However, since the end of 2001, there has been a considerable rise in the number of publications again. The
renewed interest is largely due to the recent materialization of the semantic web [Berners-lee et al. 2001, Kagal et al.
2003], as well as the continued exponential growth of Internet applications and the establishment of open standards for
these applications.

 The specific (previous) problems associated with mobile agent technologies have not yet been resolved.
According to Lange [1997], the lack of a programming model for agent-based applications prevents wider mobile agent
deployment. Kotz et al. [2002] corroborated this by saying that few, if any, of the current mobile agent systems will be
able to meet the needs of large, complex applications or be able to provide design paradigms for such applications. All-
embracing programming standards for the mobile agent paradigm are almost non-existent. Kotz et al. [2002] warned that
if mobile agents are to have significant impact on the Internet and mobile computing, the identification of the key
features that make mobile agents efficient and contribute to the possibility of successful deployment are important.
These features ought to be extracted to form a coherent, flexible set of standards.

 While it may not be an overly complex task for a systems programmer to build and deploy a mobile agent or a
mobile agent system, practitioners who do not work with agents regularly need guidance to develop them. Kendall et
al.[2000] reason that agent development to date has been done independently, leading to various problems such as the
lack of an agreed definition, duplication of effort, inability to satisfy industrial strength requirements and
incompatibility. Furthermore, in a detailed literature review [Schoeman 2003], we found that little reuse of agent
architectures, designs or components seem to be taking place. We briefly mention a few examples depicting the typical
method of reuse that were found in other instances. In one example both SMART [Wong et al. 2001] and the Distributed
Management Framework [Ferridun & Krause 2001] implemented and extended the Objectspace VoyagerTM platform
capabilities to satisfy their application needs. In another example, Wang et.al [2000] extended the Aglet technology and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/43178124?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Architectural Components for the Efficient Design of Mobile Agent Systems • 49

Proceedings of SAICSIT 2003

implemented a number of additional high-level design principles to make it easier to program general agent applications.
Aridor & Lange [1998], Kendall et al. [2000] and Tahara et al.[1999] all describe ways in which patterns can be used to
assist in mobile agent designs. However, in general, they do not use the same names to describe (often similar) patterns,
thereby enhancing the impression that no reuse takes place. Besides a few similar cases, the overall impression is that
developments are done independently and that there is a lack of reuse.

 Building mobile agent systems is a challenge because few guidelines exist on the topic and also because
exhaustive testing is virtually impossible. The research question we are addressing in this paper is as follows: What are
the architectural requirements for designing and developing a mobile agent system quickly and efficiently in order to
make it possible to include different mobile agent characteristics, with maximum reuse of available technologies and
architectures? In addressing this question, our purpose is to describe the architectural components representing the
essential aspects of a mobile agent system in a simplified, general but clear way. In our quest to establish such an
architectural basis, we have studied various mobile agent implementations, and extracted features and characteristics
that are embedded in these agent systems. In a further comparative study that we conducted, we were also able to extract
design and development guidelines and integrate them into an architectural model that represents the essential features
of a mobile agent system.

 The architectural model presented in this paper is of a theoretical nature, with its components deduced through
extractions from practical implementations and a small number of tests that we performed on certain features. The
purpose is not to report on the tests of individual features and therefore we do not provide any programming constructs.
Instead we discuss the relevant issues to be considered in each of the architectural components required to enhance the
design and development of mobile agent systems. We do not claim that this model is complete, and recognize the fact
that it will only reach such a state after several components have been programmed, implemented and intensively tested.
However, in the meanwhile, there are benefits associated with this preliminary model, namely that the model provides a
clear understanding of the architectural issues in mobile agent computing, giving novice researchers and practitioners
who enter the field for the first time a foundation for making sensible decisions when researching, designing and
developing mobile agents. The model is also significant in that it provides a benchmark for researchers and developers
to measure the capabilities of mobile agents created by commercially available tool kits.

 Section 2 reviews several mobile agent architectures in order to establish a base of criteria for our architectural
model, which is presented and discussed in Section 3. Future research is discussed and conclusions are drawn in Section
4.

2. COMMON MOBILE AGENT ARCHITECTURES

In the first part of this section we describe available architectural standards for mobile agent systems from whence
relevant architectural components are extracted. In the second part, a number of publicly available mobile agent systems
are discussed in order to discover additional architectural components.

2.1 Mobile Agent Architectural standards
1.2.1 The FIPA Standard
The Foundation For Intelligent Physical Agents (FIPA) specifications [2000] represent a collection of standards which
are intended to promote the interoperation of heterogeneous agents and the services they represent. These specifications
are focussed on agent communication languages, agent services and supporting management ontologies for agent
systems in general. No specific emphasis is placed on mobile agent systems and hence agent mobility and many other
features specific to mobile agents are excluded from this standard.

1.2.2 The MASIF standard
The OMG Mobile Agent System Interoperability Facility (MASIF) [2000] is a standard specifically aimed at addressing
interfaces between mobile agent systems. It presents a set of definitions and interfaces that provide an interoperable
interface for mobile agent systems. The purpose of this standard is to promote interoperability between agent systems.
MASIF uses two primary interfaces to achieve this purpose, namely, the MAFAgentSystem and the MAFFinder
interface. These two interfaces address the four interoperability concerns MASIF identified, namely (1) a standard way
of managing agents, including operations such as creation, suspension, resumption and termination; (2) a common
mobility infrastructure enabling different mobile agent systems to communicate with and visit other agent systems, (3) a
standardised syntax and semantics for naming services of agents and agent systems; and (4) a standardised location
syntax for finding agents. The intention of the MAFAgentSystem is to address the first two concerns, while the
MAFFinder interface has to realise the last two. Although the MASIF standard goes some way towards providing a
standard for mobile agent systems, it excludes a number of important architectural components in its standardisation
attempts. Its claim to interoperability is not as penetrating as desired since it only addresses interoperability between
agent systems written in JAVA. MASIF justifies this by assuming that Java is becoming the de facto standard, which
means that all mobile agent systems will be written in Java soon. MASIF does not address local agent operations such as

50 • Schoeman and E Cloete

Proceedings of SAICSIT 2003

agent interpretation and execution. It also excludes inter-agent communication from its standardization efforts, and does
not address conversion issues as such as these are too complex [Miljojic et al. 1998]. Assuming mobile agent systems to
be written in JAVA, the MASIF standard uses built-in JAVA constructs, as well as CORBA services to address security
and further expects the communication infrastructure to honour certain security concerns. A brief depiction of mobile
agent aspects that are addressed by MASIF follows.

 MASIF identifies an authority as the person or organisation for whom an agent acts and uses the term agent
system as the platform on a host where agents are created, interpreted, executed, transferred and terminated. Such an
agent system is uniquely identified by its name and address, and each host can contain many agent systems. Within each
agent system, there can be one or more places, a place being the execution environment, within a specific context, where
a mobile agent executes. An authority can own many agent systems, which may not all be of the same type. Agent
systems belonging to the same authority are known as a region, and this is regarded as a security domain as it creates a
trusted environment. The MAFAgentSystem interface addresses mobility as follows: to process a mobile agent's request
to move, the source agent system halts the agent’s thread, identifies its state, serialises the agent and its state, encodes
the serialised data according to the underlying transport protocol and provides authentication information to the server
before transferring the agent. On the receiver host side, the sender is authenticated, the serialised data is decoded and
then deserialised, the agent is instantiated and its state is restored before execution is resumed.

 MASIF’s naming and locating services are based upon and use corresponding CORBA services. The
MAFFinder interface defines mechanisms to register, unregister and locate agents, agent systems and places. It also
provides a set of techniques which an authority can use to locate agents, including (1) brute force, where the agent is
found by searching for it in every agent system in the region; (2) logging, where the agent is followed by its trail,
indicated by leaving its next destination at each server it visits; (3) agent registration, where every agent registers its
current location in a database that keeps the latest information about agents' locations; and (4) agent advertisement,
where only places are registered, and an agent's location is registered only when the agent advertises itself.

 It seems as though further development of the MASIF standard has either been placed on hold or has been
discontinued. Not only is there no mention of this standard on the official OMG site, but references to future
developments on the official MASIF site also lead nowhere. Furthermore, hyperlinks to references found in Miljojic et
al.[1998] have also been discontinued.

2.2 Mobile Agent Implementations
We have selected four of the most popular mobile agent platforms to include in this discussion.

2.2.1 Scalable Mobile and Reliable Technology (SMART)
Wong et al.[2001] developed a MAF1 compliant mobile agent platform, called Scalable Mobile and Reliable
Technology (SMART). This architecture consists of four layers built on a Java virtual machine (JVM). Figure 1(a) is a
simplified depiction of SMART. At the lowest layer the region administrator manages and enforces security policies on
a set of agent systems. The region administrator uses a finder module to provide naming services to the region
administrator and also to the layers above. In the second-lowest layer, the agent system layer, mobile agents can create,
migrate and destroy themselves. The third layer from the bottom forms the execution environment and contains one or
more places, which may exist for different execution contexts. At the topmost layer, the agent proxy provides the mobile
agent API for applications written in SMART.

2.2.2 D’Agents
Gray et al.[2002] describe the D'Agents (formerly known as Agent Tcl) mobile-agent system which was developed to
support distributed information retrieval and to characterize the mobile agent performance space. The D'Agents'
architecture has five levels. At the bottom level, TCP/IP is used to provide transport mechanisms. The second layer
defines a server layer to be implemented on all hosts to accept mobile agents. The server is a multi-threaded process and
executes multiple agents as threads inside a single process, while each agent is executed inside its own (Unix) process.
The next layer holds shared C++ libraries that implement agent functionality. The fourth layer provides the execution
environment for each of the three supported languages (Java, Tcl and Scheme). Each such execution environment
includes the interpreter/virtual machine for the supported language, stub routines allowing the agent to invoke functions
in the C++ library, a state-capture module to support mobility, and a security model to enforce resource limitations. The
agents themselves are defined on the top layer. Figure 1(b) is a simplified depiction of the D’Agents’ architecture.

 1The common Mobile Agent Facility (MAF) is the predecessor of MASIF.

Architectural Components for the Efficient Design of Mobile Agent Systems • 51

Proceedings of SAICSIT 2003

Place

Region Manager

Agent system

Agent proxy

Class Libraries

Transport mechanisms

Server layer

Virtual Machines

Agents

Security
Naming
Locating

Execution

User API

Create
Mobility
Destroy

Create
Mobility
Destroy

(a)
SMART Architecture

Execute Java
threats

Implement agent
functionalities

Support Java,
Tcl, Scheme

D’Agents Architecture

(b)

Communication layer

Runtime layer

Agency

Basic services
MASIF Core services

Enhanced services

Distributed Agent Environment
Create
Destroy
Suspend
Activate
Locating

Execution
Transport
Management
Communication
Security
Naming APIs

GUIs
task control

Communication Channel
Distributed
Processing
Environment

Grasshopper Architecture
(c)

Create
Destroy
Tracking
Transfer
Management

Serialiasation
Deserialisation
Mobility
Naming
Locating
Persistence
Management
Security

Aglets Architecture
(d)

2.2.3 Grasshopper
Grasshopper is a MASIF-compliant mobile agent platform supporting the development and execution of mobile agents.

The Grasshopper architecture [Pavlou 2000] distinguishes between two layers. The distributed agent environment
resides on the top layer, while the bottom layer consists of the distributed processing environment. A host in the
distributed agent environment typically includes an agency that has access to basic services as well as
advanced/extended services. The basic services include a MASIF component with the MAFFinder and
MAFAgentSystem interfaces as well as a number of core services. The core services include execution, transport,
management, communication, security and naming mechanisms. Extended functionality includes adapter interfaces for
external hardware/software, task control functions (e.g. itinerary), and application-specific GUIs. Figure 1(c) is a
simplified depiction of Grasshopper.

 The distributed processing environment on the bottom layer is structured into regions (optional), agencies and
places. Regions provide naming services and facilitate the management of distributed components. Grasshopper uses
both stationary and mobile agents. The mobile agents migrate autonomously between different locations, while the
stationary agents mostly reside permanently in their creation agency, offering services to other agents or entities. An
agency provides the runtime environment for mobile agents which, offers the basic platform functionality that includes
agent life cycle management, agent transport, communication, persistence and security. Each agency runs on its own
JVM and consists of one or more places. In the Grasshopper architecture, a place that is residing in an agency is
considered as a grouping of agents that provide the same functionality. A region facilitates the management of agencies,
places and agents as well as the tracking and finding of agents. Each region therefore contains a region registry that acts
as a directory service which also provides various lookup operations and search criteria.

2.2.4 Aglets
The Aglets initiative [Lange, 1997] is probably one of the best known mobile agent projects, where mobile agents are
referred to as ‘aglets’. The Aglets architecture consists of two layers and two APIs that define interfaces for accessing
layer functions. The runtime layer (top layer) consists of a core framework and subcomponents to provide the following
mechanisms fundamental to aglet execution: serialization and deserialization; class loading and transfer; reference
management and garbage collection; persistence management; maintenance of byte code; and protecting hosts and
agents (aglets) from malicious entities. These services are defined through the API on this layer. The communication
layer (bottom layer) uses a communication API that defines methods for creating and transferring agents, tracking agents

Figure 1. Architectural models of different mobile agent platforms

52 • Schoeman and E Cloete

Proceedings of SAICSIT 2003

and managing agents in an agent-system-and-protocol-independent way. The communication API is derived from the
MASIF standard. The Aglets architecture uses the Agent Transfer Protocol (ATP), modelled on the HTTP protocol, as
the default implementation of the communication layer.

 Aglets uses the following life-cycle: At first a new aglet must be instantiated. This can be done by either
creating a new instance or cloning an existing aglet. Once created, an aglet object can be dispatched to and/or retrieved
from a remote server, deactivated and placed in secondary storage, then activated later. An aglet can dispatch itself to a
remote server which causes the aglet to suspend its execution, serialise its internal state and byte code into the standard
form and then be transported to the destination. On the receiver side, the aglet is reconstructed according to the data
received from the origin, and a new thread is assigned and executed. Figure 1(d) is a simplified depiction of the Aglets
architecture.

3. PROPOSED ARCHITECTURAL MODEL

Considering the issues described in MASIF, the discussed systems, as well as other systems studied [Schoeman 2003],
we have identified several architectural components and subcomponents to be included in a mobile agent system. Figure
2 depicts the proposed architectural model for the design of a mobile agent system. As in other architectural models, a
layered approach is followed. The layers are organised according to the proposed life-cycle of a mobile agent. Before
conducting a detailed discussion on the individual layers, we describe such a life cycle.

3.1 Mobile Agent Life Cycle
At the local host (see Figure 2), an authority (the person or organisation for whom an agent acts) uses the Authority API
to create one or more agents in the Agency. Such an agent moves through the Execution layer to the Mobility and
Communication layers where standard mechanisms to ensure mobility and effective agent communication are added.
Fault tolerance mechanisms are added at the Persistence layer. At the Management Services layer, the agent is
serialised, before being encrypted at the Agent Security layer. At the Server layer, the agent is named and registered for
future reference. The agent receives credentials for access to other hosts at the Host Security layer before it is encoded in
a suitable transport protocol at the Network layer for transport through the network. On arrival at a remote host, the
Network layer removes the transport protocol envelope and sends the agent to the Host Security layer where the agent
seeks host access by submitting its credentials. If it is accepted, the host server registers the agent at the Server layer,
before the agent is decrypted at the Agent Security layer. The Management Services layer is responsible for deserialising
the agent and performing any conversions that may be necessary. The agent moves through the Mobility,
Communications and Persistence layers to be executed at a Place in the Execution layer. During execution, the agent
might interact with the Persistence layer for storing information, the Communication layer for communicating with other
agents or entities, and the Mobility layer for future migration requests. Once executed, the agent follows the path
downwards through the architecture in a similar fashion as at the local host.

3.2 Model layers
1.3.1 Authority API Layer
We use the MASIF definition for the agent's authority to be the person or organization for which the agent acts. The
authority API refers to the application interface that enables an authority to interact with and manage its mobile agents
both locally and remotely, including tasks such as creating agents, communicating with them, and destroying them. Da
Silva et al. [2000] remind developers that there are two interface types to design between an authority and its agency,
namely an interface for from-authority-to-agents, as well as an interface covering from-agents-to-authority interaction.
The first type of interface solves most of the interaction needs between the authority API and the agents. There are,
however, also instances in which agents should take the communication initiative, such as reporting back functions, or
when the agents encounter problems, in which case the second type of interface is required. Although there are many
commercial agent development tool kits available, truly standardised system/independent agent APIs do not exist yet,
and this necessitates further research and development.

1.3.2 Agency Layer
We use the term agency instead of agent system to refer to the environment on a host where agents are created and
terminated through an authority API. The agent system refers to the entire mobile agent platform stretching from the
lowest to the highest level. To simplify agent design, we suggest the use of Wang et al’s. [2000] categorisation of agents
into three basic types of agents, namely system agents, participation agents and user agents. The system agents take
responsibility for administering the agency as well as other system functions residing on other layers of the architecture.
These system agents can be further classified into manager agents, performing management tasks; facilitator agents,
facilitating communication; monitor agents, logging events; repository agents, responsible for retrieving and adding
information as well as querying repositories; and interface agents, providing the necessary API as well as interfacing
with other entities and applications. Participation agents provide system support for cooperative processes in execution

Architectural Components for the Efficient Design of Mobile Agent Systems • 53

Proceedings of SAICSIT 2003

places. These agents can be further classified into subclasses to simplify agent design, but the classification depends on
the type of mobile agent application. This implies that a generic classification for this type of agent will not be sensible.
For example, in an e-commerce environment one can create negotiation and mediation agents, but these classes of
agents will not make much sense in an information retrieval application. User agents are those agents created by an
authority for a specific purpose to act on behalf of its owner. From the description of the different types and classes of
agents, it is clear that both system and participation agents are created as part of the agent system, since they support the
operations of the entire system, whilst the user agents are created afterwards by the authority to perform a specific user
task. Many programming patterns have been described to create and maintain these agents. For more information see
Aridor & Lange [1998], Kendal et al. [2000], Singh et al. [2002], Silva & Delgado [1998] and Tahara et al. [1999].

1.3.3 Execution layer
We use MASIF’s description of the execution environment namely, to define a place as a context in which an agent
executes. According to Da Silva et al.[2000], a place has two main objectives, namely to provide a conceptual and
programming metaphor where agents are executed and meet other agents, and to provide a consistent way to define and
control access levels, and to control computational resources. Agent places can also have CORBA-support, facilitating
external applications to communicate with the agents.

 The execution environment is typically responsible for hosting the interpreter/virtual machine for the supported
agent language, hosting stub routines allowing the agent to invoke different library functions, granting access to local
resources in a selective manner, binding operating systems functions, binding to the network layer and providing an
environment where the agent can interact with or query its environment. Although the agent may be executed in either
machine or interpreted language, it is often preferable to express the agent in interpreted language since this supports
heterogeneity better, and has the advantage of late binding as well as the improved potential to add security mechanisms
[Harrison et al. 1995]. One of the major criticisms of mobile agents is that their execution environment can easily be
exploited by a guest agent [Dale 1997]. Constrained execution is therefore quite important to control granted access to
host resources and thus maintain the integrity of, and confidence, in the host site. Take note that constrained execution in
this context is not intended for security purposes. Access rights to the host (different to access to host resources) are
addressed on the Host Security layer. The notion of places in the execution environment addresses this concern to a
certain extent, as it is easier to allocate access limitations on a place than to restrict the entire execution environment
where the access limitations imposed on a place might be different for different places/agents. These access limitations
on a place can be defined in quantifiable measures such as number of CPU cycles, number of files opened, et cetera.
According to Dale [1997], not only the limitations themselves, but also the agent’s awareness of such limitations, will
affect the manner in which an agent conducts itself, since the exhaustion of a constraint will typically result in the agent
being terminated.

1.3.4 Mobility layer
Software agent systems and especially intelligent agent systems have been around for a long time, but to move these
agents over the Internet takes more than the readiness of the underlying network. In fact, the mobility of many
commercial mobile agent systems is restricted, being defined as an agent visiting a host, and then directly returning to its

Figure 2. Proposed architectural model for mobile agent development

 Authority API

Agency Agency

Mobility Persis-
tence

Commu-
nication

Server layer

Execution layer

Network

Host security

Agent security

Management services

Authority API

Mobility Persis-
tence

Commu-
nication

Server layer

Execution layer

Network

Host security

Agent security
Management services

Local host Remote host

Create/ Destroy
Suspend/Activate
Execution Places

Serialise
Deserialise
Conversion

Encryp/Decrypt
Naming
Finding

Access policies

Li
fe

-c
yc

le

54 • Schoeman and E Cloete

Proceedings of SAICSIT 2003

agency. This is largely due to the relative infancy of the field (moving agents vs. stationary agents) and the lack of
programming standards to facilitate mobility.

 Agent mobility can either be implemented as weak or strong mobility. In weak mobility, the agent's state is
represented in data structures and migration is only allowed at specific points in the agent code. In strong mobility, the
agent's state is captured at the underlying thread which allows for migration at any point in the agent's execution
[Triphati 2001]. With weak mobility, the agent will restart on the new host with its current data, while strong mobility
allows the agent to continue execution from the point in its instructions where it was transferred [Horvat 2000]. Most
Java-based mobile agent systems supports weak mobility, while systems not based on Java often provide strong mobility
[Horvat 2000, Picco 2001, Tripathi 2001]. Systems with weak mobility vary in the way agents request to move. Some
use a simple 'go' statement causing the agent code and data to be moved to a new host, where a predetermined procedure
or method is invoked. Others associate an itinerary listing the succession of hosts to visit, with each agent, and the
method to invoke on each host. Some systems invoke the same method at each stop, while others allow the agent to
specify different methods for each stop.

 Mobility often necessitates the transport of agent classes. Whether all classes required by the agent code should
be transported as part of the agent transfer protocol, or whether classes should be obtained on demand from a designated
code-base server during execution, is an area where the purpose and circumstances under which the application will be
used, have to be taken into account. Class transfers are usually approached in two ways: (1) all classes required by the
agent code can be transported as part of the agent transfer protocol, or (2) classes can be obtained on demand from a
designated code-base server during execution [Gray et al. 2002, Milojicic 1999, Triphathi et al. 2001]. D'Agents use the
first approach, which actually makes agent transfer heavyweight, since more classes than the agent actually needs, may
be transferred and it has the advantage that the agent needs no further communication with its previous host for code
transfer [Triphathi et al. 2001]. SMART uses the second approach, through the process of dynamic aggregation, which
allows the agent to attach new code and data at runtime, reducing the amount of code transferred with the agent. It also
reduces bandwidth requirements and speeds up the packing process before transmitting an agent to another host [Wong
et al 2001], but slows down agent execution [Triphathi et al. 2001] and is not suitable for disconnected operations. An
alternative approach is sometimes used where a thirdparty could be asked to serve as code cache to allow the sending
host to disconnect, or code could be cached at each host [Gray et al. 2002]. A number of variations on these approaches
are discussed by Gray et al. [2002], Miljojic et al. [1998] and Triphathi et al. [2001].

1.3.5 Communication layer
Two of the critical characteristics of mobile agents are their capabilities to collaborate and to share information.
Without interoperability it will be impossible to realise the potential capabilities and benefits of the mobile agent
technology. According to Pinsdorf [2002] mobile agent systems are interoperable if a mobile agent from one system can
migrate to the second system, the agent can interact and communicate with other agents (local or even remote agents),
the agent can leave this system and it can resume its execution on the next interoperable system. Interoperability aspects
are often impeded by complexity and security concerns. We do not support MASIF‘s claim that interoperability issues
can be restricted to mobile agents written in the same language as all mobile agent systems will be written in Java in the
near future. In fact, we believe that standardisation on a particular language throughout the Internet will most probably
not be reached in this lifetime. Our point is strengthened by Dale [1997] who points out that the behaviour expected
from the mobile agent often dictates the source programming language, since different languages have varying domains
of applicability.

 Mobile agents need to communicate with each other and sometimes also with other non-agent services and
resources. Gray et al. [2002] point to four important communication issues to be included in the design of a mobile
agent, namely (1) how to identify another party with which to communicate; (2) the required communication format; (3)
how to pass data from one party to the other (messaging); and (4) how to maintain communication with a moving agent.
We believe that identifying an agent or a communicating party is inherent in each of these issues and therefore should
not be treated as a separate communication feature. We subsequently discuss the last three of these communication
issues and refer to how the identification issue has a bearing on each of them.

 Inherent in agent communication are the issues surrounding the required communication format. Because
mobile agents operate in a heterogeneous environment, interoperability cannot be achieved if there is not a standardised
means through which agents can understand and communicate with their functional environment. According to Finin et
al. [1998] an agent communication language (ACL) provides the capacity to integrate disparate sources of information.
An ACL is usually composed of an inner context language with a common vocabulary with ontology, an outer
communication language and message passing mechanisms. JAVA and Tcl/Tk are commonly used as the inner context
language. An ACL must support three important communication aspects, namely (1) how to translate between different
ACLs; (2) how to guarantee the semantics of concepts, objects and relationships; and (3) how to share the intended
messages to be communicated.

Architectural Components for the Efficient Design of Mobile Agent Systems • 55

Proceedings of SAICSIT 2003

 There are many examples of standardisation efforts with regards to an ACL. We briefly mention two examples.
The Knowledge Sharing Effort [Genesereth & Finin 1992, Neches et al.1991] developed three languages to address the
abovementioned ACL issues, including the Knowledge Interchange Format (KIF), which was specifically designed to
address the translation aspects of an ACL, Ontolingua to address the semantics issue, and the Knowledge Query and
Manipulation Language (KQML) to address the issue of sharing messages in inter-agent communication. In another
example, one of the primary activities of the FIPA standard is to design a standard modelling language to support agent
software engineering and to guarantee a high quality development process to construct multi-agent systems [Calisti
2003].

 Messaging plays an important role in inter-agent and agent-host communication. Aridor and Oshima [1998]
discuss two basic methods for the delivery of messages including (1) Locate-and-Transfer, where the agent is located
with the aid of the naming services and then the message is transferred directly to it, i.e. two distinct phases exist during
message delivery, and (2) Forwarding, where locating the receiving agent and delivering the message occurs in a single
phase. The first may be problematic, since the agent may already have migrated when the second stage of transfer takes
place. The latter may be more efficient for smaller messages, while a large message can be delivered more efficiently
through the former method.

 Communication maintenance approaches to address agent communication issues can be divided into three
categories namely synchronous communication (such as offered by TCP), asynchronous communication (IP, RMI or
RPC) and indirect communication (event-notification and shared group/meeting objects) [Horvat 2000, Tripathi et
al.2001]. Gray et al.[2002] concur with these categories and subdivide synchronous communication into (1)
communication where messages containing strings or arbitrary data are passed and (2) communication where messages
containing serialised objects are passed. In all categories agents need to know each other's names to establish or
maintain communication.

 An example of why it is important to distinguish between the different communication categories in mobile
agent systems is illustrated in the following example. In synchronous communication, mechanisms must be included to
cater for a participating agent to migrate since migration of the agent will disrupt the communication session. This will
not happen in asynchronous communication, for if the agent is transferred, an exception will be thrown, and the
initiating agent can simply re-execute the lookup and binding protocol to re-establish communication with the other
agent at its new location.

 Most mobile agent systems use more than one of these mechanisms, as well as broadcasting/multicasting when
sending the same message to multiple receivers [Horvat et al. 2000]. D'Agents, for example, uses all three by keeping a
simple directory service, implemented as a collection of stationary cooperating agents [Gray et al. 2002]. Telescript
agents [White 1994] typically 'meet' other local agents and then invoke methods on objects in the other agents (example
of asynchronous communication), but these agents can also communicate by sending events (an example of indirect
communication).

 Maintaining security during communication, especially while providing remote communication to visiting
agents, is an important factor to consider during the design of a mobile agent system. Security concerns are addressed on
the host and agent security layers.

1.3.6 Persistence layer
According to Harrison et al. [1995], the concept of an agent migrating between hosts implies that the user is not reliant
on the system launching the agent and is not (or should not be) affected if a host fails, therefore persistence is built into
the notion of mobile agents. However, explicit persistence mechanisms should be integrated into a mobile agent system,
to avoid loops and interminable waiting upon agents to return to their agent system. Furthermore, since mobile agents do
not need to maintain a permanent connection, their state is centralised within themselves, implying that an improved
fault-tolerance can be expected from this technology. However, specific mechanisms have to be embedded into mobile
agent systems to handle fault situations, such as breakdown of connections or hosts, destruction of the agent, or network
errors causing the agent to get lost. While most systems offer little support for failure detection and recovery [Picco
2001, Tripathi 2001], a number of systems provide some form of persistence and fault-tolerance for mobile agents by
means of a checkpoint-restore mechanism to restart agents [Gray 2002, Horvat 2001, Picco 2001]. According to this
mechanism the agent's state information is checked before and after execution on a host server, and when the server is
restarted, a recovery process restarts any agents left on the server at last shutdown [Horvat 2001]. The Tacoma
architecture [Johansen 1995] achieves persistence by allowing agents to create folders inside cabinets (storage space on
disk); on boot-up, Tacoma then examines the 'system' cabinet and launches new agents for all the folders detected there.
Other persistence mechanisms are discussed in Triphati et al. [2001] and Vogler et al. [1997].

1.3.7 Management Services layer
Serialization, deserialization and conversions, where necessary, are done on the Management Services layer of the
proposed architectural model. In essence object serialization in mobile agent technology is the ability to read and write

56 • Schoeman and E Cloete

Proceedings of SAICSIT 2003

objects to byte streams commonly for saving session state information and for sending objects (agents and their states)
over the network. Serialization adds lightweight persistence as well as limited security to the agent as it protects private
and transient data. Although object serialization in general does not contain any encryption/decryption algorithms in
itself, it writes to and reads from streams, so it is possible for it to be coupled with any available encryption technology.
Java includes serialization through an API that allows the serialised data of an object to be specified independently of
the fields of the class and allows those serialised data fields to be written to and read from the stream using the existing
protocol to ensure compatiblity with the default writing and reading mechanisms. Aglet hosts use the standard Java
ObjectSerialization mechanism to export the agent state as well as the aglet itself to a stream of bytes. However, the
state of the execution stacks and program counters of the threads owned by the aglet are not serialised, which implies
that when an aglet is dispatched, cloned, or deactivated, any relevant state sitting on any stack of a running aglet, as well
as the current program counter for any thread, is lost [Venners 1997]. Grasshopper uses the MASIF
serialization/deserialization process also based on the JAVA language. Examples of other methods of serialization
(supporting other languages) are discussed in the Waterken Web [2003], Le Goff et al. [2001] and Procopio [2002].

1.3.8 Agent Security
A malicious hosting node can launch several types of security attacks on a mobile agent and divert its intended
execution towards a malicious goal or alter its data or other information in order to benefit from the agent's mission
[Sander & Tschudin 1998]. Bierman & Cloete [2002] describe four classes of security threats being imposed on mobile
agents by malicious hosts, namely (1) integrity attacks, which include integrity interference and information
modification; (2) availability refusals, which include denial of service, delay of service and transmission refusal; (3)
confidentiality attacks including eavesdropping, theft and reverse engineering, and (4) authentication risks, which
include masquerading and cloning. In the same paper, three types of counter-measures were presented to address these
classes of problems. The first type of counter-measure refers to trust-based computing where a trusted network
environment is created in which a mobile agent roams freely and fearlessly without being threatened by a possible
malicious host. A trusted environment can be achieved through tamper-resistant hardware, an agreement between
specific hosts, and inclusion of detection objects in the mobile code. However, a trusted environment also goes against
the notion of mobility, thus having access to unlimited Internet information. A second type of counter-measure that can
be considered includes methods of recording and tracking that make use of the itinerary information of a mobile agent,
either by manipulating the migration history or by keeping it hidden. Examples of specific recording and tracking
methods include itinerary recording and tracking mechanisms [Roth 1998, Schneider 1997], server replication [Misky et
al. 1996], et cetera. The third type of counter-measure includes cryptographic techniques that utilise
encryption/decryption algorithms, private and public keys, digital signatures, digital timestamps, and hash functions to
address different threat aspects. Examples include cryptographic tracing [Vigna 1997], encoding with encrypted
functions [Sander & Tschudin 1998], partial result encapsulation [Jansen 2000], et cetera. Many of the abovementioned
methods are theoretical at this stage and have not yet been implemented, due their complexity. As the malicious host
problem is not simple, much research is currently being conducted to provide better detection and prevention
mechanisms.

1.3.9 Server Layer
A global naming scheme managing agent names is important for identifying, controlling and locating agents [Miljojic
1998]. Moreover, a mobile agent system requires a name service to locate resources, specify agent servers for migration
and also to establish inter-agent communication [Triphati 2001]. MASIF uses an agent’s name (as assigned by its
authority), its identity (a unique value within the scope of the authority) and the agent’s system type (e.g. Aglet) to form
a globally unique name for each agent. As described earlier, MASIF uses four basic techniques to find an agent,
including brute force, logging, agent registration and agent advertisement. Other systems also use these, a hybrid of
these, as well as additional methods to locate. For example, Aridor & Oshima [1998] use the brute force search in
parallel or in sequence, as well as a database for agent registration as a predefined directory server used to register,
unregister or locate agents. Other agents can then use this directory to find the agent. Since communicating agents need
to agree in advance on the naming server, an architecture where agent servers share a default naming server simplifies
the registration system.

1.3.10 Host Security
A host is faced with two potential threats from mobile agents, namely (1) a malicious agent, which might be a virus or
Trojan horse vandalising the host, or (2) a benign agent that might simply abuse host’s local resources. In an
uncontrolled environment, mobile agents can potentially run indefinitely and consume the system level resources such as
files, disk storage, I/O devices, etc., in their execution environment. Therefore resource consumption, such as CPU
time, disk storage, number of threads, number of windows, network bandwidth and the like, should be limited and access

Architectural Components for the Efficient Design of Mobile Agent Systems • 57

Proceedings of SAICSIT 2003

control policies that define accessibility to these resources must be put in place [Feridun & Krause 2001, Gray et al
2002, Picco 2001, Tripathi 2001].

 In both instances, three basic types of counter-measures can be applied, i.e. authentication, verification and
authorisation. Verification mechanisms address the malicious agent threat and require the checking of code to make
sure that it does not perform any prohibited actions. Protection mechanisms against a potentially malicious host can of
course prevent such verification procedures from being implemented, which means that the verification mechanisms can
only be confined to the execution environment and hence only manage the agent during execution, making sure that the
agent does not try to corrupt the execution environment.

 The XML-based Security Assertion Markup Language [OASIS 2003] is a recent standardisation effort to
address the authentication and authorisation concerns. One of the major design goals with SAML is single sign-on,
which implies the ability of a user to authenticate in one domain and use resources in other domains without re-
authenticating. Although the OASIS standard is primarily aimed at Web services that allow the exchange of
authentication and authorization information among business partners, it is of particular importance for mobile agents as
they engage and interact with resources and other agents in various domains. With it, a security administrator can
express advanced security requirements, such as time- or event-based restrictions.

1.3.11 Network Layer
The network layer is responsible for the final encoding of the encrypted serialised agent object so that it can be
transported by the underlying network to its next host. Although there are several ways to perform this encoding, the
IBM Aglet’s workbench team proposed an Agent Transfer Protocol (ATP) as a mobile agent standard to be adopted for
transporting mobile agents. ATP is a platform-independent, application-level protocol for distributed agent-based
systems for the purpose of transferring mobile agents between networked computers. Some other mobile agent systems
simply use the underlying HTTP or TCP/IP protocols as transport protocol, for example Aridor & Oshima [1998] and
D’agents [Gray et al. 2002].

 Security mechanisms can also be included in the agent’s transport protocols. For example, protocols like
Secure Socket Layer (SSL) and Transport Layer Security (TLS), although a bit heavyweight, can be used for securing
transmission of data between two hosts. Alternatively, the Key Exchange Protocol (KEP) offers a lightweight transport
security mechanism, which suits the notion of small transferable objects better.

4. SUMMARY & CONCLUSIONS

Reviewing the publications on mobile agents, it is obvious that there is much research interest in the topic. The many
(rather recent) Internet services, applications and technologies (e.g. Web Services and XML) are playing a major role in
the further exploration of mobile agents as a viable Internet technology. The standardisation of these services,
applications and technologies resulted in their quick adoption, especially when considering the age of some of them.
The mobile agent platform has the potential to use these services, applications and technologies to enhance the
capabilities of the Web tremendously, but has, to date, sadly failed to make a real impression. It is our belief that the
underlying reason for this is the lack of architectural and open source standards for this technology. In this paper, we
addressed this problem and proposed an architectural model that represents the different components and design aspects
of mobile agent systems as a first step on the way to establishing a standard that can be used during the design and
development of mobile agent systems. The proposed model follows a layered approach, enabling developers to focus
their attention on issues on a specific layer that forms a functional unit. This model has to be taken further by researchers
and designers to design and develop open source patterns addressing the different aspects of mobile agent systems.

5. REFERENCES
ARIDOR, Y. AND LANGE, D.B. 1998. Agent Design Patterns: Elements of Agent Aplication Design. In Proceedings of the Second International

Conference on Autonomous Agents. Minneapolis/St. Paul, USA. 108 - 115.
ARIDOR, Y. AND OSHIMA, M. 1998. Infrastructure for Mobile Agents: Requirements and Design. In Proceedings of the Second International

Workshop on Mobile Agents (MA'98). Stuttgart, Germany. 38-49.
BERNERS-LEE T., HENDLER J. AND LASSILA, O. 2001. The Semantic Web. The Scientific American.com.

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21.
CALISTI,. M. 2003. FIPA standards for promoting interoperability of industrial agent systems. FIPA Presentation, Agentcities, Information Days.

Barcelona, Spain.
DALE, J. A Mobile Agent Architecture for Distributed Information Management.1997, Ph.D. thesis, University of Southampton.
DA SILVA, A.R., DA SILVA, M.M. AND ROMµO, A. 2000. Web-based Agent Applications: User Interfaces and Mobile Agents.

http://citeseer.nj.nec.com/499980.html
FIPA: THE FOUNDATION FOR INTELLIGENT AGENTS. 2000. http://www.fipa.org/specifications.
FERIDUN, M. AND KRAUSE, J. 2001. A framework for distributed management with mobile components. Computer networks. Vol 35. 25 - 38.
FININ, T., LABROU, Y., AND PENG, Y. 1998. Mobile Agents Can Benefit from Standards Efforts on Interagent Communication. IEEE

Communications Magazine. http://www.cs.umbc.edu/~finin//papers/IEEECommDraft.pdf
GENESERETH, M.R. AND FININ, R.E. Knowledge Interchange Format, Version 3.0 Reference Manual. Computer Science Department. Stanford

University. 1992. http://logic.stanford.edu/kif/Hypertext/kif-manual.html

58 • Schoeman and E Cloete

Proceedings of SAICSIT 2003

GRAY, R.S., CYBENKO, G., KOTZ, D., PETERSON, R.A. AND RUS, D. 2002. D'Agents: Applications and performance of a mobile agent
system. Software: Practice and Experience. Vol 35. Number 6. 543 - 573.

HARRISON, C. G., CHESS, D. M. AND KERSHENBAUM, A. 1995. Mobile Agents: Are they a good idea? IBM Research Report. IBM T. J.
Watson Research Center.

HORVAT, H., CVETKOVI, D., MILUTINOVI, D., KOVI, P. & KOVAEVI, V. 2000. Mobile Agents and Java Mobile Agent Toolkits. In
Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS-33). CD-ROM. p. 10. IEEE Computing Society, Los
Alamos, CA.

JANSEN, W.A. 2000. Countermeasures for Mobile Agent Security. Computer Communications. Special issue on advanced security techniques for
network protection. Elsevier Science.

JOHANSEN, D., VAN RENESSE, R., AND SCHNEIDER, F.B. 1995. An Introduction to the TACOMA Distributed System. Technical Report. 95-
23. Department of Computer Science. Institute of Mathematical and Physical Sciences.

KAGAL, L., PERICH, F., CHEN, H., TOLIA, S., ZOU, Y., FININ, T., JOSHI, A., PENG, Y., COST, R.S. AND NICHOLAS, C. Accessed May
2003. Agents making sense of the Semantic Web. NEC Research Institute CiteSeer. http://citeseer.nj.nec.com/531295.html.

KENDALL, E.A., KRISHNA, P.V., SURESH C.B. AND PATHAK, C.V. 2000. An Application Framework for Intellgent and Mobile Agents. ACM
Computing Surveys. Vol 32. No 1.

KOTZ, D. AND GRAY, R.S. 1999. Mobile Agents and the Future of the Internet. http://www.cs.dartmouth.edu/~dfk/papers/kotz:future2.
KOTZ, D., GRAY, R. AND RUS, D. 2002. Future Directions for Mobile Agent Research. IEEE Distributed Systems.

http://dsonline.computer.org/0208/f/kot.htm.
LANGE, D.B. 1997. Java Aglet Application Programming Interface (J-AAPI) White Paper - Draft 2. http://www.trl.ibm.co.jp/aglets.
LE GOFF, H. STOCKINGER, J.-M., WILLERS, I., MCCLATCHEY, R., KOVACS, Z., MARTIN, P., BHATTI, N. AND HASSAN, W. 2001.

Object Serialization and Deserialization Using XML. The Compact Muon Solenoid Experiment.CMS CERN, CH-1211 GENEVA 23,
Switzerland. Report No: CMS NOTE 2001/025. http://arxiv.org/ftp/physics/papers/0105/0105083.pdf.

MASIF: The OMG Mobile Agent System Interoperability Facility. 2000. Lecture Notes in Computer Science. Springer-Verlag: SpringerLink. Berlin,
Germany. LNCS 1477, p. 50 ff. http://link.springer.de/link/service/series/0558/bibs/1477/14770050.htm.

MILOJICIC, D. 1999. Trend Wars Mobile Agent Applications. IEEE Concurrency. Vol. 7. No. 3. 80 - 90.
MILOJICIC, D., BREUGST, M., BUSSE, I., CAMPBELL, J., COVACI, S., FRIEDMAN, B., KOSAKA, K., LANGE, D., ONO, K., OSHIMA, M.,

THAM, C., VIRDHAGRISWARAN, S. AND WHITE, J. 1998. MASIF: The OMG Mobile Agent System Interoperability Facility. Personal
Technologies. Vol 2, No 2. 117 - 128.

MINSKY, Y., VAN RENESSE, R. SHEIDER, F., STOLLER, S. 1996. Cryptographic support for fault-tolerant distributed computing. In
Proceedings of the Seventh ACM SIGOPS European Workshop. Connemara, Ireland 109-114.

NECHES, R., FIKES, R., FININ, R.E., GRUBER, R., PATIL, R., SENATOR, T., AND SWARTOUT W.R. 1991. Enabling Technology for
Knowledge Sharing. AI Magazine. vol 12. 1001.36-56. http://www.isi.edu/isd/KRSharing/vision/AIMag-small.html.

ORDILLE, J.J. 1996. When agents roam, who can you trust? In Proceedings of the First Conference on Emerging Technologies and Applications in
Communications. Portland, Oregon.

ORGANIZATION FOR ADVANCEMENT OF STRUCTURED INFORMATION STANDARDS (OASIS). 2003. Assertions and Protocol for the
OASIS Security Assertion Markup Language 3 (SAML) V1.14. http://www.oasis-open.org/committees/download.php/1894/sstc-saml-core-1.1-
draft-10.pdf.

PAVLOU, G. 2000. The Grasshopper Mobile Agent Platform. Appearing in Mobile intelligent agents for managing the information infrastructure.
http://www.ee.surrey.ac.uk/CCSR/ACTS/Miami/grasshopper.html.

PICCO, G.P. 2001. Mobile agents: an introduction. Microprocessors and Microsystems. Vol. 2, No. 2. 65 -74.
PINSDORF, U. AND ROTH, V. 2002. Mobile Agent Interoperability Patterns and Practice. In Proceedings of Ninth IEEE International Conference

and Workshop on the Engineering of Computer-Based Systems. Sweden.
PROCOPIO, M. 2002. Object Serialization and Deserialization in C#. http://www.devhood.com/tutorials/tutorial_details.aspx?tutorial_id=448
ROTH, V. 1998. Secure Recording of Itineraries through Cooperating Agents. (In Proceedings of the ECOOP Workshop on Distributed Object

Security and 4th Workshop on Mobile Object Systems: Secure Internet Mobile Computations, Brussels, Belgium.147-154.
SANDER, T. AND TSCHUDIN, C. 1998. Protecting Mobile Agents against Malicious Hosts. Lecture Notes in Computer Science. Springer-Verlag

No. 1419, 44-60.
SCHNEIDER, F.B. 1997. Towards Fault-Tolerant and Secure Agentry. In Proceedings of the 11th International Workshop on Distributed

Algorithms. Saarbrücken, Germany
SCHOEMAN, M.A. 2003. Architectural guidelines for Mobile Agent Systems. Technical Report: TR-UNISA-2003-02. School of Computing.

University of South Africa.
SHIH, T.K. 2001. Mobile agent evolution computing. Information Sciences. Vol 137.53 - 73.
SINGH, A.K., SANKAR AND R., JAMWAL V. 2002. Design Patterns for Mobile Agent Applications. Workshop on Ubiquitous Agents on

embedded, wearable, and mobile devices held in conjunction with the Conference on Autonomous Agents & Multiagent Systems. Bologna.
http://autonomousagents.org/ubiquitousagents/papers/papers/22.pdf

SILVA, A. AND DELGADO, J. 1998. The Agent Pattern for Mobile Agent Systems. European Conference on Pattern Languages of Programming
and Computing. Bad Irsee, Germany.

TAHARA, Y., OHSUGA, A. AND HONIDEN, S. 1999. Agent System Development Method Based on Agent Patterns. In Proceedings of the 21th
International Conference on Software Engineering. Los Angeles, CA, USA.356 - 367.

TRIPATHI, A.R., AHMED, T. & KARNIK, N.M. 2001. Experiences and future challenges in mobile agent programming. Microprocessors and
Microsystems. Vol 25. 121-129.

VENNERS B. 1997. Under the hood: The architecture of aglets. http://www.javaworld.com/javaworld/jw-04-1997/jw-04-hood_p.html
VIGNA, G. 1997. Protecting Mobile Agents through Tracing. In Proceedings of the 3rd ECOOP Workshop on Mobile Object Systems. Jyväskylä,

Finland.
VOGLER, H., KUNKELMANN, T. AND MOSCHGATH, M.L. 1997. Distributed Transaction Processing as a Reliability Concept for Mobile

Agents. In Proceedings of the 6th IEEE Workshop on Future Trends of Distributed Computing Systems (FTDCS '97).
WANG, A.I., HANSSEN, A.A., NYMOEN, B.S. 2000. Design Principles for A Mobile, Multi-agent Architecture for Cooperative Software

Engineering
WATERKENTM WEB. Object Serialization Specification. 2003. http://www.waterken.com/dev/Web/Object/
WHITE, J. E. 1994. Telescript Technology: The Foundation for the Electronic Marketplace. White paper. General Magic, Inc., Mountain View, CA,

USA.
WONG, J., HELMER, G., NAGANATHAN, V., POLAVARAPU, S., HONOVAR, V. AND MILLER, L. 2001. SMART mobile agent facility. The

Journal of Systems and Software. Vol 56. 9 - 22.

