5 research outputs found

    Rendezvous in Networks in Spite of Delay Faults

    Full text link
    Two mobile agents, starting from different nodes of an unknown network, have to meet at the same node. Agents move in synchronous rounds using a deterministic algorithm. Each agent has a different label, which it can use in the execution of the algorithm, but it does not know the label of the other agent. Agents do not know any bound on the size of the network. In each round an agent decides if it remains idle or if it wants to move to one of the adjacent nodes. Agents are subject to delay faults: if an agent incurs a fault in a given round, it remains in the current node, regardless of its decision. If it planned to move and the fault happened, the agent is aware of it. We consider three scenarios of fault distribution: random (independently in each round and for each agent with constant probability 0 < p < 1), unbounded adver- sarial (the adversary can delay an agent for an arbitrary finite number of consecutive rounds) and bounded adversarial (the adversary can delay an agent for at most c consecutive rounds, where c is unknown to the agents). The quality measure of a rendezvous algorithm is its cost, which is the total number of edge traversals. For random faults, we show an algorithm with cost polynomial in the size n of the network and polylogarithmic in the larger label L, which achieves rendezvous with very high probability in arbitrary networks. By contrast, for unbounded adversarial faults we show that rendezvous is not feasible, even in the class of rings. Under this scenario we give a rendezvous algorithm with cost O(nl), where l is the smaller label, working in arbitrary trees, and we show that \Omega(l) is the lower bound on rendezvous cost, even for the two-node tree. For bounded adversarial faults, we give a rendezvous algorithm working for arbitrary networks, with cost polynomial in n, and logarithmic in the bound c and in the larger label L

    Move-optimal partial gathering of mobile agents in asynchronous trees

    Get PDF
    In this paper, we consider the partial gathering problem of mobile agents in asynchronous tree networks. The partial gathering problem is a generalization of the classical gathering problem, which requires that all the agents meet at the same node. The partial gathering problem requires, for a given positive integer g, that each agent should move to a node and terminate so that at least g agents should meet at each of the nodes they terminate at. The requirement for the partial gathering problem is weaker than that for the (well-investigated) classical gathering problem, and thus, we clarify the difference on the move complexity between them. We consider two multiplicity detection models: weak multiplicity detection and strong multiplicity detection models. In the weak multiplicity detection model, each agent can detect whether another agent exists at the current node or not but cannot count the exact number of the agents. In the strong multiplicity detection model, each agent can count the number of agents at the current node. In addition, we consider two token models: non-token model and removable token model. In the non-token model, agents cannot mark the nodes or the edges in any way. In the removable-token model, each agent initially leaves a token on its initial node, and agents can remove the tokens. Our contribution is as follows. First, we show that for the non-token model agents require Ω(kn) total moves to solve the partial gathering problem, where n is the number of nodes and k is the number of agents. Second, we consider the weak multiplicity detection and non-token model. In this model, for asymmetric trees, by a previous result agents can achieve the partial gathering in O(kn) total moves, which is asymptotically optimal in terms of total moves. In addition, for symmetric trees we show that there exist no algorithms to solve the partial gathering problem. Third, we consider the strong multiplicity detection and non-token model. In this model, for any trees we propose an algorithm to achieve the partial gathering in O(kn) total moves, which is asymptotically optimal in terms of total moves. At last, we consider the weak multiplicity detection and removable-token model. In this model, we propose an algorithm to achieve the partial gathering in O(gn) total moves. Note that in this model, agents require Ω(gn) total moves to solve the partial gathering problem. Hence, the second proposed algorithm is also asymptotically optimal in terms of total moves

    Search-and-rescue rendezvous

    Get PDF
    We consider a new type of asymmetric rendezvous search problem in which player II needs to give player I a ‘gift’ which can be in the form of information or material. The gift can either be transfered upon meeting, as in traditional rendezvous, or it can be dropped off by player II at a location he passes, in the hope it will be found by player I. The gift might be a water bottle for a traveller lost in the desert; a supply cache for Captain Scott in the Antarctic; or important information (left as a gift). The common aim of the two players is to minimize the time taken for I to either meet II or find the gift. We find optimal agent paths and drop off times when the search region is a line, the initial distance between the players is known and one or both of the players can leave gifts. A novel and important technique introduced in this paper is the use of families of linear programs to solve this and previous rendezvous problems. Previously, the approach was to guess the answer and then prove it was optimal. Our work has applications to other forms of rendezvous on the line: we can solve the symmetric version (players must use the same strategy) with two gifts and we show that there are no asymmetric solutions to this two gifts problem. We also solve the GiftStart problem, where the gift or gifts must be dropped at the start of the game. Furthermore, we can solve the Minmax version of the game where the objective function is to minimize the maximum rendezvous time. This problem admits variations where players have 0, 1 or 2 gifts at disposal. In particular, we show that the classical Wait For Mommy strategy is optimal for this setting
    corecore