
The Eventual Leadership in Dynamic Mobile Networking Environments

Jiannong Cao1, Michel Raynal2, Corentin Travers2, Weigang Wu1
1. Department of Computing, The Hong Kong Polytechnic University

{cjcao, cswgwu} @comp.polyu.edu.hk
2. IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

{raynal, ctravers}@irisa.fr

Abstract

Eventual leadership has been identified as a basic

building block to solve synchronization or
coordination problems in distributed computing
systems. However, it is a challenging task to implement
the eventual leadership facility, especially in dynamic
distributed systems, where the global system structure
is unknown to the processes and can vary over time.
This paper studies the implementation of a leadership
facility in infrastructured mobile networks, where an
unbounded set of mobile hosts arbitrarily move in the
area covered by fixed mobile support stations. Mobile
hosts can crash and suffer from disconnections. We
develop an eventual leadership protocol based on a
time-free approach. The mobile support stations
exchange queries and responses on behalf of mobile
hosts. With assumptions on the message exchange
flow, a correct mobile host is eventually elected as the
unique leader. Since no time property is assumed on
the communication channels, the proposed protocol is
especially effective and efficient in mobile
environments, where time-based properties are
difficult to satisfy due to the dynamics of the network.

1. Introduction

In asynchronous distributed systems, there is no
bound on the time for a process to execute a
computation step, or for a message to be delivered.
Due to such timing uncertainty, solving coordination
problems, e.g. consensus and mutual exclusion [10], is
a difficult and complex task. For example, the
consensus problem [10] has been proved to be
impossible to solve in an asynchronous system with
even one crash failure [17].

To overcome the difficulty introduced by timing
uncertainty and process crashes, the concept of
unreliable failure detector has been introduced [9]. A
failure detector can be viewed as an oracle [32] made

up of a set of modules, each associated with a process.
The failure detector attached to a process provides
hints on the status (alive or crashed) of other processes.
A failure detector is defined by abstract properties and
does not depend on any particular assumption on the
behavior of the underlying network. Among different
failure detectors defined in [9], the eventual leader,
denoted by Ω, is one of the most important classes. An
Ω leader provides the processes with a leader primitive
that outputs a process id each time it is invoked and
satisfies the following eventual leadership property:

Eventual leadership: eventually, all invocations
return the same id, and that id is the identity of a
correct process (i.e. a process that does not crash
during the execution of the protocol).
Ω is not very powerful in terms of the capability of

detecting failures, since a correct leader is eventually
elected but there is no knowledge on when this occurs.
However, it has been shown that Ω is the weakest class
of failure detectors that allows solving the consensus
problem (provided that a majority of correct processes)
[10]. Based on Ω, many consensus protocols [10, 21,
29] have been proposed. Ω is also at the heart of the
well-known Paxos algorithm [23] and its
improvements [14, 20, 22] to cope with dynamic
systems.

A large number of researches [3, 4, 9, 12, 24, 26]
have been conducted to implement the oracle Ω in a
classical asynchronous distributed computing model,
which is characterized by the following attributes. The
system is made up of n processes and n is fixed and
known by each process; each process has a unique
identity and knows the identities of other processes;
there is no bound on the time it takes for a process to
execute a step or for a message to travel from its sender
to its destination.

In recent years, a major advance in distributed
computing is the development of dynamic systems [2,
27, 18, 31], e.g. mobile computing systems and peer-
to-peer systems, where processes can join or leave the

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.27

123

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.27

123

13th IEEE International Symposium on Pacific Rim Dependable Computing

0-7695-3054-0/07 $25.00 © 2007 IEEE
DOI 10.1109/PRDC.2007.27

123

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PolyU Institutional Repository

https://core.ac.uk/display/61007626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

system at any time and the number of participating
processes can change arbitrarily as time passes. The
inherent dynamic nature of processes introduces a new
kind of uncertainty, namely structure uncertainty: the
global structure of the network is unknown to the
processes. This additional difficulty makes the design
of coordination protocols even more challenging than
in classical distributed systems.

This paper investigates the implementation of Ω in
dynamic mobile networking environments with mobile
hosts 1 (MHs for short) and mobile support stations
(MSSs for short). MHs, which are usually small
devices with low computation power and stand alone
energy sources, are connected to MSSs using wireless
communications [7, 8]. Due to mobility, an MH can
change its location arbitrarily and enter or leave the
area covered by the MSSs. Moreover, to save energy,
an MH may voluntarily disconnect from the network.
This means that at any time, the mobile processes that
form the system are unknown to MHs and MSSs.

 To implement Ω in a dynamic mobile network, we
adopt a time-free approach [28, 30] proposed for
traditional fixed networks and extend it to the context
of mobile networking environments. We let MSSs act
as servers that provide an eventual leadership service
to the MHs. More precisely, MSSs conduct the
exchange of queries and responses using the query-
response mechanism in [28, 30], in order to elect an
eventual unique leader MH (it is important to notice
that an MH rather than an MSS can be elected as the
leader, because the leadership is for upper layer
applications at MHs. MSSs are usually owned by
network operators and cannot participate in the
execution of end user applications). Such a treatment
can reduce the workload of MHs and consumption of
various resources, e.g. battery power and bandwidth.

However, with such a design, the query-response
mechanism in [28, 30] cannot be directly used. First,
the eventual leader is an MH but it is elected by MSSs,
so the MSSs must be provided a view of MHs. To do
so, we assume that each MSS is equipped with a
device/module that provides it with partial information
about the MHs that are present in the system. More
precisely, each MSS bi is provided with a set
local_trusti of mobile process identities that represents
bi’s current view of the MHs that are currently present
in the system.

Another problem is that the assumption in [28, 30]
becomes unreasonable in the mobile system. MHs may
move from one cell to another, so it is impossible that,
after some finite time, an MH is always accessible by

1 In this paper, we use the terms “process” and “host”
interchangeably.

some specific set of MSS. Therefore, the assumption of
the host p and set Q does not make sense any more.

To address these problems, we develop a two-phase
query-response mechanism. With some additional
assumption on the local_trust, we implement Ω in a
dynamic mobile system. Since no assumption is related
to the time property of the message passing channel,
the proposed protocol is time-free, so it is especially
suitable for mobile networks, where time properties are
difficult to satisfy.

The rest of the paper is organized as follows.
Section 2 reviews existing work on the implementation
of the eventual leader facility Ω. Section 3 presents the
system model, i.e. the dynamic mobile networking
environment. In Section 4, we describe the formal
definition of the eventual leadership with respect to the
system model, and the additional assumption MPdyn.
Our proposed eventual leadership protocol and the
proof of its correctness are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Related work

The implementation of the oracle Ω in
static/classical asynchronous systems has motivated a
large body of researches [3, 4, 9, 12, 24, 26]. The first
approach investigated in [9, 12, 24] considers that all
the links connecting the processes are eventually
timely. This means that after some time τ, each
message reaches its destination in at most δ units of
time. Both τ and δ are unknown to the processes [13].
This approach has been refined to obtain weaker
constraints. It has been shown in [3, 4] that Ω can be
implemented in a system where at least one correct
process has at least s eventually timely outgoing links
(this is defined as s-source).

Interestingly, a step ahead has been taken in [26],
where the notion of eventual s-accessibility is
introduced. Informally, a process p is s-accessible at
some time if messages sent by p at that time are
received within δ units of time by a set Qτ of at least s
processes. The interest of this notion lies in the fact
that the set Q of processes that “witness” p can be
different at different time.

A time-free approach [28, 30] implements the
eventual leadership using a query-response based
mechanism. There are totally n processes in the system
and at most t of them can fail (by crashing only). The
solutions in [28, 30] rely on an assumption on the
behavior of the flow of message exchange. More
precisely, processes broadcast queries and then wait for
responses from other processes. The first n-t responses
received are winning responses (the other responses, if
any, are called losing responses; they can be slow or

124124124

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

never sent due to the crash of the sender). It is shown
in [30] that Ω can be built if the following behavioral
property is satisfied: “there is a correct process p and a
set Q of t + 1 processes such that eventually each
response of p to each query issued by any q �Q is
always a winning response”. Intuitively, this means
that for q � Q, the link connecting q to p is not among
the t slowest links of q.

Another approach investigated in [6, 11] considers
reducing Ω to other failure detector classes. This
approach is mainly theoretical: it aims at comparing
and ranking different failure detector classes.

In the context of dynamic systems, little work has
been done for the implementation of the eventual
leadership. Friedman et al. [19] evaluate the gossip
based failure detection in mobile ad hoc networks. An
eventual leadership protocol is proposed in [31], but
the proposed protocol can be viewed as a pedagogical
example and is not suitable for mobile environments.

3. Computational model

The mobile networking environment consists of two
distinct sets of entities: a set of MHs and a set of fixed
hosts, i.e. MSSs. The set of MSSs and the
communication channels among them form a static
distributed system. On the other hand, the mobile
processes can be viewed as a dynamic system. The
MHs move in a geographical area, which is partitioned
into cells. Each cell is covered by one MSS and MHs
can only communicate with the MSS responsible for
the cell in which it is located (and vice versa). An MH
is connected to the system if and only if it is up and
running and located in a cell covered by an alive MSS.

For the ease of the exposition, we assume the
existence of a global discrete clock. This clock is a
fictional device which is not known to the processes; it
is only used to state specifications or prove protocol
properties. The range T of clock values is the set of
natural integers.

3.1 Mobile support stations: a static
asynchronous distributed system

The set of MSSs and its underlying communication

network is modeled as a static asynchronous system.
The network of MSSs is made of a finite set of n≥ 2
fixed processes, namely, B = {b1,…, bn}. Each MSS
knows the identities of all MSSs. An MSS may
correspond to a base station in the cellular network or a
mesh router node in a wireless mesh network [5]. An
MSS can fail by crashing, i.e., prematurely halting but
it behaves correctly (i.e., according to its specification)
until it possibly crashes. A process bi is correct in a run

of the leader election protocol if it does not crash in
that run, otherwise it is faulty. We assume that a
majority of MSSs are correct. In this paper, we use the
following notations concerning the set B of MSSs:

 t denotes the maximum number of processes that
can crash in a run (1≤ t < n/2).

 C ⊆ B is the set of MSSs that are correct in a run.
MSSs communicate by sending and receiving

messages through reliable yet asynchronous channels.
Each pair of MSSs {bi, bj} is connected by a wired or
wireless channel. Channels are reliable, i.e. they do not
alter, create or lose messages. However, channels are
asynchronous: the time to transfer a message from bi to
bj is finite but unbounded.

Moreover, we consider that each MSS is provided
with a query-response mechanism, which is the
underlying communication approach used in our
protocol. Such a query-response mechanism can be
easily implemented in a time-free manner on top of a
static asynchronous distributed system. More precisely,
any MSS bi can broadcast (to other MSSs) a QUERY()
message and then wait for corresponding RESPONSE()
from n-t MSSs (these are the winning responses for
that query). The other RESPONSE() messages
associated with the query, if any, are systemically
discarded (they are the losing responses for that query).

A query issued by bi is terminated if bi has received
n-t responses. We assume that a process issues a new
query only when the previous one has terminated.
Without loss of generality, the response from a process
to its own query is assumed to always arrive among the
first n-t responses it is waiting for. Moreover,
QUERY() and RESPONSE() are assumed to be
implicitly tagged in order not to confuse RESPONSE()
messages corresponding to different QUERY()
messages.

3.2. Mobile hosts: a dynamic system

Each mobile process has a unique identity. mi

denotes the MH whose identity is i. Like MSSs, MHs
are asynchronous and suffer from crash failures. The
system has infinitely many MHs M = {m1, m2,…}.
However, the join and leave of MHs satisfy the finite
arrival model [2, 27], and each run of the protocol has
only finitely many MHs. This means that there is no
bound on the number of MHs for all runs but there is a
bound on the number of MHs in each run. A protocol
does not know that information because it varies from
run to run.

An MH is connected only if it is located in a cell
covered by some MSS that it is associated with. An
MH can directly communicate with only the MSS
located in its current cell. Messages between two MHs

125125125

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

must be forwarded by corresponding MSSs. When an
MH moves from one cell to another, a handoff
procedure is then executed.

We use the following notation concerning the set M
of MHs:

 up(τ)⊆ M is the set of MHs that are connected to
the system at time τ (i.e., up(τ) is the set of MHs
that joined the system before time τ and no
associated crash or disconnection occurs before
time τ).

4. Problem definition and additional
assumptions

Before we formally define the eventual leadership
in the model described in system model described
above, we first introduce the assumption on the
stability of the system. The set of MHs is inherently
dynamic. However, if each MH periodically join and
then leave the system, being connected only for a short
period (i.e., the system is unstable), it is not possible to
elect an MH. Therefore, the system should exhibit
stable periods that last long enough. The following set
definition captures this notion of stability [18, 31]:

 STABLE = {mi: ∃τ s.t.∀τ’ ≥ τ, mi �up(τ’)}.
STABLE is the set of MHs that, once have entered
the system, do not crash or get disconnected.
The set STABLE is the dynamic counterpart of the

set C of correct processes defined in the context of
static models. For our purpose, STABLE ≠ Ø is a
necessary condition.

Then, the leadership of the leader oracle Ω can be
defined as follows:

 Eventual Leadership: There is a time τ and a MH ml
∈ STABLE such that after τ, any invocation of
leader() by any process mi returns l.
As shown in [30], a leader oracle cannot be

implemented in purely asynchronous systems where
processes may crash. Therefore, some assumptions are
needed to circumvent this impossibility. We suppose
that each MSS bi is able to gather partial knowledge
about the presence of MHs in the system. We define
the information available to MSSs in the failure
detector framework [9].

We assume that each MSS bi is equipped with a
local failure detector that provides a set local_trusti ⊆
M, which provides hints on MHs that are currently up
and connected. More precisely, at each MSS bi, the set
local_trusti satisfies the following properties
(local_trustτi denotes the value of local_trusti at bi at
time τ):

 Eventual Accuracy: ∃m ∈ STABLE; ∃τ such that
∀τ’ ≥ τ: m ∈∪i∈C local_ trustτ’i.

 Completeness: If an MH m never joins the system,
crashes or permanently leaves the system, then, ∃τ
such that ∀τ’ ≥ τ: m ∉∪i∈C local_ trustτ’i.
The accuracy property requires that eventually, at

least one stable MH m is continuously trusted by the
MSSs. Let us notice that it is not necessary that the
same MSS permanently trusts m. On the contrary, we
only require that after some time τ, ∀τ’≥ τ there exists
a correct MSS b(τ) that trusts m. Let τ <τ1< τ2 <τ3 <...
be a sequence of time instants greater than τ. It is
possible that b(τ1)≠ b(τ2)≠ b(τ3),… The completeness
property requires that an MH that crashes or
permanently leaves the system is eventually no longer
trusted by any MSS.

Note that this failure detector does not provide
much information on MHs present in the system. It
only guarantees that eventually, at least one stable MH
m is trusted by some MSS at each time instant, but it is
possible that the local_trust sets permanently disagree.
Since communications among MSSs are asynchronous
and an MSS may have a different local_trust set at
each time instant, MSSs cannot agree on the stable MH
that they trust.

Moreover, our protocol depends on the following
additional assumption, called MPdyn. There is a stable
MH m and a time τ (m and τ are not known in advance)
such that at any time instant τ’ ≥ τ there exists a set
Qτ’⊆B that satisfies the following property:

 ∀τ’ ≥ τ: |Qτ’| ≥ 2t + 1.
 ∀b ∈Qτ’: if b has not crashed by time τ’, m ∈

local_trustτb.
The assumption MPdyn states that, eventually, there

is a set of 2t + 1 MSSs that trust the same MH.
Moreover, this set can continuously change over time.

One concern is how to guarantee the assumption
MPdyn. One possible solution is to deploy a multiple
coverage mobile network [1, 15, 16, 25]. Each point in
the territory is covered by at least 2t +1 MSSs rather
than only one MSS. Then, each MH keeps contact with
at least 2t+1 MSSs simultaneously.

5. A leadership facility for mobile networks

In this section, we first describe the operations of
our protocol and then provide the correctness proof of
the protocol.

5.1. Description of the protocol

The pseudocode of our protocol is shown in figures

1 and 2. “┬” is a special symbol that represents the
whole universe of the mobile processes. Moreover,
┬∩A = A (where A is any set of mobile processes). Our
protocol extends the approach that previously appears

126126126

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

in [11, 30, 31]. The MSSs act as servers to provide an
eventual leadership service to the mobile processes.
Each MSS bi maintains a set trusti, which consists of
the MHs that are “globally” trusted by all MSSs in the
view of bi. Each trusti set is associated with a sequence
number sni. sni is a logical date defining the “age” of
trusti.

Figure 1. Eventual leadership protocol: code for MSS

Figure 2. Eventual leadership protocol: code for MH

When a mobile process m invokes the primitive
leader(), it sends a LEADER_REQUEST message to its
local MSS (Figure 2). On the reception of such a
message, an MSS deterministically chooses an identity
among the mobile processes it currently trusts and
sends back this identity (lines 18-22).

The protocol consists of two tasks running in
parallel at each MSS. Task T1 is the core task in which
each process initiates sequential queries and waits for
corresponding responses. Task T2 is triggered by the
reception of messages. It implements the response

mechanism associated with the queries: when a process
bi receives a query, it sends back a response carrying
values with respect to the type of query received (lines
11 and 17).

An MSS bi collects local_trust sets of other
processes by sequentially issuing two-phase query-
responses and then updates its trusti based on the
responses. In the first phase, bi broadcasts a
PH1_QUERY and then waits for the response. When a
process bj receives such a query, it sends back a
PH1_RESPONSE and starts recording the identities of
processes that it locally trusts until it receives a
PH2_QUERY from bi. After bi has collected response
PH1_RESPONSE from at least n-t MSSs, it enters the
second phase by broadcasting a PH2_QUERY with <
sni , trusti > and then waits for response.

When an MSS bj receives a pair <sni, trusti> (line
12), it updates trustj according to the respective values
of sni and snj. If they are equal, it updates the set of
trusted mobile processes to trustj ∩ trusti (line 13). If
sni is greater, i.e., its current knowledge is too old, it
adopts the set received (line 14). Otherwise, it discards
the message received. If bj then discovers that its set
trustj is empty, bj increases its sequence number snj and
resets trustj to its initial value (line 15).

Then, bj sends bi a PH2_RESPONSE message,
which carries the identities of the mobile processes that
have been locally trusted by bj since it has received the
corresponding PH1_QUERY of bi (lines 16-17).

After bi has collected PH2_RESPONSE from at
least n-t MSSs, it updates its trusti set based on the
responses collected in the two phases, i.e.,

trusti ← trusti ∩ (∪j PH1_reci∩PH2_reciLOCAL_TRUSTj).
After one or more query-response cycles, there

eventually exists a finite age, after which the sn values
no longer increase and the sets trust are (and remain)
non-empty and equal. They actually converge towards
to a subset of the STABLE set. The mobile process in
these trustj sets with the smallest identity is then
elected as the leader.

To see why this two-phase query-response cycle is
necessary, let us assume that, if a process bj received a
query at a time τ, it sends back a response message that
contains the value of local_trustj at time τ. bi collects
local_trust sets of n-t MSSs, but these sets may have
been “seen” at distinct times. Since the set Q of
“witness” processes defined in property MPdyn can
change over time, it is possible that the local_trust sets
collected by bi does not satisfied any global property,
even if the property MPdyn is established. On the
contrary, we will show in the proof that this two-phase
query-response mechanism guarantees that the sets
REC_FROM (i.e., the union of local_trust collected,
line 07) eventually satisfy a global property. More
precisely, Lemma 1 states that there exists a stable

When leader() is invoked:
(01) send LEADER_QUERY(m) to current base station;
(02) wait until LEADER(l) is received;
(03) return (l)

//Code for MSS bi
init: sni ←0; trusti ←┬
Task T1:
(01) repeat foreach j ∈ B do send PH1_QUERY() to bj endfor;
(02) wait until corresponding PH1_RESPONSE() has been

received from ≥n-t MSSs;
(03) PH1_reci = {j : a PH1_RESPONSE() has been received

from bj at line 03};
(04) foreach j∈B do send PH2_QUERY(sni; trusti) to bj endfor;
(05) wait until corresponding PH2_RESPONSE(LOCAL_TRUST)

has been received from ≥n-t MSSs;
(06) PH2_reci = {j : a PH2_RESPONSE() has been received

from bj at line 06};
(07) let REC_FROMi = ∪j∈PH1_reci∩PH2_reci LOCAL_TRUSTj ;
(08) trusti ←trusti∩REC_FROMi
(09) end repeat

Task T2:
(10) upon reception of PH1_QUERY() from bj:
(11) query starti[j] ←current_time(); send PH1_RESPONSE() to bj
(12) upon reception of PH2 QUERY(snj ; trustj) from bj :
(13) if snj = sni then trusti← trusti∩trustj endif;
(14) if snj> sni then trusti ← trustj ; sni ← snj endif;
(15) if trusti = Ø then trusti ← ┬; sni ← sni + 1 endif;
(16) LOCAL_TRUSTi ←∪query_starti[j]≤current_time() local_ trustτi;
(17) send PH2_RESPONSE(LOCAL_TRUSTi) to bj
(18) upon reception of LEADER_QUERY(m) from mobile process m:
(19) if trusti = Ø∨trusti = ┬ then li = m
(20) else li = min(trusti)
(21) endif;
(22) send LEADER(li) to m

127127127

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

mobile process that eventually is always contained in
any REC_FROM sets.

5.2. Correctness proof

In the following, xτi denotes the value of the local

variable x of process pi (MH or MSS) at time τ. Given
an execution, C is the set of MSSs that are correct in
that execution. STABLE is the set of MHs that, after
having entered the system, do not crash nor be
disconnected.
Lemma 1. There is a time τ and a stable MH m (i.e., m

 STABLE) such that every REC_FROM set
computed (at line 07) after τ is such that m
REC_FROM.
Proof. Given an execution that satisfies the MPdyn
assumption, there is a time τ0 and an MH m
STABLE such that the following holds: τ≥ τ0, there
exists a set Qτ⊆B such that (1) |Qτ|≥ 2t+1 and (2) ∀bi

 Qτ: m local_trustτi or bi has crashed before time
τ.

Let us consider an MSS bi that starts a query (at line
02) after τ0. Let bj be an MSS such that j
PH1_reci∩PH2_reci. This means that, for each phase
of the query issued by bi, the responses messages sent
by bj arrived among the first n-t ones at MSS bi. Let
τ_startj be the time instant at which the PH1_QUERY
from bi is delivered to bj and τ_endj be the time at
which bj sends back the PH2_RESPONSE message.
Note that the PH2_RESPONSE message sent by bj
carries the identities of all the MHs that has been
trusted at least once by bj during the time interval
[τ_startj, τ_endj] (lines 16-17).

The rest of the proof relies on the two following
observations: Observation O1: |PH1_reci∩PH2_reci|≥
n-2t and Observation O2: ∃τ time instant such that:
∀j PH1_reci∩PH2_reci, τ [τ_startj, τ_endj].

Let us consider the set REC_FROMi computed by bi
after completing its query. This set is the union of the
MHs that has been trusted by the MSSs bj, j
PH1_reci ∩ PH2_reci at some time instant between the
beginning and the end of the two phase query of bi. Let
τ1 be the time instant introduced in O2. In particular,
∪j PH1_reci∩PH2_recilocal_trustj

τ1 ⊆REC_FROMi. As τ1≥
τ0, it follows from the assumption MPdyn that there
exists at time τ1 a set Qτ1 of at least α≥ 2t + 1 MSSs that
either has crashed or trust m at time τ1. Since
|PH1_reciPH2_reci| ≥ n-2t (O1), it follows that
Qτ1∩(∪j PH1_reci∩PH2_recilocal_trustj

τ1) ≠ Ø, from which
we conclude that m REC_FROMi.

We have shown that there exists a time τi after
which any REC_FROMi set computed by bi contains

the identity of the stable mobile m. Taking τmax =
max{τi: i B} completes the proof.
Observation O1. For any MSS bi that initiates and
completes a two phases query, |PH1_reci∩PH2_reci| ≥
n-2t ≥ 1.
Observation O2. Let bi be an MSS that initiates and
completes a two-phase query:

∩j PH1_reci∩PH2_reci [τ_startj, τ_endj] ≠ Ø
Due to the limit in space, we do not present the

proof of the two observations in this paper.
Lemma 1.

Lemma 2. ∃SN,∃τ such that, ∀i B, ∀τ’ ≥ τ: i
C ==> sni(τ’) = SN.
Proof. Let τ0 be a time such that (1) all faulty MSSs
have crashed and (2) all messages sent by faulty MSSs
have been delivered. Let τ1 be the time defined in
Lemma 1 and let τclean = max(τ0, τ1). The idea is that
after time τclean the system exhibits a “clean” behavior.

Let SNτclean be the maximal sequence number sni
among the correct MSSs bi at time τclean. Moreover, let
say “the set trusted is associated with the sequence
number sn” if there is a correct MSS bj such that trustj
= trusted and snj = sn (let us observe that several sets
can be associated with the same sequence number).
Claim C1. Let us assume that Ø is associated with
SNτclean. There is then: (1) an MSS bj that executes the
reset statement at line 15, after which we have (trustj,
snj) = (┬, SNτclean + 1), and (2) the pair (┬, SNτclean + 1)
is sent to all MSSs.

Due to the limit in space, we do not provide the
proof of Claim C1 in this paper.

We now show that SN = SNτclean or SN = SNτclean +1.
According to the definitions of τclean and SNτclean, there
exists a correct MSS bi such that sni = SNτclean. Due to
the gossiping mechanism, after some time we will have
snj ≥ SNτclean for each bj C. We consider two cases:

 Case 1: Ø is never associated with SNτclean. In that
case, no correct MSS bi will ever execute the reset
statement at line 15. It follows that no MSS bi will
increase its sni variable, and the lemma follows.

 Case 2: Ø is associated with SNτclean. From Claim
C2, there is an MSS bj that eventually executes the
reset statement at line 15, after which we have
(trustj, snj) = (┬, SNτclean +1), and this pair is sent to
all the correct MSSs. This means that after some
time, each MSS bi will be such that sni≥ SNτclean +1.
As this occurs after time τ1, the time defined in
Lemma 1, it follows that, from now on, any set
trusti permanently contains the stable MH m
defined in Lemma 1. This is because each time bi
updates its set of trusted MHs (line 08), it intersects
trusti which has been reset to ┬ (the whole universe
of MHs) with REC_FROMi that always contains m.
Consequently, no PH2_QUERY(Ø, SNτclean+1) is

128128128

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

sent. Hence, no MSS can execute the reset
statement at line 15, from which we conclude that
no sequence number >SNτclean+1 can be generated
and the lemma follows.

 Lemma 2.
Theorem 1. In any execution that satisfies the MPdyn
assumption, the protocol described in Figure 1
implements a leader facility in a mobile networking
environment.
Proof. Given a run that satisfies MPdyn, let PL =
∩{trusti: bi C trusti is associated with SN}, where
SN is defined in Lemma 2.

We first show that PL≠ Ø. Due to lemma 2, no
sequence number greater than SN can be generated.
This implies that Ø cannot be associated with SN.
Moreover, it follows from Lemma 1 and updates of
trusti (line 08) that any trusti associated with SN
contains the stable MH m introduced in Lemma 1.

We now show that PL⊆STABLE. This is a
consequence of the completeness property satisfied by
the local_trusti. More precisely, the completeness
property states that an MH that crashes or gets
disconnected from the system is eventually no longer
locally trusted by each MSS b. Consequently, there is a
time after which every REC_FROM does not contain
crashed or disconnected MHs. Therefore, there is a
time after which the REC_FROMi contains only stable
hosts. Moreover, as the trusti sets are never reset to ┬,
it follows that, after that time, these trusti sets can
contain only stable MHs.

Finally, there is a time τ after which we have ∀i
C: trusti = PL. This is a consequence of the finite
arrival model (after some time, no more MH join the
system) and the gossiping mechanism (lines 04 and
reception of PH2_QUERY in task T2). Let us consider
an invocation made after τ of leader() that returns ml.
We have ml = min(trusti) where i is the identity of
some correct MSS. Since trusti = PL⊆ STABLE, it
follows that any of these invocations returns the same
stable MH.

 Theorem 1.

6. Conclusions and future work

This paper investigates the eventual leader oracle Ω
in the context of dynamic mobile networking
environments, where MHs are associated with fixed
mobile support stations to communicate with one
another. MHs can join and leave the system at any time
and the number of participating hosts can change
arbitrarily as time passes. To implement Ω, we let
MSSs act on behalf of MHs to elect an eventual unique
MH as the leader. MSSs conduct the message
exchange using a two-phase query-response

mechanism in order to elect an eventual unique leader.
Such a design can reduce the workload of MHs and the
consumption of various resources, e.g. battery power
and bandwidth. Since no assumption on the time
property of processing speed or message delay, the
proposed protocol is time-free and consequently
especially attractive for mobile networks.

In future, we will evaluate the performance of our
proposed protocol and compare it with similar work.
Both numerical analysis and experimental simulations
would be conducted.

Acknowledgements. This research is partially supported
by Hong Kong University Research Grant Council under the
CERG grant PolyU 5183/04E and France/Hong Kong Joint
Research Scheme F-HK16/05T.

References

[1] Abbari B. J, Dinan E., and Fuhrmann W., Performance
Analysis of a Multilink Packet Access for Next Generation
Wireless Cellular Systems. Proc. (PIMRC’98), 1998.
[2] Aguilera M.K., A Pleasant Stroll Through the Land of
Infinitely Many Creatures. ACM SIGACT News, Distributed
Computing Column, 35(2):36-59, 2004.
[3] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., On Implementing Omega with Weak Reliability
and Synchrony Assumptions. Proc. 22th ACM Symposium on
Principles of Distributed Computing (PODC’03), ACM
Press, pp. 306-314, 2003.
[4] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication-Efficient Leader Election and
Consensus with Limited Link Synchrony. Proc. 23th ACM
Symposium on Principles of Distributed Computing
(PODC’04), ACM Press, pp. 328-337, 2004.
[5] Akyildiz I. F., Wang X., and Wang W., Wireless mesh
networks: a survey. Computer Networks, 47(4): 445-487,
2005.
[6] Anceaume E., Fernandez A., Mostefaoui A., Neiger G.
and Raynal M., Necessary and Sufficient Condition for
Transforming Limited Accuracy Failure Detectors. Journal
of Computer and System Sciences, 68:123-133, 2004.
[7] Badache N., Hurfin M. and Macedo R. Solving the
Consensus Problem in a Mobile Environment. Proc. 18th
IEEE Int’l Performance Computing and Communications
Conference (IPCCC’99), IEEE, pp 29-35, Phoenix, AZ, 1999
[8] Badache N., Bouabdallah A. and Seba H., Solving the
Consensus Problem in a Dynamic Group: an Approach
Suitable for a Mobile Environment. Proc. 7th IEEE
Symposium on Computers and Communications (ISCC’02),
IEEE, pp 29-35, Phoenix, AZ, 1999
[9] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.
[10] Chandra T.D., Hadzilacos V. and Toueg S., The
Weakest Failure Detector for Solving Consensus. Journal of
the ACM, 43(4):685-722, 1996.
[11] Chu F., Reducing Ω to ◊W. Information Processing
Letters, 76(6):293-298, 1998.

129129129

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

[12] Gupta I., Chandra T.D., and Goldszmidt G.S., On
scalable and efficient distributed failure detectors. Proc. 20th
ACM symposium on Principles of distributed computing
(PODC ’01), ACM Press, pp. 170-179, 2001.
[13] Dwork C., Lynch N. and Stockmeyer L., Consensus in
the Presence of Partial Synchrony. Journal of the ACM,
35(2):288-323, 1988.
[14] Chockler G. and Malkhi D., Active Disk Paxos with
Infinitely Many Processes. Proc. 21th ACM symposium on
Principles of distributed computing (PODC ’02), ACM
Press, pp. 78-87, 2002.
[15] Fernandes J., and Garcia J., Multiple coverage for MBS
environments. Proc. of PIMRC’00, 2000.
[16] Fernandes J. and Garcia J., Cellular coverage for
efficient transmission performance in MBs. Proc. of VTC’00,
2000.
[17] Fischer M.J., Lynch N. and Paterson M.S., Impossibility
of Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2):374-382, 1985.
[18] Friedman R., Raynal M. and Travers C., Two
Abstractions for Implementing Atomic Objects in Dynamic
Systems. Proc. 9th Int’l Conference on Principles of
Distributed Systems (OPODIS’05), Springer Verlag, 2005.
[19] Friedman R. and Tcharny G., Evaluating Failure
Detection in Mobile Ad-Hoc Networks. Tech Report #CS-
2003-06, 22 pages, Computer Science Departement, The
Technion (Israel) 2003.
[20] Gafni E. and Lamport L., Disk Paxos. Proc. 14th Int’l
Symposium on Distributed Computing (DISC’00), Springer-
Verlag LNCS #1914, pp. 330-344, 2000.
[21] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computers,
53(4):453-466, April 2004.
[22] Guerraoui R. and Raynal M., The Alpha and Omega of
Asynchronous Consensus. Tech Report #1676, 21 pages,
IRISA, University of Rennes 1 (Fance) 2005.

[23] Lamport L., The Part-Time Parliament. ACM
Transactions on Computer Systems, 16(2):133-169, 1998.
[24] Larrea M., Fern´andez A. and Ar`evalo S., Optimal
Implementation of the Weakest Failure Detector for Solving
Consensus. Proc. 19th Symposium on Reliable Distributed
Systems (SRDS’00), IEEE Computer Society Press, pp. 52-
60, 2000.
[25] Lee W.C.Y., Overview of cellular CDMA. IEEE
Transactions on Vehicular Technology, 40(2), May 1991.
[26] Malkhi D., Oprea F. and Zhou L., Ω Meets Paxos:
Leader Election and Stability without Eventual Timely
Links. Proc. 19th Int’l Symposium on Distributed Computing
(DISC’05), Springer-Verlag LNCS #3724, pp. 199-213,
2005.
[27] Merritt M. and Taubenfeld G., Computing Using
Infinitely Many Processes. Proc. 14th Int’l Symposium on
Distributed Computing (DISC’00), Springer-Verlag LNCS
#1914, pp. 164-178, 2000.
[28] Mostefaoui A., Mourgaya E., and Raynal M.,
Asynchronous Implementation of Failure Detectors. Proc.
Int. IEEE Conference on Dependable Systems and Networks
(DSN’03), IEEE Computer Society Press, pp. 351-360, 2003.
[29] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 2001.
[30] Mostefaoui A., Raynal M. and Travers C., Crash-
Resilient Time-Free Eventual Leadership. Proc. 23th
Symposium on Reliable Distributed Systems (SRDS’04),
IEEE Computer Society Press, pp. 208-217, 2004.
[31] Mostefaoui A., Raynal M., Travers C., Patterson S.,
Agrawal A. and El Abbasi A., From Static Distributed
Systems to Dynamic Systems. Proc. 24th Symposium on
Reliable Distributed Systems (SRDS’05), IEEE Computer
Society Press, pp. 109-118, 2005.
[32] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

130130130

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore. Restrictions apply.

