369 research outputs found

    Heart Rate Monitoring and Alert System Using Smartphone

    Get PDF
    Heart disease like arrhythmia need continual long-term monitoring. For example, in emergency at home, where the patient is unable help themselves or seek help, there is a need for long distance health monitoring for early and faster assessment for treatment. This project presents a remote monitoring system for monitoring the irregularity in heart rate, which enables real-time monitoring for the cardiovascular diseases (CVDs) patient. The system utilizes Photoplethysmography (PPG) sensor to obtain the pulse reading. The sensor is non-invasive where pulse reading is taken from the finger. The microcontroller is used to receive and process the signal. When irregularity in heart rate is detected, the microcontroller will send data to a smartphone using Bluetooth. A mobile application is developed to receive the data and to send out an alert in the form of a text message to another mobile phone. The alert is successfully sent to the specified recipient such as medical doctors or next of kin in the emergency which contain the details such as heart rate information and GPS coordinate. Evaluation on the functionality of the device shows that the developed device can reach accuracy of 97.50%, precision of 96.55%, sensitivity of 99.29% and specificity of 91.67%

    Efficient QRS complex detection algorithm implementation on SOC-based embedded system

    Get PDF
    This paper studies two different Electrocardiography ( ECG ) preprocessing algorithms , namely Pan and Tompkins (PT) and Derivative Based (DB) algorithm, which is crucial of QRS complex detection in cardiovascular disease detection . Both algorithms are compared in terms of QRS detection accuracy and computation timing performance , with implementation on System - on - C hip (SoC) based embedded system that prototype on Altera DE2 - 115 Field Programmable Gate Array (FPGA) platform as embedded software . Both algorithm s are tested with 30 minutes ECG data from each of 48 different patient records obtain from MIT - BIH arrhythmia database. Results show that PT algorithm achieve 98.15% accuracy with 56. 33 seconds computation while DB algorithm achieve 96.74% with only 22. 14 seconds processing time. Based on the study, an optimized PT algorithm with improvement on Moving Windows Integrator (MWI) has been proposed to accelerate its computation. Result show s that the proposed optimized Moving Windows Integrator algorithm achieve s 9.5 times speed up than original MWI while retaining its QRS detection accuracy

    Algorithms design for improving homecare using Electrocardiogram (ECG) signals and Internet of Things (IoT)

    Get PDF
    Due to the fast growing of population, a lot of hospitals get crowded from the huge amount of patients visits. Moreover, during COVID-19 a lot of patients prefer staying at home to minimize the spread of the virus. The need for providing care to patients at home is essential. Internet of Things (IoT) is widely known and used by different fields. IoT based homecare will help in reducing the burden upon hospitals. IoT with homecare bring up several benefits such as minimizing human exertions, economical savings and improved efficiency and effectiveness. One of the important requirement on homecare system is the accuracy because those systems are dealing with human health which is sensitive and need high amount of accuracy. Moreover, those systems deal with huge amount of data due to the continues sensing that need to be processed well to provide fast response regarding the diagnosis with minimum cost requirements. Heart is one of the most important organ in the human body that requires high level of caring. Monitoring heart status can diagnose disease from the early stage and find the best medication plan by health experts. Continues monitoring and diagnosis of heart could exhaust caregivers efforts. Having an IoT heart monitoring model at home is the solution to this problem. Electrocardiogram (ECG) signals are used to track heart condition using waves and peaks. Accurate and efficient IoT ECG monitoring at home can detect heart diseases and save human lives. As a consequence, an IoT ECG homecare monitoring model is designed in this thesis for detecting Cardiac Arrhythmia and diagnosing heart diseases. Two databases of ECG signals are used; one online which is old and limited, and another huge, unique and special from real patients in hospital. The raw ECG signal for each patient is passed through the implemented Low Pass filter and Savitzky Golay filter signal processing techniques to remove the noise and any external interference. The clear signal in this model is passed through feature extraction stage to extract number of features based on some metrics and medical information along with feature extraction algorithm to find peaks and waves. Those features are saved in the local database to apply classification on them. For the diagnosis purpose a classification stage is made using three classification ways; threshold values, machine learning and deep learning to increase the accuracy. Threshold values classification technique worked based on medical values and boarder lines. In case any feature goes above or beyond these ranges, a warning message appeared with expected heart disease. The second type of classification is by using machine learning to minimize the human efforts. A Support Vector Machine (SVM) algorithm is proposed by running the algorithm on the features extracted from both databases. The classification accuracy for online and hospital databases was 91.67% and 94% respectively. Due to the non-linearity of the decision boundary, a third way of classification using deep learning is presented. A full Multilayer Perceptron (MLP) Neural Network is implemented to improve the accuracy and reduce the errors. The number of errors reduced to 0.019 and 0.006 using online and hospital databases. While using hospital database which is huge, there is a need for a technique to reduce the amount of data. Furthermore, a novel adaptive amplitude threshold compression algorithm is proposed. This algorithm is able to make diagnosis of heart disease from the reduced size using compressed ECG signals with high level of accuracy and low cost. The extracted features from compressed and original are similar with only slight differences of 1%, 2% and 3% with no effects on machine learning and deep learning classification accuracy without the need for any reconstructions. The throughput is improved by 43% with reduced storage space of 57% when using data compression. Moreover, to achieve fast response, the amount of data should be reduced further to provide fast data transmission. A compressive sensing based cardiac homecare system is presented. It gives the channel between sender and receiver the ability to carry small amount of data. Experiment results reveal that the proposed models are more accurate in the classification of Cardiac Arrhythmia and in the diagnosis of heart diseases. The proposed models ensure fast diagnosis and minimum cost requirements. Based on the experiments on classification accuracy, number of errors and false alarms, the dictionary of the compressive sensing selected to be 900. As a result, this thesis provided three different scenarios that achieved IoT homecare Cardiac monitoring to assist in further research for designing homecare Cardiac monitoring systems. The experiment results reveal that those scenarios produced better results with high level of accuracy in addition to minimizing data and cost requirements

    A HARDWARE-SOFTWARE CO-DESIGNED WEARABLE FOR REAL-TIME PHYSIOLOGICAL DATA COLLECTION AND SIGNAL QUALITY ASSESSMENT

    Get PDF
    In the future, Smart and Connected Communities (S&CC) will use distributed wireless sensors and embedded computing platforms to produce meaningful data that can help individuals, and communities. Here, we presented a scanner, a data reliability estimation algorithm and Electrocardiogram (ECG) beat classification algorithm which contributes to the S&CC framework .In part 1, we report the design, prototyping, and functional validation of a low-power, small, and portable signal acquisition device for these sensors. The scanner was fully tested, characterized, and validated in the lab, as well as through deployment to users homes. As a test case, we show results of the scanner measuring WRAP temperature sensors with relative error within the 0.01% range. The scanner measurement shows distinguish temperature of 1F difference and excellent linear dependence between actual and measured resistance (R2 = 0.998). This device hasdemonstrated the possibility of a small, low-power portable scanner for WRAP sensors.Additionally, we explored the statistical data reliability metric (DReM) to explain the quality of bio-signal quantitatively on a scale between 0.0 -1.0. As proof of concept, we analyzed the ECG signal. Our DReM prediction algorithm measures the reliability of the ECG signals effectively with low Root mean square error = 0.010 and Mean absolute error = 0.008 and coefficient of determination R2 value of 0.990. Finally, we tested our model against the opinions of three independent judges and presented R2 value to determine the agreement between judgments vs our prediction model.We concluded our contribution to the S&CC framework by analyzing ECG beat classification with a pipeline of classifiers that focuses on improving the models performance on identifying minority classes (ventricular ectopic beat, supraventricular ectopic beat). Moreover, we intended to minimize morphological distortion introduced due to indiscriminate use of filtering techniques on ECG signals. Our approach shows an average positive predictive value 95.21%, sensitivity of95.28%, and F-1 score 95.76% respectively

    PORTABLE HEART ATTACK WARNING SYSTEM BY MONITORING THE ST SEGMENT VIA SMARTPHONE ELECTROCARDIOGRAM PROCESSING

    Get PDF
    Cardiovascular disease (CVD) is the single leading cause of death in both developed and developing countries. The most deadly CVD is heart attack, which 7,900,000 Americans suffer each year, and 16% of cases are fatal. The Electrocardiogram (ECG) is the most widely adopted clinical tool to diagnose and assess the risk of CVD. Early diagnosis of heart attacks, by detecting abnormal ST segments within one hour of the onset of symptoms, is necessary for successful treatment. In clinical settings, resting ECGs are used to monitor patients automatically. However, given the sporadic nature of heart attacks, it is unlikely that the patient will be in a clinical setting at the onset of a heart attack. While Holter-based portable monitoring solutions offer 24 to 48-hour ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline.Processing ECG signals on a smartphone-based platform would unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis for early heart attack warning. Furthermore, smartphones serve as an ideal platform for telemedicine and alert systems and have a portable form factor. To detect heart attacks via ECG processing, a real-time, accurate, context aware ST segment monitoring algorithm, based on principal component analysis and a support vector machine classifier is proposed and evaluated. Real-time feedback is provided by implementing a state-of-the-art, multilevel warning system ranging from audible notifications to text messages to points of contacts with the GPS location of the user. The smartphone test bed makes use of a novel, real-time verification system using a streaming database to analyze the strain of heart attack detection system under normal phone operation. Furthermore, the entire system is prototyped and fully functional, running on a smartphone to demonstrate the real-time, portable functionality of the platform. Experimental results show that a classification accuracy of 96% for ST segment elevation of individual beats can be achieved and all ST episodes were correctly detected during testing with the European ST database

    Feasibility of atrial fibrillation detection from a novel wearable armband device

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the world’s most common heart rhythm disorder and even several minutes of AF episodes can contribute to risk for complications, including stroke. However, AF often goes undiagnosed owing to the fact that it can be paroxysmal, brief, and asymptomatic. OBJECTIVE: To facilitate better AF monitoring, we studied the feasibility of AF detection using a continuous electrocardiogram (ECG) signal recorded from a novel wearable armband device. METHODS: In our 2-step algorithm, we first calculate the R-R interval variability–based features to capture randomness that can indicate a segment of data possibly containing AF, and subsequently discriminate normal sinus rhythm from the possible AF episodes. Next, we use density Poincaré plot-derived image domain features along with a support vector machine to separate premature atrial/ventricular contraction episodes from any AF episodes. We trained and validated our model using the ECG data obtained from a subset of the MIMIC-III (Medical Information Mart for Intensive Care III) database containing 30 subjects. RESULTS: When we tested our model using the novel wearable armband ECG dataset containing 12 subjects, the proposed method achieved sensitivity, specificity, accuracy, and F1 score of 99.89%, 99.99%, 99.98%, and 0.9989, respectively. Moreover, when compared with several existing methods with the armband data, our proposed method outperformed the others, which shows its efficacy. CONCLUSION: Our study suggests that the novel wearable armband device and our algorithm can be used as a potential tool for continuous AF monitoring with high accuracy

    Wireless ECG and heart rate monitoring using dual ground dry electrodes

    Get PDF
    In this work, a novel wireless easy-to-use measuring system is presented to acquire the Lead I ECG signal and the heart rate. The system presents a novel application of the dual ground configuration to dry electrodes, to reduce their level of power line interference. With this, a good quality Lead I EGC signal can be obtained simply by placing the right and left hands on the dual electrodes. Heart rate is obtained with a novel algorithm based on the continuous wavelet transform (CWT), especially designed to avoid the electromyographic noise that can be present when acquiring signals in the hands. The algorithm presented has been tested in twelve subjects of different age and physical condition, obtaining a 99.7% of sensitivity and a 100 % of positive predictivity.Postprint (published version

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.
    corecore