3,673 research outputs found

    Mobile Networking

    Get PDF
    We point out the different performance problems that need to be addressed when considering mobility in IP networks. We also define the reference architecture and present a framework to classify the different solutions for mobility management in IP networks. The performance of the major candidate micro-mobility solutions is evaluated for both real-time (UDP) and data (TCP) traffic through simulation and by means of an analytical model. Using these models we compare the performance of different mobility management schemes for different data and real-time services and the network resources that are needed for it. We point out the problems of TCP in wireless environments and review some proposed enhancements to TCP that aim at improving TCP performance. We make a detailed study of how some of micro-mobility protocols namely Cellular IP, Hawaii and Hierarchical Mobile IP affect the behavior of TCP and their interaction with the MAC layer. We investigate the impact of handoffs on TCP by means of simulation traces that show the evolution of segments and acknowledgments during handoffs.Publicad

    The eventual leadership in dynamic mobile networking environments

    Get PDF
    2007-2008 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Advanced Networks in Motion Mobile Sensorweb

    Get PDF
    Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation

    A Multi-hop Mobile Networking Test-bed for Telematics

    Get PDF
    An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the realworld performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road

    DEMO: Attaching InternalBlue to the Proprietary macOS IOBluetooth Framework

    Full text link
    In this demo, we provide an overview of the macOS Bluetooth stack internals and gain access to undocumented low-level interfaces. We leverage this knowledge to add macOS support to the InternalBlue firmware modification and wireless experimentation framework.Comment: 13th ACM Conference on Security and Privacy in Wireless and Mobile Network

    MOBILE NETWORKING FOR “SMART DUST” WITH RFID SENSOR NETWORKS

    Get PDF
    Large-scale networks of wireless sensors are becoming an active topic of research.. We review the key elements of the emergent technology of “Smart Dust” and outline the research challenges they present to the mobile networking and systems community, which must provide coherent connectivity to large numbers of mobile network nodes co-located within a small volume. Smart Dust sensor networks – consisting of cubic millimetre scale sensor nodes capable of limited computation, sensing, and passive optical communication with a base station – are envisioned to fulfil complex large scale monitoring tasks in a wide variety of application areas. RFID technology can realize “smart-dust” applications for the sensor network community. RFID sensor networks (RSNs), which consist of RFID readers and RFID sensor nodes (WISPs), extend RFID to include sensing and bring the advantages of small, inexpensive and long-lived RFID tags to wireless sensor networks. In many potential Smart Dust applications such as object detection and tracking, fine-grained node localization plays a key role
    • …
    corecore