31 research outputs found

    A practical framework for data collection in wireless sensor networks

    Full text link
    Optimizing energy consumption for extending the lifetime in wireless sensor networks is of dominant importance. Groups of autonomous robots and unmanned aerial vehicles (UAVs) acting as mobile data collectors are utilized to minimize the energy expenditure of the sensor nodes by approaching the sensors and collecting their buffers via single hop communication, rather than using multihop routing to forward the buffers to the base station. This paper models the sensor network and the mobile collectors as a system-of-systems, and defines all levels and types of interactions. A practical framework that facilitates deploying heterogeneous mobiles without prior knowledge about the sensor network is presented. Realizing the framework is done through simulation experiments and tested against several performance metrics.<br /

    Decentralized mobility models for data collection in wireless sensor networks

    Full text link
    Controlled mobility in wireless sensor networks provides many benefits towards enhancing the network performance and prolonging its lifetime. Mobile elements, acting as mechanical data carriers, traverse the network collecting data using single-hop communication, instead of the more energy demanding multi-hop routing to the sink. Scaling up from single to multiple mobiles is based more on the mobility models and the coordination methodology rather than increasing the number of mobile elements in the network. This work addresses the problem of designing and coordinating decentralized mobile elements for scheduling data collection in wireless sensor networks, while preserving some performance measures, such as latency and amount of data collected. We propose two mobility models governing the behaviour of the mobile element, where the incoming data collection requests are scheduled to service according to bidding strategies to determine the winner element. Simulations are run to measure the performance of the proposed mobility models subject to the network size and the number of mobile elements.<br /

    Implementation on Maximizing Network Topology Lifetime using Mobile Node Rotation

    Get PDF
    Wireless sensor network (WSN) is facing key challenges like extending network lifetime due to sensor nodes having limited power supplies. Extending WSN lifetime is complicated because nodes often experience differential power consumption. For example, nodes closer to the sink in a given routing topology transmit more data and thus consume power more rapidly than nodes farther from the sink. Inspired by the huddling behavior of emperor penguins where the penguins take turns on the cold extremities of a penguin �huddle�, we propose mobile node rotation, a new method for using low-cost mobile sensor nodes to address differential power consumption and extend WSN lifetime. Specifically, we propose to rotate the nodes through the high power consumption locations. We propose efficient algorithms for single and multiple rounds of rotations

    Energy efficiency mechanisms using mobile node in wireless sensor networks

    Get PDF
    A traditional network consists of gateway sensors which transmit data to the base stations. These nodes are considered bottlenecks in multihop-networks as they transmit their data as well as data from other nodes and hence they deplete faster in energy. One way to optimize energy efficiency in a WSN is to deploy a mobile base station which could collect data without a need for gateway nodes, and hence the multihop bottleneck would be minimized. We compare these two variations of WSN, one consisting of the multihop approach with gateway nodes, and we propose the other network structure, whereby a mobile base station collects data individually from each node using double Fermat’s spiral model

    Path-Constrained Data Gathering Scheme

    Get PDF
    Several studies in recent years have considered the use of mobile elements for data gathering in wireless sensor networks so as to reduce the need for multi-hop forwarding among the sensor nodes and thereby prolong the network lifetime Since typically practical constraints preclude a mobile element from visiting all nodes in the sensor network the solution must involve a combination of a mobile element visiting a subset of the nodes cache points while other nodes communicate their data to the cache points wirelessly This leads to the optimization problem of minimizing the communication distance of the sensor nodes while keeping the tour length of the mobile element below a given constraint In this paper we investigate the problem of designing the mobile elements tours such that the length of each tour is below a per-determined length and the number of hops between the tours and the nodes not included in the tour is minimized To address this problem we present an algorithmic solution that consider the distribution of the nodes during the process of building the tours We compare the resulting performance of our algorithm with the best known comparable schemes in the literatur

    Energy sink-holes avoidance method based on fuzzy system in wireless sensor networks

    Get PDF
    The existence of a mobile sink for gathering data significantly extends wireless sensor networks (WSNs) lifetime. In recent years, a variety of efficient rendezvous points-based sink mobility approaches has been proposed for avoiding the energy sink-holes problem nearby the sink, diminishing buffer overflow of sensors, and reducing the data latency. Nevertheless, lots of research has been carried out to sort out the energy holes problem using controllable-based sink mobility methods. However, further developments can be demonstrated and achieved on such type of mobility management system. In this paper, a well-rounded strategy involving an energy-efficient routing protocol along with a controllable-based sink mobility method is proposed to extirpate the energy sink-holes problem. This paper fused the fuzzy A-star as a routing protocol for mitigating the energy consumption during data forwarding along with a novel sink mobility method which adopted a grid partitioning system and fuzzy system that takes account of the average residual energy, sensors density, average traffic load, and sources angles to detect the optimal next location of the mobile sink. By utilizing diverse performance metrics, the empirical analysis of our proposed work showed an outstanding result as compared with fuzzy A-star protocol in the case of a static sink

    Deadline-Aware Energy-Efficient Query Scheduling in Wireless Sensor Networks with Mobile Sink

    Get PDF
    Mobile sinks are proposed to save sensor energy spent for multihop communication in transferring data to a base station (sink) in Wireless Sensor Networks. Due to relative low speed of mobile sinks, these approaches are mostly suitable for delay-tolerant applications. In this paper, we study the design of a query scheduling algorithm for query-based data gathering applications using mobile sinks. However, these kinds of applications are sensitive to delays due to specified query deadlines. Thus, the proposed scheduling algorithm aims to minimize the number of missed deadlines while keeping the level of energy consumption at the minimum
    corecore