205,766 research outputs found

    Survey on Multimedia Technologies for Mobile Learning Applications

    Get PDF
    Mobile technologies are developing very fast. This paper presents a survey on multimedia technologies for mobile learning applications, focusing on multimedia programming techniques for Windows Mobile, Symbian, and Java ME.multimedia, mobile devices, mobile applications, mobile learning

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Reconfigurable Mobile Multimedia Systems

    Get PDF
    This paper discusses reconfigurability issues in lowpower hand-held multimedia systems, with particular emphasis on energy conservation. We claim that a radical new approach has to be taken in order to fulfill the requirements - in terms of processing power and energy consumption - of future mobile applications. A reconfigurable systems-architecture in combination with a QoS driven operating system is introduced that can deal with the inherent dynamics of a mobile system. We present the preliminary results of studies we have done on reconfiguration in hand-held mobile computers: by having reconfigurable media streams, by using reconfigurable processing modules and by migrating functions

    Content-aware power saving multimedia adaptation for mobile learning

    No full text
    Due to the tremendous enhancements in the capabilities of mobile devices in recent years and accessibility to higher bandwidth mobile internet, the use of online multimedia learning resources on mobile devices is increasingly becoming popular. Improvements in battery capacity have not matched the same advancements compared to other features of mobile devices. Limited Battery power is introducing a significant challenge in making better use of online educational multimedia resources. Online Multimedia Resources drains more battery power as a result of higher amount of wireless data transfer and therefore limiting learning opportunities on the move. Many power saving multimedia adaptation techniques have been suggested. Majority of these techniques achieve battery efficiency while reducing multimedia quality. So far, however, to the best of our knowledge no previous effort has considered the factor of learning efficacy in multimedia adaptation process. Existing adaptation techniques are susceptible to information loss as a result of quality of reduction. Such loss affects the learning content efficacy and jeopardizes the learning process. In this paper, we recommend a novel power save educational multimedia adaptation approach that considers the learning aspect of multimedia in the adaptation process. Our technique enables learning for extended duration by battery power saving without putting the learning process at risk. Efficacy of entire learning resources is managed by not allowing any part of the learning multimedia to be delivered in a quality that will negatively affect the learning outcome. We also present a framework that guides the implementation of our approach followed by description of our prototype application that uses educational multimedia metadata implemented in semantic web technologies

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency

    Generating Multimedia Components for M-Learning

    Get PDF
    The paper proposes a solution to generate template based multimedia components for instruction and learning available both for computer based applications and for mobile devices. The field of research is situated at the intersection of computer science, mobile tools and e-learning and is generically named mobile learning or M-learning. The research goal is to provide access to computer based training resources from any location and to adapt the training content to the specific features of mobile devices, communication environment, users' preferences and users' knowledge. To become important tools in education field, the technical solutions proposed will follow to use the potential of mobile devices.M-learning, mobile devices, MPEG-21 standard, multimedia databases
    • 

    corecore