10,868 research outputs found

    Continuous Nearest Neighbor Queries over Sliding Windows

    Get PDF
    Abstract—This paper studies continuous monitoring of nearest neighbor (NN) queries over sliding window streams. According to this model, data points continuously stream in the system, and they are considered valid only while they belong to a sliding window that contains 1) the W most recent arrivals (count-based) or 2) the arrivals within a fixed interval W covering the most recent time stamps (time-based). The task of the query processor is to constantly maintain the result of long-running NN queries among the valid data. We present two processing techniques that apply to both count-based and time-based windows. The first one adapts conceptual partitioning, the best existing method for continuous NN monitoring over update streams, to the sliding window model. The second technique reduces the problem to skyline maintenance in the distance-time space and precomputes the future changes in the NN set. We analyze the performance of both algorithms and extend them to variations of NN search. Finally, we compare their efficiency through a comprehensive experimental evaluation. The skyline-based algorithm achieves lower CPU cost, at the expense of slightly larger space overhead. Index Terms—Location-dependent and sensitive, spatial databases, query processing, nearest neighbors, data streams, sliding windows.

    Location-Dependent Query Processing Under Soft Real-Time Constraints

    Get PDF

    Adaptive schemes for location update generation in execution location-dependent continuous queries

    Get PDF
    Cataloged from PDF version of article.An important feature that is expected to be owned by today's mobile computing systems is the ability of processing location-dependent continuous queries on moving objects. The result of a location-dependent query depends on the current location of the mobile client which has generated the query as well as the locations of the moving objects on which the query has been issued. When a location-dependent query is specified to be continuous, the result of the query can continuously change. In order to provide accurate and timely query results to a client, the location of the client as well as the locations of moving objects in the system has to be closely monitored. Most of the location generation methods proposed in the literature aim to optimize utilization of the limited wireless bandwidth. The issues of correctness and timeliness of query results reported to clients have been largely ignored. In this paper, we propose an adaptive monitoring method (AMM) and a deadline-driven method (DDM) for managing the locations of moving objects. The aim of our methods is to generate location updates with the consideration of maintaining the correctness of query evaluation results without increasing location update workload. Extensive simulation experiments have been conducted to investigate the performance of the proposed methods as compared to a well-known location update generation method, the plain dead-reckoning (pdr). © 2005 Elsevier Inc. All rights reserved

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017
    • …
    corecore