3 research outputs found

    Deviation Point Curriculum Learning for Trajectory Outlier Detection in Cooperative Intelligent Transport Systems

    Get PDF
    Cooperative Intelligent Transport Systems (C-ITS) are emerging in the field of transportation systems, which can be used to provide safety, sustainability, efficiency, communication and cooperation between vehicles, roadside units, and traffic command centres. With improved network structure and traffic mobility, a large amount of trajectory-based data is generated. Trajectory-based knowledge graphs help to give semantic and interconnection capabilities for intelligent transport systems. Prior works consider trajectory as the single point of deviation for the individual outliers. However, in real-world transportation systems, trajectory outliers can be seen in the groups, e.g., a group of vehicles that deviates from a single point based on the maintenance of streets in the vicinity of the intelligent transportation system. In this paper, we propose a trajectory deviation point embedding and deep clustering method for outlier detection. We first initiate network structure and nodes' neighbours to construct a structural embedding by preserving nodes relationships. We then implement a method to learn the latent representation of deviation points in road network structures. A hierarchy multilayer graph is designed with a biased random walk to generate a set of sequences. This sequence is implemented to tune the node embeddings. After that, embedding values of the node were averaged to get the trip embedding. Finally, LSTM-based pairwise classification method is initiated to cluster the embedding with similarity-based measures. The results obtained from the experiments indicate that the proposed learning trajectory embedding captured structural identity and increased F-measure by 5.06% and 2.4% while compared with generic Node2Vec and Struct2Vec methods.acceptedVersio

    A two-phase anomaly detection model for secure intelligent transportation ride-hailing trajectories

    Get PDF
    This paper addresses the taxi fraud problem and introduces a new solution to identify trajectory outliers. The approach as presented allows to identify both individual and group outliers and is based on a two phase-based algorithm. The first phase determines the individual trajectory outliers by computing the distance of each point in each trajectory, whereas the second identifies the group trajectory outliers by exploring the individual trajectory outliers using both feature selection and sliding windows strategies. A parallel version of the algorithm is also proposed using a sliding window-based GPU approach to boost the runtime performance. Extensive experiments have been carried out to thoroughly demonstrate the usefulness of our methodology on both synthetic and real trajectory databases. The results show that the GPU approach enables reaching a speed-up of 341 over the sequential algorithm on large synthetic databases. The efficiency of the proposed method to detect both individual and group trajectory outliers on a real-world taxi trajectory database is also demonstrated in comparison with baseline trajectory outlier and group detection algorithms. The results are very promising and show superiority of the proposed method both in reducing computational time and enhancing the quality of returned outliers. Finally, we prime our methodology and results for future refinement using deep learning methodologies
    corecore