412 research outputs found

    Individual tree detection and estimation of stem attributes with mobile laser scanning along boreal forest roads

    Get PDF
    The collection of field-reference data is a key task in remote sensing-based forest inventories. However, traditional methods of collection demand extensive personnel resources. Thus, field-reference data collection would benefit from more automated methods. In this study, we proposed a method for individual tree detection (ITD) and stem attribute estimation based on a car-mounted mobile laser scanner (MLS) operating along forest roads. We assessed its performance in six ranges with increasing mean distance from the roadside. We used a Riegl VUX1LR sensor operating with high repetition rate, thus providing detailed cross sections of the stems. The algorithm we propose was designed for this sensor configuration, identifying the cross sections (or arcs) in the point cloud and aggregating those into single trees. Furthermore, we estimated diameter at breast height (DBH), stem profiles, and stem volume for each detected tree. The accuracy of ITD, DBH, and stem volume estimates varied with the trees' distance from the road. In general, the proximity to the sensor of branches 0-10 m from the road caused commission errors in ITD and over estimation of stem attributes in this zone. At 50-60 m from roadside, stems were often occluded by branches, causing omissions and underestimation of stem attributes in this area. ITD's precision and sensitivity varied from 82.8% to 100% and 62.7% to 96.7%, respectively. The RMSE of DBH estimates ranged from 1.81 cm (6.38%) to 4.84 cm (16.9%). Stem volume estimates had RMSEs ranging from 0.0800 m(3) (10.1%) to 0.190 m(3) (25.7%), depending on the distance to the sensor. The average proportion of detected reference volume was highly affected by the performance of ITD in the different zones. This proportion was highest from 0 to 10 m (113%), a zone that concentrated most ITD commission errors, and lowest from 50 to 60 m (66.6%), mostly due to the omission errors in this area. In the other zones, the RMSE ranged from 87.5% to 98.5%. These accuracies are in line with those obtained by other state-of-the-art MLS and terrestrial laser scanner (TLS) methods. The car-mounted MLS system used has the potential to collect data efficiently in large-scale inventories, being able to scan approximately 80 ha of forests per day depending on the survey setup. This data collection method could be used to increase the amount of field-reference data available in remote sensing based forest inventories, improve models for area-based estimations, and support precision forestry development

    Metrics of Growth Habit Derived from the 3D Tree Point Cloud Used for Species Determination-A New Approach in Botanical Taxonomy Tested on Dragon Tree Group Example

    Get PDF
    Detailed, three-dimensional modeling of trees is a new approach in botanical taxonomy. Representations of individual trees are a prerequisite for accurate assessments of tree growth and morphological metronomy. This study tests the abilities of 3D modeling of trees to determine the various metrics of growth habit and compare morphological differences. The study included four species of the genus Dracaena: D. draco, D. cinnabari, D. ombet, and D. serrulata. Forty-nine 3D tree point clouds were created, and their morphological metrics were derived and compared. Our results indicate the possible application of 3D tree point clouds to dendrological taxonomy. Basic metrics of growth habit and coefficients derived from the 3D point clouds developed in the present study enable the statistical evaluation of differences among dragon tree species.O

    Comparing Mobile Laser Scanner and manual measurements for dendrometric variables estimation in a black pine (Pinus nigra Arn.) plantation

    Get PDF
    The growing demand of ecosystem services provided by forests increased the need for fast and accurate field survey. The recent technological innovations fostered the application of geomatic tools and processes to different fields of the forestry sector. In this study we compared the efficiency and the accuracy of Mobile Laser Scanner (MLS), combined with Simultaneous Localization and Mapping (SLAM) technology, and traditional field survey for the mensuration of main forest dendrometric variables like stem diameter at breast height (DBH), individual tree height (H), crown base height (CBH) and branch-free stem volume (VOL). With ground truth measurements taken from 50 felled trees, we tested the applicability of MLS technology for individual tree parameters esti-mation in a conifer plantation in central Italy. Our results showed no bias of DBH estimates and the corre-sponding RMSE was equal to 10.8% (2.7 cm). H and CBH measured with MLS were underestimated compared to the ground truth (bias of-8.6% for H and-13.3% for CBH). VOL values showed a bias and a RMSE of-4.1% (-0.01 m(3)) and 12.4% (0.04 m3) respectively. Tree height is not perfectly estimated due to laser obstruction by crowns layer, but the acquisition speed of this survey, joined with a suitable accuracy of parameters extraction, suggests sufficient suitability of the method for operational applications in simple forest structures (e.g. one-layered stands)

    Accurate derivation of stem curve and volume using backpack mobile laser scanning

    Get PDF
    Forest inventories rely on field plots, the measurement of which is costly and time consuming by manual means. Thus, there is a need to automate plot-level field data collection. Mobile laser scanning has yet to be demonstrated for deriving stem curve and volume from standing trees with sufficient accuracy for supporting forest inventory needs. We tested a new approach based on pulse-based backpack mobile laser scanner (Riegl VUX-1HA) combined with in-house developed SLAM (Simultaneous Localization and Mapping), and a novel post-processing algorithm chain that allows one to extract stem curves from scan-line arcs corresponding to individual standing trees. The post-processing step included, among others, an algorithm for scan-line arc extraction, a stem inclination angle correction and an arc matching algorithm correcting for the drifts that are still present in the stem points after applying the SLAM algorithm. By using the stem curves defined by the detected arcs and tree heights provided by the pulse-based scanner, stem volume estimates for standing trees in easy (n = 40) and medium (n = 37) difficult boreal forest were calculated. In the easy and medium plots, 100% of pine and birch stems were correctly detected. The total RMSE of the extracted stem curves was 1.2 cm (5.1%) and 1.7 cm (6.7%) for the easy and medium plots, respectively. The RMSE were 1.8 m (8.7%) and 1.1 m (4.9%) for the estimated tree heights, and 9.7% and 10.9% for the stem volumes for the easy and medium plots, correspondingly. Thus, our processing chain provided stem volume estimates with a better accuracy than previous methods based on mobile laser scanning data. Importantly, the accuracy of stem volume estimation was comparable to that provided by terrestrial laser scanning approaches in similar forest conditions. To further demonstrate the performance of the proposed method, we compared our results against stem volumes calculated using the standard Finnish allometric volume model, and found that our method provided more accurate volume estimates for the two test sites. The findings are important steps towards future individual-tree-based airborne laser scanning inventories which currently lack cost-efficient and accurate field reference data collection techniques. The tree geometry defined by the stem curve is also an important input parameter for deriving quality-related information from trees. Forest management decision making will benefit from improvements to the efficiency and quality of individual tree reference information.</p

    Towards low vegetation identification: A new method for tree crown segmentation from LiDAR data based on a symmetrical structure detection algorithm (SSD)

    Get PDF
    Obtaining low vegetation data is important in order to quantify the structural characteristics of a forest. Dense three-dimensional (3D) laser scanning data can provide information on the vertical profile of a forest. However, most studies have focused on the dominant and subdominant layers of the forest, while few studies have tried to delineate the low vegetation. To address this issue, we propose a framework for individual tree crown (ITC) segmentation from laser data that focuses on both overstory and understory trees. The framework includes 1) a new algorithm (SSD) for 3D ITC segmentation of dominant trees, by detecting the symmetrical structure of the trees, and 2) removing points of dominant trees and mean shift clustering of the low vegetation. The framework was tested on a boreal forest in Sweden and the performance was compared 1) between plots with different stem density levels, vertical complexities, and tree species composition, and 2) using airborne laser scanning (ALS) data, terrestrial laser scanning (TLS) data, and merged ALS and TLS data (ALS + TLS data). The proposed framework achieved detection rates of 0.87 (ALS + TLS), 0.86 (TLS), and 0.76 (ALS) when validated with field inventory data (of trees with a diameter at breast height >= 4 cm). When validating the estimated number of understory trees by visual interpretation, the framework achieved 19%, 21%, and 39% root-mean-square error values with ALS + TLS, TLS, and ALS data, respectively. These results show that the SSD algorithm can successfully separate laser points of overstory and understory trees, ensuring the detection and segmentation of low vegetation in forest. The proposed framework can be used with both ALS and TLS data, and achieve ITC segmentation for forests with various structural attributes. The results also illustrate the potential of using ALS data to delineate low vegetation

    Under-canopy UAV laser scanning for accurate forest field measurements

    Get PDF
    Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m  32 m test sites that were characterized as sparse ( = 42 trees) and obstructed ( = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories.</p

    Accuracy of mobile forest inventory application KatamTM Forest : evaluation of accuracy in different forest types and comparison to conventional inventory methods

    Get PDF
    In recent decades with the advancement in technology, novel forest inventory techniques for quicker and cost-efficient results have been developed. A Swedish start-up company has developed an application for smart phones called KatamTM Forest which can do a forest inventory by recording videos in the stand. Even though, more forest inventory methods are accessible, conventional methods are still widely preferred because of the accuracy. This thesis aims to test the accuracy of Katam mobile application on single tree and stand level in different types of forest by comparing it to conventional inventory methods. Six Norway spruce production stands of varying ages and four heterogenous habitat protection stands were included in this thesis. Katam provides an easy way to quickly capture a large part of the stand, thus raising the efficiency and percentage of the stand covered comparing to conventional inventory methods. The application seems to miss smaller trees and was therefore significantly overestimating the mean diameter at breast height in conservation stands. The RMSE for dbh on single tree level was 2.9 cm in production stands and 6.9 cm in habitat protection stands. No statistically significant difference was found between inventory methods when comparing basal area (m2 ha-1), volume (m3 ha-1) or density (stems ha-1) in either of the two types of stands. Novel technologies provide an easy and accessible way to conduct a forest inventory and with the further advancement in technology and research are likely to make conventional methods obsolete in the near future. Currently, more development and calibration might be needed to fully start using Katam in mixed heterogenous stands which are not necessarily meant for production

    Comparison of Backpack, Handheld, Under-Canopy UAV, and Above-Canopy UAV Laser Scanning for Field Reference Data Collection in Boreal Forests

    Get PDF
    In this work, we compared six emerging mobile laser scanning (MLS) technologies for field reference data collection at the individual tree level in boreal forest conditions. The systems under study were an in-house developed AKHKA-R3 backpack laser scanner, a handheld Zeb-Horizon laser scanner, an under-canopy UAV (Unmanned Aircraft Vehicle) laser scanning system, and three above-canopy UAV laser scanning systems providing point clouds with varying point densities. To assess the performance of the methods for automated measurements of diameter at breast height (DBH), stem curve, tree height and stem volume, we utilized all of the six systems to collect point cloud data on two 32 m-by-32 m test sites classified as sparse (n = 42 trees) and obstructed (n = 43 trees). To analyze the data collected with the two ground-based MLS systems and the under-canopy UAV system, we used a workflow based on our recent work featuring simultaneous localization and mapping (SLAM) technology, a stem arc detection algorithm, and an iterative arc matching algorithm. This workflow enabled us to obtain accurate stem diameter estimates from the point cloud data despite a small but relevant time-dependent drift in the SLAM-corrected trajectory of the scanner. We found out that the ground-based MLS systems and the under-canopy UAV system could be used to measure the stem diameter (DBH) with a root mean square error (RMSE) of 2-8%, whereas the stem curve measurements had an RMSE of 2-15% that depended on the system and the measurement height. Furthermore, the backpack and handheld scanners could be employed for sufficiently accurate tree height measurements (RMSE = 2-10%) in order to estimate the stem volumes of individual trees with an RMSE of approximately 10%. A similar accuracy was obtained when combining stem curves estimated with the under-canopy UAV system and tree heights extracted with an above-canopy flying laser scanning unit. Importantly, the volume estimation error of these three MLS systems was found to be of the same level as the error corresponding to manual field measurements on the two test sites. To analyze point cloud data collected with the three above-canopy flying UAV systems, we used a random forest model trained on field reference data collected from nearby plots. Using the random forest model, we were able to estimate the DBH of individual trees with an RMSE of 10-20%, the tree height with an RMSE of 2-8%, and the stem volume with an RMSE of 20-50%. Our results indicate that ground-based and under-canopy MLS systems provide a promising approach for field reference data collection at the individual tree level, whereas the accuracy of above-canopy UAV laser scanning systems is not yet sufficient for predicting stem attributes of individual trees for field reference data with a high accuracy

    An experimental investigation into ALS uncertainty and its impact on environmental applications

    Get PDF
    This study takes an experimental approach to investigating the reliability and repeatability of an airborne laser scanning (ALS) survey. The ability to characterise an area precisely in 3-D using ALS is essential for multi-temporal analysis where change detection is an important application. The reliability and consistency between two ALS datasets is discussed in the context of uncertainty within a single epoch and in the context of well known point- and grid-based descriptors and metrics. The implications of repeatability, verifiability and reliability are discussed in the context of environmental applications, specifically concerning forestry where high resolution ALS surveys are commonly used for forest mensuration over large areas. The study used a regular 10-by-10 layout of standard school tables and decreased the separation from 2.5 metres apart to 0.5 metres in order to evaluate the effects of object separation on their detection. Each configuration was scanned twice using the same ALS scanning parameters and the difference between the datasets is investigated and discussed. The results quantify uncertainty in the ability of ALS to characterise objects, estimate vertical heights and interpret features / objects with certainty. The results show that repeat scanning of the same features under the same conditions result in a laser point cloud with different properties. Objects that are expected to be present in 40 points per metre2 laser point cloud are absent, and the investigation reveals that irregular point spacing and lack of consideration of the ALS footprint size and the interaction with the object of interest are significant factors in the detection and characterisation of features. The results strongly suggest that characterisation of error is important and relevant to environmental applications that use multi-epoch ALS or data with high resolution / point density for object detection and characterisatio
    corecore