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Abstract 

 
Eventual leadership has been identified as a basic 

building block to solve synchronization or 
coordination problems in distributed computing 
systems. However, it is a challenging task to implement 
the eventual leadership facility, especially in dynamic 
distributed systems, where the global system structure 
is unknown to the processes and can vary over time. 
This paper studies the implementation of a leadership 
facility in infrastructured mobile networks, where an 
unbounded set of mobile hosts arbitrarily move in the 
area covered by fixed mobile support stations. Mobile 
hosts can crash and suffer from disconnections. We 
develop an eventual leadership protocol based on a 
time-free approach. The mobile support stations 
exchange queries and responses on behalf of mobile 
hosts. With assumptions on the message exchange 
flow, a correct mobile host is eventually elected as the 
unique leader. Since no time property is assumed on 
the communication channels, the proposed protocol is 
especially effective and efficient in mobile 
environments, where time-based properties are 
difficult to satisfy due to the dynamics of the network. 
 
1. Introduction 
 

In asynchronous distributed systems, there is no 
bound on the time for a process to execute a 
computation step, or for a message to be delivered. 
Due to such timing uncertainty, solving coordination 
problems, e.g. consensus and mutual exclusion [10], is 
a difficult and complex task. For example, the 
consensus problem [10] has been proved to be 
impossible to solve in an asynchronous system with 
even one crash failure [17]. 

To overcome the difficulty introduced by timing 
uncertainty and process crashes, the concept of 
unreliable failure detector has been introduced [9]. A 
failure detector can be viewed as an oracle [32] made 

up of a set of modules, each associated with a process. 
The failure detector attached to a process provides 
hints on the status (alive or crashed) of other processes. 
A failure detector is defined by abstract properties and 
does not depend on any particular assumption on the 
behavior of the underlying network. Among different 
failure detectors defined in [9], the eventual leader, 
denoted by Ω, is one of the most important classes. An 
Ω leader provides the processes with a leader primitive 
that outputs a process id each time it is invoked and 
satisfies the following eventual leadership property: 

Eventual leadership: eventually, all invocations 
return the same id, and that id is the identity of a 
correct process (i.e. a process that does not crash 
during the execution of the protocol).  
Ω is not very powerful in terms of the capability of 

detecting failures, since a correct leader is eventually 
elected but there is no knowledge on when this occurs. 
However, it has been shown that Ω is the weakest class 
of failure detectors that allows solving the consensus 
problem (provided that a majority of correct processes) 
[10]. Based on Ω, many consensus protocols [10, 21, 
29] have been proposed. Ω is also at the heart of the 
well-known Paxos algorithm [23] and its 
improvements [14, 20, 22] to cope with dynamic 
systems. 

A large number of researches [3, 4, 9, 12, 24, 26] 
have been conducted to implement the oracle Ω in a 
classical asynchronous distributed computing model, 
which is characterized by the following attributes. The 
system is made up of n processes and n is fixed and 
known by each process; each process has a unique 
identity and knows the identities of other processes; 
there is no bound on the time it takes for a process to 
execute a step or for a message to travel from its sender 
to its destination. 

In recent years, a major advance in distributed 
computing is the development of dynamic systems [2, 
27, 18, 31], e.g. mobile computing systems and peer-
to-peer systems, where processes can join or leave the 
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system at any time and the number of participating 
processes can change arbitrarily as time passes. The 
inherent dynamic nature of processes introduces a new 
kind of uncertainty, namely structure uncertainty: the 
global structure of the network is unknown to the 
processes. This additional difficulty makes the design 
of coordination protocols even more challenging than 
in classical distributed systems. 

This paper investigates the implementation of Ω in 
dynamic mobile networking environments with mobile 
hosts 1  (MHs for short) and mobile support stations 
(MSSs for short). MHs, which are usually small 
devices with low computation power and stand alone 
energy sources, are connected to MSSs using wireless 
communications [7, 8]. Due to mobility, an MH can 
change its location arbitrarily and enter or leave the 
area covered by the MSSs. Moreover, to save energy, 
an MH may voluntarily disconnect from the network. 
This means that at any time, the mobile processes that 
form the system are unknown to MHs and MSSs. 

 To implement Ω in a dynamic mobile network, we 
adopt a time-free approach [28, 30] proposed for 
traditional fixed networks and extend it to the context 
of mobile networking environments. We let MSSs act 
as servers that provide an eventual leadership service 
to the MHs. More precisely, MSSs conduct the 
exchange of queries and responses using the query-
response mechanism in [28, 30], in order to elect an 
eventual unique leader MH (it is important to notice 
that an MH rather than an MSS can be elected as the 
leader, because the leadership is for upper layer 
applications at MHs. MSSs are usually owned by 
network operators and cannot participate in the 
execution of end user applications).  Such a treatment 
can reduce the workload of MHs and consumption of 
various resources, e.g. battery power and bandwidth.  

However, with such a design, the query-response 
mechanism in [28, 30] cannot be directly used. First, 
the eventual leader is an MH but it is elected by MSSs, 
so the MSSs must be provided a view of MHs. To do 
so, we assume that each MSS is equipped with a 
device/module that provides it with partial information 
about the MHs that are present in the system. More 
precisely, each MSS bi is provided with a set 
local_trusti of mobile process identities that represents 
bi’s current view of the MHs that are currently present 
in the system. 

Another problem is that the assumption in [28, 30] 
becomes unreasonable in the mobile system. MHs may 
move from one cell to another, so it is impossible that, 
after some finite time, an MH is always accessible by 

                                                        
1 In this paper, we use the terms “process” and “host” 
interchangeably. 

some specific set of MSS. Therefore, the assumption of 
the host p and set Q does not make sense any more. 

To address these problems, we develop a two-phase 
query-response mechanism. With some additional 
assumption on the local_trust, we implement Ω in a 
dynamic mobile system. Since no assumption is related 
to the time property of the message passing channel, 
the proposed protocol is time-free, so it is especially 
suitable for mobile networks, where time properties are 
difficult to satisfy.  

The rest of the paper is organized as follows. 
Section 2 reviews existing work on the implementation 
of the eventual leader facility Ω. Section 3 presents the 
system model, i.e. the dynamic mobile networking 
environment. In Section 4, we describe the formal 
definition of the eventual leadership with respect to the 
system model, and the additional assumption MPdyn. 
Our proposed eventual leadership protocol and the 
proof of its correctness are presented in Section 5. 
Finally, Section 6 concludes the paper. 
 
2. Related work 
 

The implementation of the oracle Ω in 
static/classical asynchronous systems has motivated a 
large body of researches [3, 4, 9, 12, 24, 26]. The first 
approach investigated in [9, 12, 24] considers that all 
the links connecting the processes are eventually 
timely. This means that after some time τ, each 
message reaches its destination in at most δ units of 
time. Both τ and δ are unknown to the processes [13]. 
This approach has been refined to obtain weaker 
constraints. It has been shown in [3, 4] that Ω can be 
implemented in a system where at least one correct 
process has at least s eventually timely outgoing links 
(this is defined as s-source). 

Interestingly, a step ahead has been taken in [26], 
where the notion of eventual s-accessibility is 
introduced. Informally, a process p is s-accessible at 
some time if messages sent by p at that time are 
received within δ units of time by a set Qτ of at least s 
processes. The interest of this notion lies in the fact 
that the set Q of processes that “witness” p can be 
different at different time. 

A time-free approach [28, 30] implements the 
eventual leadership using a query-response based 
mechanism. There are totally n processes in the system 
and at most t of them can fail (by crashing only). The 
solutions in [28, 30] rely on an assumption on the 
behavior of the flow of message exchange. More 
precisely, processes broadcast queries and then wait for 
responses from other processes. The first n-t responses 
received are winning responses (the other responses, if 
any, are called losing responses; they can be slow or 
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never sent due to the crash of the sender). It is shown 
in [30] that Ω can be built if the following behavioral 
property is satisfied: “there is a correct process p and a 
set Q of t + 1 processes such that eventually each 
response of p to each query issued by any q �Q is 
always a winning response”. Intuitively, this means 
that for q � Q, the link connecting q to p is not among 
the t slowest links of q. 

Another approach investigated in [6, 11] considers 
reducing Ω to other failure detector classes. This 
approach is mainly theoretical: it aims at comparing 
and ranking different failure detector classes. 

In the context of dynamic systems, little work has 
been done for the implementation of the eventual 
leadership. Friedman et al. [19] evaluate the gossip 
based failure detection in mobile ad hoc networks. An 
eventual leadership protocol is proposed in [31], but 
the proposed protocol can be viewed as a pedagogical 
example and is not suitable for mobile environments. 

 
3. Computational model 
 

The mobile networking environment consists of two 
distinct sets of entities: a set of MHs and a set of fixed 
hosts, i.e. MSSs. The set of MSSs and the 
communication channels among them form a static 
distributed system. On the other hand, the mobile 
processes can be viewed as a dynamic system. The 
MHs move in a geographical area, which is partitioned 
into cells. Each cell is covered by one MSS and MHs 
can only communicate with the MSS responsible for 
the cell in which it is located (and vice versa). An MH 
is connected to the system if and only if it is up and 
running and located in a cell covered by an alive MSS. 

For the ease of the exposition, we assume the 
existence of a global discrete clock. This clock is a 
fictional device which is not known to the processes; it 
is only used to state specifications or prove protocol 
properties. The range T of clock values is the set of 
natural integers. 

 
3.1 Mobile support stations: a static 
asynchronous distributed system 

 
The set of MSSs and its underlying communication 

network is modeled as a static asynchronous system. 
The network of MSSs is made of a finite set of n≥ 2 
fixed processes, namely, B = {b1,…, bn}. Each MSS 
knows the identities of all MSSs. An MSS may 
correspond to a base station in the cellular network or a 
mesh router node in a wireless mesh network [5]. An 
MSS can fail by crashing, i.e., prematurely halting but 
it behaves correctly (i.e., according to its specification) 
until it possibly crashes. A process bi is correct in a run 

of the leader election protocol if it does not crash in 
that run, otherwise it is faulty. We assume that a 
majority of MSSs are correct. In this paper, we use the 
following notations concerning the set B of MSSs: 

 t denotes the maximum number of processes that 
can crash in a run (1≤  t < n/2 ). 

 C ⊆ B is the set of MSSs that are correct in a run. 
MSSs communicate by sending and receiving 

messages through reliable yet asynchronous channels. 
Each pair of MSSs {bi, bj} is connected by a wired or 
wireless channel. Channels are reliable, i.e. they do not 
alter, create or lose messages. However, channels are 
asynchronous: the time to transfer a message from bi to 
bj is finite but unbounded.  

Moreover, we consider that each MSS is provided 
with a query-response mechanism, which is the 
underlying communication approach used in our 
protocol. Such a query-response mechanism can be 
easily implemented in a time-free manner on top of a 
static asynchronous distributed system. More precisely, 
any MSS bi can broadcast (to other MSSs) a QUERY() 
message and then wait for corresponding RESPONSE() 
from n-t MSSs (these are the winning responses for 
that query). The other RESPONSE() messages 
associated with the query, if any, are systemically 
discarded (they are the losing responses for that query). 

A query issued by bi is terminated if bi has received 
n-t responses. We assume that a process issues a new 
query only when the previous one has terminated. 
Without loss of generality, the response from a process 
to its own query is assumed to always arrive among the 
first n-t responses it is waiting for. Moreover, 
QUERY() and RESPONSE() are assumed to be 
implicitly tagged in order not to confuse RESPONSE() 
messages corresponding to different QUERY() 
messages. 

 
3.2. Mobile hosts: a dynamic system 

 
Each mobile process has a unique identity. mi 

denotes the MH whose identity is i. Like MSSs, MHs 
are asynchronous and suffer from crash failures. The 
system has infinitely many MHs M = {m1, m2,…}. 
However, the join and leave of MHs satisfy the finite 
arrival model [2, 27], and each run of the protocol has 
only finitely many MHs. This means that there is no 
bound on the number of MHs for all runs but there is a 
bound on the number of MHs in each run. A protocol 
does not know that information because it varies from 
run to run. 

An MH is connected only if it is located in a cell 
covered by some MSS that it is associated with. An 
MH can directly communicate with only the MSS 
located in its current cell. Messages between two MHs 
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must be forwarded by corresponding MSSs. When an 
MH moves from one cell to another, a handoff 
procedure is then executed.  

We use the following notation concerning the set M 
of MHs: 

 up(τ)⊆ M is the set of MHs that are connected to 
the system at time τ (i.e., up(τ) is the set of MHs 
that joined the system before time τ and no 
associated crash or disconnection occurs before 
time τ). 

 
4. Problem definition and additional 
assumptions 
 

Before we formally define the eventual leadership 
in the model described in system model described 
above, we first introduce the assumption on the 
stability of the system. The set of MHs is inherently 
dynamic. However, if each MH periodically join and 
then leave the system, being connected only for a short 
period (i.e., the system is unstable), it is not possible to 
elect an MH. Therefore, the system should exhibit 
stable periods that last long enough. The following set 
definition captures this notion of stability [18, 31]: 

 STABLE = {mi: ∃τ s.t.∀τ’ ≥ τ, mi �up(τ’)}. 
STABLE is the set of MHs that, once have entered 
the system, do not crash or get disconnected. 
The set STABLE is the dynamic counterpart of the 

set C of correct processes defined in the context of 
static models. For our purpose, STABLE ≠ Ø is a 
necessary condition. 

Then, the leadership of the leader oracle Ω can be 
defined as follows:  

 Eventual Leadership: There is a time τ and a MH ml 
∈ STABLE such that after τ, any invocation of 
leader() by any process mi returns l. 
As shown in [30], a leader oracle cannot be 

implemented in purely asynchronous systems where 
processes may crash. Therefore, some assumptions are 
needed to circumvent this impossibility. We suppose 
that each MSS bi is able to gather partial knowledge 
about the presence of MHs in the system. We define 
the information available to MSSs in the failure 
detector framework [9]. 

We assume that each MSS bi is equipped with a 
local failure detector that provides a set local_trusti ⊆ 
M, which provides hints on MHs that are currently up 
and connected. More precisely, at each MSS bi, the set 
local_trusti satisfies the following properties 
(local_trustτi denotes the value of local_trusti at bi at 
time τ): 

 Eventual Accuracy: ∃m ∈ STABLE; ∃τ such that 
∀τ’ ≥ τ: m ∈∪i∈C local_ trustτ’i. 

 Completeness: If an MH m never joins the system, 
crashes or permanently leaves the system, then, ∃τ 
such that ∀τ’ ≥ τ: m ∉∪i∈C local_ trustτ’i. 
The accuracy property requires that eventually, at 

least one stable MH m is continuously trusted by the 
MSSs. Let us notice that it is not necessary that the 
same MSS permanently trusts m. On the contrary, we 
only require that after some time τ, ∀τ’≥ τ there exists 
a correct MSS b(τ) that trusts m. Let τ <τ1< τ2 <τ3 <... 
be a sequence of time instants greater than τ. It is 
possible that b(τ1)≠ b(τ2)≠ b(τ3),… The completeness 
property requires that an MH that crashes or 
permanently leaves the system is eventually no longer 
trusted by any MSS. 

Note that this failure detector does not provide 
much information on MHs present in the system. It 
only guarantees that eventually, at least one stable MH 
m is trusted by some MSS at each time instant, but it is 
possible that the local_trust sets permanently disagree. 
Since communications among MSSs are asynchronous 
and an MSS may have a different local_trust set at 
each time instant, MSSs cannot agree on the stable MH 
that they trust. 

Moreover, our protocol depends on the following 
additional assumption, called MPdyn. There is a stable 
MH m and a time τ (m and τ are not known in advance) 
such that at any time instant τ’ ≥ τ there exists a set 
Qτ’⊆B that satisfies the following property: 

 ∀τ’ ≥ τ: |Qτ’| ≥ 2t + 1. 
 ∀b ∈Qτ’: if b has not crashed by time τ’, m ∈ 

local_trustτb. 
The assumption MPdyn states that, eventually, there 

is a set of 2t + 1 MSSs that trust the same MH. 
Moreover, this set can continuously change over time. 

One concern is how to guarantee the assumption 
MPdyn. One possible solution is to deploy a multiple 
coverage mobile network [1, 15, 16, 25]. Each point in 
the territory is covered by at least 2t +1 MSSs rather 
than only one MSS. Then, each MH keeps contact with 
at least 2t+1 MSSs simultaneously.  

 
5. A leadership facility for mobile networks 
 

In this section, we first describe the operations of 
our protocol and then provide the correctness proof of 
the protocol. 

 
5.1. Description of the protocol 

 
The pseudocode of our protocol is shown in figures 

1 and 2. “┬” is a special symbol that represents the 
whole universe of the mobile processes. Moreover, 
┬∩A = A (where A is any set of mobile processes). Our 
protocol extends the approach that previously appears 
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in [11, 30, 31]. The MSSs act as servers to provide an 
eventual leadership service to the mobile processes. 
Each MSS bi maintains a set trusti, which consists of 
the MHs that are “globally” trusted by all MSSs in the 
view of bi. Each trusti set is associated with a sequence 
number sni. sni is a logical date defining the “age” of 
trusti.  

 

 
Figure 1. Eventual leadership protocol: code for MSS 
 

 
Figure 2. Eventual leadership protocol: code for MH 
 

When a mobile process m invokes the primitive 
leader(), it sends a LEADER_REQUEST message to its 
local MSS (Figure 2). On the reception of such a 
message, an MSS deterministically chooses an identity 
among the mobile processes it currently trusts and 
sends back this identity (lines 18-22). 

The protocol consists of two tasks running in 
parallel at each MSS. Task T1 is the core task in which 
each process initiates sequential queries and waits for 
corresponding responses. Task T2 is triggered by the 
reception of messages. It implements the response 

mechanism associated with the queries: when a process 
bi receives a query, it sends back a response carrying 
values with respect to the type of query received (lines 
11 and 17). 

An MSS bi collects local_trust sets of other 
processes by sequentially issuing two-phase query-
responses and then updates its trusti based on the 
responses. In the first phase, bi broadcasts a 
PH1_QUERY and then waits for the response. When a 
process bj receives such a query, it sends back a 
PH1_RESPONSE and starts recording the identities of 
processes that it locally trusts until it receives a 
PH2_QUERY from bi. After bi has collected response 
PH1_RESPONSE from at least n-t MSSs, it enters the 
second phase by broadcasting a PH2_QUERY with < 
sni , trusti > and then waits for response. 

When an MSS bj receives a pair <sni, trusti> (line 
12), it updates trustj according to the respective values 
of sni and snj. If they are equal, it updates the set of 
trusted mobile processes to trustj ∩ trusti (line 13). If 
sni is greater, i.e., its current knowledge is too old, it 
adopts the set received (line 14). Otherwise, it discards 
the message received. If bj then discovers that its set 
trustj is empty, bj increases its sequence number snj and 
resets trustj to its initial value (line 15). 

Then, bj sends bi a PH2_RESPONSE message, 
which carries the identities of the mobile processes that 
have been locally trusted by bj since it has received the 
corresponding PH1_QUERY of bi (lines 16-17).  

After bi has collected PH2_RESPONSE from at 
least n-t MSSs, it updates its trusti set based on the 
responses collected in the two phases, i.e., 

trusti ← trusti ∩ (∪j PH1_reci∩PH2_reciLOCAL_TRUSTj ). 
After one or more query-response cycles, there 

eventually exists a finite age, after which the sn values 
no longer increase and the sets trust are (and remain) 
non-empty and equal. They actually converge towards 
to a subset of the STABLE set. The mobile process in 
these trustj sets with the smallest identity is then 
elected as the leader. 

To see why this two-phase query-response cycle is 
necessary, let us assume that, if a process bj received a 
query at a time τ, it sends back a response message that 
contains the value of local_trustj at time τ. bi collects 
local_trust sets of n-t MSSs, but these sets may have 
been “seen” at distinct times. Since the set Q of 
“witness” processes defined in property MPdyn can 
change over time, it is possible that the local_trust sets 
collected by bi does not satisfied any global property, 
even if the property MPdyn is established. On the 
contrary, we will show in the proof that this two-phase 
query-response mechanism guarantees that the sets 
REC_FROM (i.e., the union of local_trust collected, 
line 07) eventually satisfy a global property. More 
precisely, Lemma 1 states that there exists a stable 

When leader() is invoked: 
(01)       send LEADER_QUERY(m) to current base station; 
(02)       wait until LEADER(l) is received; 
(03)       return (l) 

//Code for MSS bi 
init: sni ←0; trusti ←┬ 
Task T1: 
(01) repeat foreach j ∈ B do send PH1_QUERY() to bj endfor; 
(02)       wait until corresponding PH1_RESPONSE() has been 

received from ≥n-t MSSs; 
(03)       PH1_reci = {j : a PH1_RESPONSE() has been received 

from bj at line 03}; 
(04)       foreach j∈B do send PH2_QUERY(sni; trusti) to bj endfor; 
(05)       wait until corresponding PH2_RESPONSE(LOCAL_TRUST)  

has been received from ≥n-t MSSs; 
(06)       PH2_reci = {j : a PH2_RESPONSE( ) has been received  

from bj at line 06}; 
(07)       let REC_FROMi = ∪j∈PH1_reci∩PH2_reci LOCAL_TRUSTj ; 
(08)       trusti ←trusti∩REC_FROMi 
(09) end repeat 
 
Task T2: 
(10) upon reception of PH1_QUERY() from bj: 
(11)      query starti[j] ←current_time(); send PH1_RESPONSE() to bj 
(12) upon reception of PH2 QUERY(snj ; trustj) from bj : 
(13)      if snj = sni then trusti← trusti∩trustj endif; 
(14)      if snj> sni then trusti ← trustj ; sni ← snj endif; 
(15)      if trusti = Ø then trusti ← ┬; sni ← sni + 1 endif; 
(16)      LOCAL_TRUSTi ←∪query_starti[j]≤current_time() local_ trustτi; 
(17)      send PH2_RESPONSE(LOCAL_TRUSTi) to bj 
(18) upon reception of LEADER_QUERY(m) from mobile process m: 
(19)      if trusti = Ø∨trusti = ┬ then li = m 
(20)      else li = min(trusti) 
(21)      endif; 
(22)      send LEADER(li) to m 

127127127

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore.  Restrictions apply. 



mobile process that eventually is always contained in 
any REC_FROM sets. 

 
5.2. Correctness proof 

 
In the following, xτi denotes the value of the local 

variable x of process pi (MH or MSS) at time τ. Given 
an execution, C is the set of MSSs that are correct in 
that execution. STABLE is the set of MHs that, after 
having entered the system, do not crash nor be 
disconnected. 
Lemma 1. There is a time τ and a stable MH m (i.e., m 

 STABLE) such that every REC_FROM set 
computed (at line 07) after τ is such that m  
REC_FROM. 
Proof. Given an execution that satisfies the MPdyn 
assumption, there is a time τ0 and an MH m  
STABLE such that the following holds: τ≥ τ0, there 
exists a set Qτ⊆B such that (1) |Qτ|≥ 2t+1 and (2) ∀bi 

 Qτ: m  local_trustτi or bi has crashed before time 
τ. 

Let us consider an MSS bi that starts a query (at line 
02) after τ0. Let bj be an MSS such that j  
PH1_reci∩PH2_reci. This means that, for each phase 
of the query issued by bi, the responses messages sent 
by bj arrived among the first n-t ones at MSS bi. Let 
τ_startj be the time instant at which the PH1_QUERY 
from bi is delivered to bj and τ_endj be the time at 
which bj sends back the PH2_RESPONSE message. 
Note that the PH2_RESPONSE message sent by bj 
carries the identities of all the MHs that has been 
trusted at least once by bj during the time interval 
[τ_startj, τ_endj] (lines 16-17). 

The rest of the proof relies on the two following 
observations: Observation O1: |PH1_reci∩PH2_reci|≥ 
n-2t and Observation O2: ∃τ time instant such that: 
∀j  PH1_reci∩PH2_reci, τ [τ_startj, τ_endj]. 

Let us consider the set REC_FROMi computed by bi 
after completing its query. This set is the union of the 
MHs that has been trusted by the MSSs bj, j  
PH1_reci ∩ PH2_reci at some time instant between the 
beginning and the end of the two phase query of bi. Let 
τ1 be the time instant introduced in O2. In particular, 
∪j PH1_reci∩PH2_recilocal_trustj

τ1 ⊆REC_FROMi. As τ1≥ 
τ0, it follows from the assumption MPdyn that there 
exists at time τ1 a set Qτ1 of at least α≥ 2t + 1 MSSs that 
either has crashed or trust m at time τ1. Since 
|PH1_reciPH2_reci| ≥ n-2t (O1), it follows that 
Qτ1∩(∪j PH1_reci∩PH2_recilocal_trustj

τ1) ≠ Ø, from which 
we conclude that m  REC_FROMi. 

We have shown that there exists a time τi after 
which any REC_FROMi set computed by bi contains 

the identity of the stable mobile m. Taking τmax = 
max{τi: i  B} completes the proof. 
Observation O1. For any MSS bi that initiates and 
completes a two phases query, |PH1_reci∩PH2_reci| ≥ 
n-2t ≥ 1.  
Observation O2. Let bi be an MSS that initiates and 
completes a two-phase query: 

∩j PH1_reci∩PH2_reci [τ_startj, τ_endj] ≠ Ø 
Due to the limit in space, we do not present the 

proof of the two observations in this paper. 
Lemma 1. 

Lemma 2. ∃SN,∃τ such that, ∀i  B, ∀τ’ ≥ τ: i  
C ==> sni(τ’) = SN. 
Proof. Let τ0 be a time such that (1) all faulty MSSs 
have crashed and (2) all messages sent by faulty MSSs 
have been delivered. Let τ1 be the time defined in 
Lemma 1 and let τclean = max(τ0, τ1). The idea is that 
after time τclean the system exhibits a “clean” behavior.  

Let SNτclean be the maximal sequence number sni 
among the correct MSSs bi at time τclean. Moreover, let 
say “the set trusted is associated with the sequence 
number sn” if there is a correct MSS bj such that trustj 
= trusted and snj = sn (let us observe that several sets 
can be associated with the same sequence number).  
Claim C1. Let us assume that Ø is associated with 
SNτclean. There is then: (1) an MSS bj that executes the 
reset statement at line 15, after which we have (trustj, 
snj) = (┬, SNτclean + 1), and (2) the pair (┬, SNτclean + 1) 
is sent to all MSSs. 

Due to the limit in space, we do not provide the 
proof of Claim C1 in this paper. 

We now show that SN = SNτclean or SN = SNτclean +1. 
According to the definitions of τclean and SNτclean, there 
exists a correct MSS bi such that sni = SNτclean. Due to 
the gossiping mechanism, after some time we will have 
snj ≥ SNτclean for each bj  C. We consider two cases: 

 Case 1: Ø is never associated with SNτclean. In that 
case, no correct MSS bi will ever execute the reset 
statement at line 15. It follows that no MSS bi will 
increase its sni variable, and the lemma follows. 

 Case 2: Ø is associated with SNτclean. From Claim 
C2, there is an MSS bj that eventually executes the 
reset statement at line 15, after which we have 
(trustj, snj) = (┬, SNτclean +1), and this pair is sent to 
all the correct MSSs. This means that after some 
time, each MSS bi will be such that sni≥ SNτclean +1. 
As this occurs after time τ1, the time defined in 
Lemma 1, it follows that, from now on, any set 
trusti permanently contains the stable MH m 
defined in Lemma 1. This is because each time bi 
updates its set of trusted MHs (line 08), it intersects 
trusti which has been reset to ┬ (the whole universe 
of MHs) with REC_FROMi that always contains m. 
Consequently, no PH2_QUERY(Ø, SNτclean+1) is 
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sent. Hence, no MSS can execute the reset 
statement at line 15, from which we conclude that 
no sequence number >SNτclean+1 can be generated 
and the lemma follows.                     

       Lemma 2. 
Theorem 1. In any execution that satisfies the MPdyn 
assumption, the protocol described in Figure 1 
implements a leader facility in a mobile networking 
environment. 
Proof. Given a run that satisfies MPdyn, let PL = 
∩{trusti: bi C trusti is associated with SN}, where 
SN is defined in Lemma 2. 

We first show that PL≠ Ø. Due to lemma 2, no 
sequence number greater than SN can be generated. 
This implies that Ø cannot be associated with SN. 
Moreover, it follows from Lemma 1 and updates of 
trusti (line 08) that any trusti associated with SN 
contains the stable MH m introduced in Lemma 1. 

We now show that PL⊆STABLE. This is a 
consequence of the completeness property satisfied by 
the local_trusti. More precisely, the completeness 
property states that an MH that crashes or gets 
disconnected from the system is eventually no longer 
locally trusted by each MSS b. Consequently, there is a 
time after which every REC_FROM does not contain 
crashed or disconnected MHs. Therefore, there is a 
time after which the REC_FROMi contains only stable 
hosts. Moreover, as the trusti sets are never reset to ┬, 
it follows that, after that time, these trusti sets can 
contain only stable MHs. 

Finally, there is a time τ after which we have ∀i  
C: trusti = PL. This is a consequence of the finite 
arrival model (after some time, no more MH join the 
system) and the gossiping mechanism (lines 04 and 
reception of PH2_QUERY in task T2). Let us consider 
an invocation made after τ of leader() that returns ml. 
We have ml = min(trusti) where i is the identity of 
some correct MSS. Since trusti = PL⊆ STABLE, it 
follows that any of these invocations returns the same 
stable MH. 

                                                            Theorem 1. 
 
6. Conclusions and future work 
 

This paper investigates the eventual leader oracle Ω 
in the context of dynamic mobile networking 
environments, where MHs are associated with fixed 
mobile support stations to communicate with one 
another. MHs can join and leave the system at any time 
and the number of participating hosts can change 
arbitrarily as time passes. To implement Ω, we let 
MSSs act on behalf of MHs to elect an eventual unique 
MH as the leader. MSSs conduct the message 
exchange using a two-phase query-response 

mechanism in order to elect an eventual unique leader. 
Such a design can reduce the workload of MHs and the 
consumption of various resources, e.g. battery power 
and bandwidth. Since no assumption on the time 
property of processing speed or message delay, the 
proposed protocol is time-free and consequently 
especially attractive for mobile networks. 

In future, we will evaluate the performance of our 
proposed protocol and compare it with similar work. 
Both numerical analysis and experimental simulations 
would be conducted.  
 
Acknowledgements. This research is partially supported 
by Hong Kong University Research Grant Council under the 
CERG grant PolyU 5183/04E and France/Hong Kong Joint 
Research Scheme F-HK16/05T. 
 
References 
 
[1] Abbari B. J, Dinan E., and Fuhrmann W., Performance 
Analysis of a Multilink Packet Access for Next Generation 
Wireless Cellular Systems. Proc. (PIMRC’98), 1998. 
[2] Aguilera M.K., A Pleasant Stroll Through the Land of 
Infinitely Many Creatures. ACM SIGACT News, Distributed 
Computing Column, 35(2):36-59, 2004. 
[3] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and 
Toueg S., On Implementing Omega with Weak Reliability 
and Synchrony Assumptions. Proc. 22th ACM Symposium on 
Principles of Distributed Computing (PODC’03), ACM 
Press, pp. 306-314, 2003. 
[4] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and 
Toueg S., Communication-Efficient Leader Election and 
Consensus with Limited Link Synchrony. Proc. 23th ACM 
Symposium on Principles of Distributed Computing 
(PODC’04), ACM Press, pp. 328-337, 2004. 
[5] Akyildiz I. F., Wang X., and Wang W., Wireless mesh 
networks: a survey. Computer Networks, 47(4): 445-487, 
2005. 
[6] Anceaume E., Fernandez A., Mostefaoui A., Neiger G. 
and Raynal M., Necessary and Sufficient Condition for 
Transforming Limited Accuracy Failure Detectors. Journal 
of Computer and System Sciences, 68:123-133, 2004. 
[7] Badache N., Hurfin M. and Macedo R. Solving the 
Consensus Problem in a Mobile Environment. Proc. 18th 
IEEE Int’l Performance Computing and Communications 
Conference (IPCCC’99), IEEE, pp 29-35, Phoenix, AZ, 1999 
[8] Badache N., Bouabdallah A. and Seba H., Solving the 
Consensus Problem in a Dynamic Group: an Approach 
Suitable for a Mobile Environment. Proc. 7th IEEE 
Symposium on Computers and Communications (ISCC’02), 
IEEE, pp 29-35, Phoenix, AZ, 1999 
[9] Chandra T.D. and Toueg S., Unreliable Failure Detectors 
for Reliable Distributed Systems. Journal of the ACM, 
43(2):225-267, 1996. 
[10] Chandra T.D., Hadzilacos V. and Toueg S., The 
Weakest Failure Detector for Solving Consensus. Journal of 
the ACM, 43(4):685-722, 1996. 
[11] Chu F., Reducing Ω to ◊W. Information Processing 
Letters, 76(6):293-298, 1998. 

129129129

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore.  Restrictions apply. 



[12] Gupta I., Chandra T.D., and Goldszmidt G.S., On 
scalable and efficient distributed failure detectors. Proc. 20th 
ACM symposium on Principles of distributed computing 
(PODC ’01), ACM Press, pp. 170-179, 2001. 
[13] Dwork C., Lynch N. and Stockmeyer L., Consensus in 
the Presence of Partial Synchrony. Journal of the ACM, 
35(2):288-323, 1988. 
[14] Chockler G. and Malkhi D., Active Disk Paxos with 
Infinitely Many Processes. Proc. 21th ACM symposium on 
Principles of distributed computing (PODC ’02), ACM 
Press, pp. 78-87, 2002. 
[15] Fernandes J., and Garcia J., Multiple coverage for MBS 
environments. Proc. of PIMRC’00, 2000. 
[16] Fernandes J. and Garcia J., Cellular coverage for 
efficient transmission performance in MBs. Proc. of VTC’00, 
2000. 
[17] Fischer M.J., Lynch N. and Paterson M.S., Impossibility 
of Distributed Consensus with One Faulty Process. Journal 
of the ACM, 32(2):374-382, 1985. 
[18] Friedman R., Raynal M. and Travers C., Two 
Abstractions for Implementing Atomic Objects in Dynamic 
Systems. Proc. 9th Int’l Conference on Principles of 
Distributed Systems (OPODIS’05), Springer Verlag, 2005. 
[19] Friedman R. and Tcharny G., Evaluating Failure 
Detection in Mobile Ad-Hoc Networks. Tech Report #CS-
2003-06, 22 pages, Computer Science Departement, The 
Technion (Israel) 2003. 
[20] Gafni E. and Lamport L., Disk Paxos. Proc. 14th Int’l 
Symposium on Distributed Computing (DISC’00), Springer-
Verlag LNCS #1914, pp. 330-344, 2000. 
[21] Guerraoui R. and Raynal M., The Information Structure 
of Indulgent Consensus. IEEE Transactions on Computers, 
53(4):453-466, April 2004. 
[22] Guerraoui R. and Raynal M., The Alpha and Omega of 
Asynchronous Consensus. Tech Report #1676, 21 pages, 
IRISA, University of Rennes 1 (Fance) 2005. 

[23] Lamport L., The Part-Time Parliament. ACM 
Transactions on Computer Systems, 16(2):133-169, 1998. 
[24] Larrea M., Fern´andez A. and Ar`evalo S., Optimal 
Implementation of the Weakest Failure Detector for Solving 
Consensus. Proc. 19th Symposium on Reliable Distributed 
Systems (SRDS’00), IEEE Computer Society Press, pp. 52-
60, 2000. 
[25] Lee W.C.Y., Overview of cellular CDMA. IEEE 
Transactions on Vehicular Technology, 40(2), May 1991. 
[26] Malkhi D., Oprea F. and Zhou L., Ω Meets Paxos: 
Leader Election and Stability without Eventual Timely 
Links. Proc. 19th Int’l Symposium on Distributed Computing 
(DISC’05), Springer-Verlag LNCS #3724, pp. 199-213, 
2005. 
[27] Merritt M. and Taubenfeld G., Computing Using 
Infinitely Many Processes. Proc. 14th Int’l Symposium on 
Distributed Computing (DISC’00), Springer-Verlag LNCS 
#1914, pp. 164-178, 2000. 
[28] Mostefaoui A., Mourgaya E., and Raynal M., 
Asynchronous Implementation of Failure Detectors. Proc. 
Int. IEEE Conference on Dependable Systems and Networks 
(DSN’03), IEEE Computer Society Press, pp. 351-360, 2003. 
[29] Mostefaoui A. and Raynal M., Leader-Based Consensus. 
Parallel Processing Letters, 11(1):95-107, 2001. 
[30] Mostefaoui A., Raynal M. and Travers C., Crash-
Resilient Time-Free Eventual Leadership. Proc. 23th 
Symposium on Reliable Distributed Systems (SRDS’04), 
IEEE Computer Society Press, pp. 208-217, 2004. 
[31] Mostefaoui A., Raynal M., Travers C., Patterson S., 
Agrawal A. and El Abbasi A., From Static Distributed 
Systems to Dynamic Systems. Proc. 24th Symposium on 
Reliable Distributed Systems (SRDS’05), IEEE Computer 
Society Press, pp. 109-118, 2005. 
[32] Raynal M., A Short Introduction to Failure Detectors for 
Asynchronous Distributed Systems. ACM SIGACT News, 
Distributed Computing Column, 36(1):53-70, 2005. 

 

130130130

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on March 15, 2009 at 23:55 from IEEE Xplore.  Restrictions apply. 


