
Move-optimal partial gathering of mobile
agents in asynchronous trees

著者 Shibata Masahiro, Ooshita Fukuhito, Kakugawa
 Hirotsugu, Masuzawa Toshimitsu

journal or
publication title

Theoretical Computer Science

volume 705
page range 9-30
year 2017-09-27
URL http://hdl.handle.net/10228/00007612

doi: info:doi/10.1016/j.tcs.2017.09.016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/289253711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Theoretical Computer Science 705 (2018) 9–30
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Move-optimal partial gathering of mobile agents in

asynchronous trees ✩,✩✩

Masahiro Shibata a,∗, Fukuhito Ooshita b, Hirotsugu Kakugawa c,
Toshimitsu Masuzawa c

a Department of Computer Science and Electronics, Kyushu Institute of Technology, 680-4, Kawatsu, Iizuka, Fukuoka, 820-8502, Japan
b Graduate School of Information Science, NAIST, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
c Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 May 2015
Received in revised form 17 September
2017
Accepted 19 September 2017
Available online 27 September 2017
Communicated by D. Peleg

Keywords:
Distributed system
Mobile agent
Gathering problem
Partial gathering problem

In this paper, we consider the partial gathering problem of mobile agents in asynchronous
tree networks. The partial gathering problem is a generalization of the classical gathering
problem, which requires that all the agents meet at the same node. The partial gathering
problem requires, for a given positive integer g, that each agent should move to a
node and terminate so that at least g agents should meet at each of the nodes they
terminate at. The requirement for the partial gathering problem is weaker than that for
the (well-investigated) classical gathering problem, and thus, we clarify the difference on
the move complexity between them. We consider two multiplicity detection models: weak
multiplicity detection and strong multiplicity detection models. In the weak multiplicity
detection model, each agent can detect whether another agent exists at the current node or
not but cannot count the exact number of the agents. In the strong multiplicity detection
model, each agent can count the number of agents at the current node. In addition, we
consider two token models: non-token model and removable token model. In the non-
token model, agents cannot mark the nodes or the edges in any way. In the removable-
token model, each agent initially leaves a token on its initial node, and agents can remove
the tokens. Our contribution is as follows. First, we show that for the non-token model
agents require �(kn) total moves to solve the partial gathering problem, where n is the
number of nodes and k is the number of agents. Second, we consider the weak multiplicity
detection and non-token model. In this model, for asymmetric trees, by a previous result
agents can achieve the partial gathering in O (kn) total moves, which is asymptotically
optimal in terms of total moves. In addition, for symmetric trees we show that there
exist no algorithms to solve the partial gathering problem. Third, we consider the strong
multiplicity detection and non-token model. In this model, for any trees we propose an
algorithm to achieve the partial gathering in O (kn) total moves, which is asymptotically
optimal in terms of total moves. At last, we consider the weak multiplicity detection and
removable-token model. In this model, we propose an algorithm to achieve the partial
gathering in O (gn) total moves. Note that in this model, agents require �(gn) total moves

✩ The conference version of this paper is published in the proceedings of 21th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2014).
✩✩ This work was supported by JSPS KAKENHI Grant Numbers 24500039, 24650012, 25104516, 26280022, and 26330084.

* Corresponding author.
E-mail addresses: shibata@cse.kyutech.ac.jp (M. Shibata), f-oosita@is.naist.jp (F. Ooshita), kakugawa@ist.osaka-u.ac.jp (H. Kakugawa),

masuzawa@ist.osaka-u.ac.jp (T. Masuzawa).
https://doi.org/10.1016/j.tcs.2017.09.016
0304-3975/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.tcs.2017.09.016
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:shibata@cse.kyutech.ac.jp
mailto:f-oosita@is.naist.jp
mailto:kakugawa@ist.osaka-u.ac.jp
mailto:masuzawa@ist.osaka-u.ac.jp
https://doi.org/10.1016/j.tcs.2017.09.016
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2017.09.016&domain=pdf

10 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
to solve the partial gathering problem. Hence, the second proposed algorithm is also
asymptotically optimal in terms of total moves.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background and our contribution

A distributed system is a system that consists of a set of computers (nodes) and communication links. In recent years,
distributed systems have become large and design of distributed systems has become complicated. As a way to design
efficient distributed systems, (mobile) agents have attracted a lot of attention [1–5]. Agents can traverse the system and
process tasks on each node, and hence they can simplify design of distributed systems.

The classical gathering problem is a fundamental problem for agents’ cooperation [1,6–10]. This problem requires all
agents to meet at a single node in finite time. The classical gathering problem is useful because, by meeting at a single
node, all agents can share information or synchronize behaviors among them.

In this paper, we consider a variant of the classical gathering problem, called the partial gathering problem [11]. The partial
gathering problem does not always require all agents to gather at a single node, but requires agents to gather partially at
several nodes. More precisely, we consider the problem which requires, for a given positive integer g , that each agent should
move to a node and terminate so that at least g agents should meet at each of the nodes they terminate at. We define this
problem as the g-partial gathering problem. From a practical point of view, the g-partial gathering problem is still useful
especially in large-scale network. When agents achieve the g-partial gathering, agents can share information and process
tasks among at least g agents. In addition, while in the classical gathering agents meet at a single node, in the g-partial
gathering agents meet at multiple nodes separately. This means that each group with at least g agents can partition the
network and own its area that they should monitor efficiently. The g-partial gathering problem is interesting to investigate
also theoretical point of view. Clearly, if k/2 < g ≤ k holds, the g-partial gathering problem is equivalent to the classical
gathering problem. On the other hand, if 2 ≤ g ≤ k/2 holds, the requirement for the g-partial gathering problem is weaker
than that for the classical gathering problem. Thus there exists possibility that the g-partial gathering problem can be solved
with fewer total moves (i.e., lower costs).

The g-partial gathering problem in unidirectional ring networks with whiteboards at nodes is studied in [11]. For distinct
agents (i.e., agents having distinct IDs), the paper proposes a deterministic algorithm to solve the g-partial gathering prob-
lem in O (gn) total moves without knowledge of k. For anonymous agents (i.e., agents having no IDs), the paper proposes a
randomized algorithm to solve the g-partial gathering problem in O (n log k + gn) expected total moves. Since the classical
gathering problem requires �(kn) total moves, these results show that the g-partial gathering problem can be solved in
fewer total moves compared to the classical gathering problem. Moreover, since the g-partial gathering problem requires
�(gn) total moves if g ≥ 2, the paper showed that the deterministic algorithm is asymptotically optimal in terms of total
moves.

In this paper, we consider the g-partial gathering problem for asynchronous tree networks for the case of 2 ≤ g ≤ k/2.
Since trees have lower symmetry than rings, we aim to solve the g-partial gathering problem in models weaker than the
whiteboard model previously considered in the ring scenario. The contribution of this paper is summarized in Table 1.
We consider two multiplicity detection models and two token models. Note that any combination of these multiplicity
detection models and token models is weaker than the whiteboard model. First, we consider the non-token model. In
this case, we show that agents require �(kn) total moves to solve the g-partial gathering problem even for the strong
multiplicity detection model. We omit this result in Table 1. Next, we consider the case of the weak multiplicity detection
and non-token model, where the weak multiplicity detection model assumes that each agent can detect whether another
agent exists at the current node or not but cannot count the exact number of the agents. In this case, for asymmetric trees,
by the result in [10] agents can achieve the g-partial gathering problem in O (kn) total moves. From the lower bound of
the total moves for non-token model, this algorithm is asymptotically optimal in terms of total moves. In addition, for that
case that the tree is symmetric and g ≥ 5 holds, we show that there exist no algorithms to solve the g-partial gathering
problem. Hence, we need to relax the restriction of either the multiplicity detection or the token model. Next, we consider

Table 1
Results in each model.

Model 1 (Section 4) Model 2
(Section 5)

Model 3
(Section 6)

Token model Non-token Non-token Removable-token
Multiplicity detection Weak Strong Weak
Tree topology Asymmetric Symmetric Arbitrary Arbitrary
Solvability Solvable Insolvable (g ≥ 5) Solvable Solvable
The total moves �(kn) [10] – �(kn) �(gn)

http://creativecommons.org/licenses/by/4.0/

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 11
the case that the restriction of the multiplicity detection is relaxed: the strong multiplicity detection and non-token model,
where the strong multiplicity detection model allows each agent to count the number of agents at the current node. In
this case, we propose a deterministic algorithm to solve the g-partial gathering problem in O (kn) total moves. From the
lower bound of the total moves for the non-token model, this algorithm is also asymptotically optimal in terms of the total
moves. Finally, we consider the case that the restriction of the token model is relaxed: the weak multiplicity detection
and removable-token model. In this case, we propose a deterministic algorithm to solve the g-partial gathering problem in
O (gn) total moves. This result shows that the total moves can be reduced by using tokens. Note that in this model, agents
require �(gn) total moves to solve the g-partial gathering problem. Hence, this algorithm is also asymptotically optimal in
terms of the total moves.

1.2. Related works

Many fundamental problems for cooperation of mobile agents have been studied in literature. For example, the searching
problem [2,5,12], the gossip problem [3], the election problem [13], the map construction problem [4], and the classical
gathering problem [1,8–10,14] have been studied.

In particular, the classical gathering problem has received a lot of attention and has been extensively studied in many
topologies, which include lines [15,16], trees [1,6–10,17], tori [1,18], arbitrary graphs [15,19,20] and rings [1,3,14,15,21].
Recently, the classical gathering problem for trees has been extensively studied because tree networks are utilized in a lot
of applications.

For example, Fraigniaud and Pelc [6] considered the gathering problem in tree networks for the first time. This algorithm
achieves the gathering for two synchronous agents with an arbitrary delay in starting time. The space complexity for each
agent is O (log n) bits, which is asymptotically optimal [7]. Later, they considered the space complexity for the case that
two synchronous agents start the algorithm at the same time [7]. In this case, they proposed an algorithm to achieve the
gathering for O (log l + log log n) memory per agent, where l is the number of leaves.

The time complexity required for two agents’ gathering in tree networks is considered in [8,9]. Czyzowicz et al. [8]
considered the trade-off between time and space complexities for two synchronous agents’ gathering for the case that
each agent has k ≥ c log n memory bits (c is some constant). In this case, they proposed an algorithm to solve the gathering
problem in O (n +n2/k) time, which is asymptotically optimal. Elouasbi and Pelc [9] considered the time complexity trade-off
between determinism and randomization. They proposed a deterministic algorithm for two synchronous agents’ gathering
in O (n) time. On the other hand, when agents know the maximum degree of the tree and the upper bound of the initial
distance between two agents, they proposed a randomized algorithm to achieve the two synchronous agents’ gathering with
high probability in O (log n) time.

Asynchronous gathering for two or more agents is considered in [10]. Baba et al. showed a lower bound of space com-
plexity for time-optimal algorithms, that is, they showed that each agent requires �(n) memory bits to solve the gathering
problem in O (n) time. In addition, they proposed a space-optimal algorithm to solve the gathering problem on the condition
that the time complexity is asymptotically optimal, that is, both the time complexity and the space complexity are O (n).

1.3. Organization

The paper is organized as follows. Section 2 presents the system model and the problem to be solved. In Section 3 we
show the lower bound of total moves for the non-token model. In Section 4 we consider the first model, that is, the weak
multiplicity detection and non-token model. In Section 5 we consider the second model, that is, the strong multiplicity
detection and non-token model. In Section 6 we consider the third model, that is, the weak multiplicity detection and
removable-token model. Section 7 concludes the paper.

2. Preliminaries

2.1. Network and agent model

A tree network T is a tuple T = (V , L), where V is a set of nodes and L is a set of communication links. We denote by n
(= |V |) the number of nodes. Let dv be the degree of v . We assume that nodes have no distinct IDs (i.e., are anonymous),
but each link l incident to v is uniquely labeled at v with a label chosen from the set {0, 1, . . . , dv − 1}. We call this label
port number. Since each communication link connects two nodes, it has two port numbers. However, port numbering is
local, that is, there is no coherence between the two port numbers. The path P (v0, vk) = (v0, v1, . . . , vk) with length k is
a sequence of nodes from v0 to vk such that {vi , vi+1} ∈ L (0 ≤ i < k) and vi �= v j if i �= j. Note that, for any u, v ∈ V ,
P (u, v) is unique in a tree. The distance from u to v is the length of the path from u to v . Next, we explain about center
nodes. Let us consider the following sequence of trees constructed recursively as follows: T0 = T and Ti+1 is obtained from
Ti by removing all its leaves. Let j be the minimum value such that T j has at most two nodes. Then, we call such nodes
center nodes. We use the following theorem about center nodes later.

Theorem 1. [22] There exist one or two center nodes in a tree. If there exist two center nodes, they are neighbors. �

12 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 1. Asymmetric and symmetric trees.

Next we define symmetry of trees, which is important to consider solvability in Section 4.

Definition 1. A tree T is symmetric iff there exists a function λ : V → V such that all the following conditions hold (see
Fig. 1):

• For any v ∈ V , v �= λ(v) holds.
• For any u, v ∈ V , u is adjacent to v iff λ(u) is adjacent to λ(v).
• For any link {u, v} ∈ L, the port number assigned to {u, v} at u is equal to the port number assigned to link {λ(u), λ(v)}

at λ(u).

When tree T is symmetric, we say nodes u and v in T are symmetric if u = λ(v) holds. When tree T is not symmetric, we
say tree T is asymmetric. �

There exist k agents on tree T , and let A = {a1, a2, . . . , ak} be the set of the agents. We assume that agents know neither
n nor k. We consider the strong multiplicity detection model and the weak multiplicity detection model. In the strong multiplicity
detection model, each agent can count the number of agents at the current node. In the weak multiplicity detection model,
each agent can recognize whether another agent stays at the same node or not, but cannot count the number of agents at
its current node. In both models, each agent cannot read the state of any other agent. Moreover, we consider the non-token
model and the removable-token model. In the non-token model, agents cannot mark the nodes or the edges in any way. In
the removable-token model, each agent initially leaves a token on its initial node at the beginning of the algorithm, and
agents can remove any owner’s token during the execution of the algorithm.

We assume that agents are anonymous (i.e., agents have no IDs) and execute a deterministic algorithm. We model an
agent as a finite state machine (S, δ, sinitial, s f inal). The first element S is the set of all states of agents, which includes
initial state sinitial and final state s f inal . When an agent changes its state to s f inal , the agent terminates the algorithm. The
second element δ is the state transition function. In the weak multiplicity detection and non-token model, δ is described as
δ : S × MT × R A → S × MT . In the definition, set MT = {⊥, 0, 1, . . . , � − 1} represents the agent’s movement, where � is
the maximum degree of the tree. In the left side of δ, the value of MT represents the port number assigned at the current
node to the link the agent used in entering the current node (The value is ⊥ in the first activation). In the right side of δ,
the value of MT represents the port number through which the agent leaves the current node to visit the next node. If the
value is ⊥, the agent does not move and stays at the current node. In this case, if the value of R A (explained in the next
sentence) changes from the previous movement, then the agent may change the value of MT and leave the current node.
In addition, R A = {0, 1} represents whether another agent stays at the current node or not. The value 0 represents that no
other agents stay at the current node, and the value 1 represents that another agent stays at the current node.

In the strong multiplicity detection and non-token model, δ is described as δ : S × MT × {0, 1, . . . , k − 1} → S × MT . In
the definition, {0, 1, . . . , k −1} represents the number of other agents at the current node. In the weak multiplicity detection
and removable-token model, δ is described as δ : S × MT × R A × RT → S × RT × MT . In the definition, in the left side of δ,
RT = {0, 1} represents whether a token exists at the current node or not. The value 0 of R T represents that there does not
exist a token at the current node, and the value 1 of RT represents that there exists a token at the current node. In the
right side of δ, RT = {0, 1} represents whether the agent removes a token at the current node or not. If the value of R T in
the left side is 1 and the value of RT in the right side is 0, it means that the agent removes a token at the current node.
Otherwise, it means that an agent does not remove a token at the current node. Note that, in both models, we assume that
each agent is not imposed any restriction on the memory.

During the execution of the algorithm, agents are located either on nodes or links. Each agent executes the following
three operations in an atomic step: 1) Agent ah reaches some node v , 2) agent ah executes local computation at v , and
3) agent ah leaves v or stays there. The local computation in the second action and the decision for the third action are
determined by the state transition function δ. In the local computation, agent ah executes the following operations: 1) Agent
ah obtains information about its local configuration (i.e., existence (resp. the number) of other agents at the current node v
in the weak (resp. strong) multiplicity model and the token state at v in the removable-token model), 2) agent ah executes
some computation at v , 3) agent ah decides whether ah removes the token or not for the case of the removable-token
model, 4) agent ah decides whether ah moves to the next node or not, and 5) agent ah decides the port number to leave
from (in the case that it decides to move). We assume ah completes possible local computation at each step, that is, at

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 13
the end of a step, ah either leaves v or decides to stay at v . If ah decides to stay at v , after the decision ah does nothing
(i.e., does not change its state, does not remove the token at v , or does not leave v) unless other agents change ah ’s local
configuration. Note that the above atomic actions can be easily implemented if each node has a buffer that stores agents
visiting the node and makes them execute processes in a FIFO order, and this assumption is very natural in a distributed
system. In addition we assume that agents move in the tree network in a FIFO manner, that is, when agent ah leaves some
node v j before another agent ai leaves v j through the same communication link as ah , then ah reaches v j ’s neighboring
node v ′

j before ai . Note that a FIFO assumption is known to be also natural in a distributed system.

2.2. System configuration

In the non-token model, (global) configuration c is defined as a product of states of agents, states of links, and locations
of agents. Here, the state of link (v j, v ′

j) is a sequence of agents that are in transit from v j to v ′
j in this order. In the

removable-token model, configuration c is defined as a product of states of agents, states of nodes (existence or nonexistence
of tokens), states of links, and locations of agents. Note that in both models, the locations of agents are either on nodes or
links. In addition, in the initial configuration c0, we assume that node v j has a token if there exists an agent at v j , and v j
does not have a token if there exists no agent at v j . Moreover in both models, we assume that no pair of agents stay at the
same node in the initial configuration c0, thus exactly k district nodes each have a token in c0.

When configuration ci changes to ci+1, a scheduler activates a non-empty set of agents, say Ai , and each agent in Ai

takes a step as mentioned before. We denote by such a transition ci
Ai−→ ci+1. We assume that the scheduler is fair, that is,

each agent is activated after a finite (unknown) amount of time and infinitely many times. In addition, we assume that if
the scheduler activates some agent a j that is 1) in a sequence of agents that are in transit in some link (vl ,v ′

l), but 2) not in
the head of the sequence, then a j does not take a step (i.e., does not reach v ′

l). Moreover, if several agents at the same node
are included in Ai , the scheduler activates the agents one by one in an arbitrary order. When Ai = A holds for every i, all
agents take steps every time. This model is called the synchronous model. Otherwise, the model is called the asynchronous
model. In this paper, we consider the asynchronous system.

If sequence of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1 (i ≥ 0), E is called an execution starting from c0. We

assume that any execution E is maximal in the sense that E is infinite, or ends in final configuration c f inal where every
agent’s state is s f inal .

2.3. Partial gathering problem

The requirement of the partial gathering problem is that, for a given positive integer g , each agent should move to a
node and terminate so that at least g agents should meet at the node. Formally, we define the g-partial gathering problem
as follows.

Definition 2. Execution E solves the g-partial gathering problem when the following conditions hold:

• Execution E is finite.
• In the final configuration, for any node v j such that there exists an agent on v j , there exist at least g agents on v j . �

For the g-partial gathering problem, we have the following lower bound on the total number of agents moves. Notice that
the lower bound result holds in any multiplicity detection model and any communication model (e.g., the removable-token
model).

Theorem 2. The total number of moves required to solve the g-partial gathering problem for tree networks is �(gn) if g ≥ 2.

Proof. We assume that k =
n/2� holds. Let us consider a line network such that
g/2� agents are placed at consecutive
nodes starting from one endpoint and the other k −
g/2� agents are placed at consecutive nodes starting from the other
endpoint. We call the
g/2� agents (resp., k −
g/2� agents) group G1 (resp., G2). Then, agents in G1 need to meet at the
same node with agents in G2. Let al ∈ G1 (resp., ar ∈ G2) be the agent located at the farthest node from the endpoint that
an agent in G1 (resp., G2) exists. Then, the distance between al and ar is at least
n/2�, and hence they requires at least

n/2� moves to meet at the same node v ′ . Similarly, in order for one agent in G1 and one agent in G2 to meet at v ′ , they
require at least
n/2� moves. This requires
g/2� ×
n/2� =
gn/4� moves. Thus, we have the theorem. �
3. Lower bound of the total moves for the non-token model

For the non-token model, we have the following lower bound of the total moves. This result holds even for the strong-
multiplicity detection model.

Theorem 3. In the non-token model, agents require �(kn) total moves to solve the g-partial gathering problem even if agents know k.

14 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 2. T and T ′ .

Proof. For simplicity, we show the theorem for the case of the weak-multiplicity model, and the following proof can be
similarly applied to the strong-multiplicity model. We show the theorem by contradiction, that is, we assume that there
exists an algorithm A to solve the g-partial gathering problem in o(kn) total moves. Let a local configuration of agent a
staying at node v be a boolean value indicating whether another agent stays at v or not. Then, we define a waiting state
of agents as follows: an agent a is in the waiting state at node v if a never leaves v before the local configuration of a
changes. Concretely, there are two cases. The first case is that, when a visits node v and enters a waiting state at v , there
exist no other agents at v . In this case, a neither changes its waiting state nor leaves v until another agent visits v . When
the scheduler activates a and a observes such an agent, a can break its waiting state and leave v . The second case is that,
when a visits v and enters a waiting state at v , there exists another agent at v . In this case, a neither changes its waiting
state nor leaves v until there are no other agents at v . When the scheduler activates a and a detects such a situation, a can
break its waiting state and can leave v .1

Let us consider the initial configuration c0 such that k agents are placed in tree T with n nodes. We claim that some
agent enters a waiting state in o(n) moves without meeting other agents. Consider the execution that repeats a phase in
which every agent not in a waiting state: 1) makes a movement, and 2) visits a node. Let ai be the first agent that enters
a waiting state in this execution. Then, ai does not meet other agents until it enters a waiting state. This is because, unless
each agent enters a waiting state, it moves in the tree and is never observed by other agents. If ai makes �(n) moves before
it enters a waiting state, each of the other agents makes �(n) moves. This implies the total number of moves is �(kn),
which contradicts to the assumption of A. Hence, ai enters a waiting state in o(n) moves without meeting other agents.
This implies there exists a node vx which ai does not visit before it enters a waiting state. Let v w be the node where ai is
placed in the initial configuration c0.

Next, we construct tree T ′ with kn′ + 1 nodes as follows: Let T 1, . . . , T k be k trees with the same topology as T and v j
x

(1 ≤ j ≤ k) be the node in T j corresponding to vx in T . Tree T ′ is constructed by connecting a new node v ′ to v j
x for every

j (Fig. 2). Let v j
w (1 ≤ j ≤ k) be the node in T j corresponding to v w in T . Consider the configuration c′

0 such that k agents
are placed at v1

w , v2
w , . . . , vk

w , respectively. Since agents do not have knowledge of n, each agent performs the same behavior
as ai in T (note that they do not visit v j

x). Hence, each agent placed in T j (1 ≤ j ≤ k) enters a waiting state without moving
out of T j . Thus, each agent enters a waiting state at different nodes and does not resume its execution. Therefore, algorithm
A cannot solve the g-partial gathering problem in T ′ . This is a contradiction. �
4. Weak multiplicity detection and non-token model

In this section, we consider the g-partial gathering problem for Model 1 in Table 1, that is, the weak multiplicity detec-
tion and non-token model. First, we consider the case for asymmetric trees. In this case, agents can achieve the classical
gathering in O (kn) total moves by the previous result in [10]. This result can be clearly applied to the g-partial gathering.
Hence, we have the following theorem.

Theorem 4. In the weak multiplicity detection and non-token model, agents solve the g-partial gathering problem in O (kn) total
moves for asymmetric trees. �

Next, we consider the case that the tree is symmetric and agents are placed symmetrically in the initial configuration.
In this case, we show that there exist no algorithms to solve the g-partial gathering problem if g ≥ 5 holds. We consider
the case such that in the initial configuration even agents are placed symmetrically in a symmetric tree, that is, if there
exists an agent at node v , there also exists an agent at node v ′ , where v and v ′ are symmetric. Then, we have the following
theorem.

1 The final state of an agent after gathering is a waiting state. Hence, the final state is a kind of the waiting state.

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 15
Theorem 5. Let us consider the initial configuration such that agents are placed symmetrically in a symmetric tree. Then, in the weak
multiplicity detection and non-token model, there exist no algorithms to solve the g-partial gathering problem if g ≥ 5 holds.

Proof. For contradiction, we assume that the g-partial gathering problem can be solved. We prove the theorem for the case
that g is an odd number (we can also prove the theorem similarly for the case that g is an even number). We assume
that the tree network is symmetric, and for any node v , we denote by v ′ the node symmetric to v . We consider the initial
configuration c0 such that 3g − 1 agents are placed symmetrically in the symmetric tree, that is, if there exists an agent
at v , there also exists an agent at v ′ . For any agent a located at a node v in c0, let a′ denote the agent that is located at
v ′ in c0. Note that since 2g < k = 3g − 1 < 3g holds, agents are allowed to meet at one or two nodes. Then, we have the
following lemma [6].

Lemma 1. Assume that each pair of nodes v1 and v ′
1 , v2 and v ′

2 , . . . vm and v ′
m is symmetric in tree T . If agents ai and a′

i (1 ≤ i ≤ m)
start an algorithm from vi and v ′

i , respectively, there exists an execution in which each pair acts in a symmetric manner even in an
asynchronous model. �

We consider a waiting state defined in Section 3. Then, the definition means that even when the local configuration of
some waiting agent changes, the agent does not change its state unless the scheduler activates the agent. Note that, if an
agent is staying at some node, then it is either in an initial state or a waiting state. Then, we have the following lemma
about a waiting state.

Lemma 2. At any node v j where at least three waiting agents exist, at least two of the agents never leave v j by the end of the algorithm.

Proof. We assume that agents a j
1, a

j
2, a

j
3 enter waiting states at v j in this order. Since a j

1 is the first agent that enters
a waiting state at v j , when a j

2 enters a waiting state at v j , the local configuration of a j
1 changes, and a j

1 can leave v j .
Since we consider the weak multiplicity detection model, even if a j

1 leaves v j , a j
2 and a j

3 cannot detect the fact and local
configurations of a j

2 and a j
3 do not change. Thus, agents a j

2 and a j
3 never leave v j . �

Let us consider a configuration such that there exist at least three nodes where there exist at least three waiting agents,
respectively. We call such a configuration a three-node three-waiting-agent configuration. Then in three-node three-waiting-
agent configurations, by Lemma 2 there exist at least three nodes where agents exist at the end of the algorithm execution.
In addition since agents are allowed to meet at one or two nodes because of k < 3g , agents cannot solve the g-partial
gathering problem when the system reaches a three-node three-waiting-agent configuration. This is the key idea of the
proof. We consider an adversarial scheduler such that once some agent enters a waiting state, the scheduler never activates
the agent until all agent enter waiting states. When all agents are in waiting states, we denote such a configuration by ct .
Note that ct is the configuration such that all agents’ states are waiting states and each agent enters a waiting state exactly
once. Then, the outline of the proof is described as follows. At first, we construct configuration ct by considering the adver-
sarial scheduler. Then, we consider the placement of waiting agents in ct and show the unsolvability in any placement. If
ct is a three-node three-waiting-agent configuration or a configuration such that there exists at most one waiting agent at
each node, we can clearly show that agents cannot solve the g-partial gathering problem. Otherwise, we show that, in any
placement of waiting agents in ct , there exists an execution by an adversarial scheduler such that the system reaches either
1) a three-node three-waiting-agent configuration, 2) a configuration such that there exists at most one waiting agent at
each node, or 3) a configuration such that there exist two nodes with agents but there exist at most g − 1 waiting agents
at one of them.

At first, we consider the execution until the system reaches the first configuration ct such that all agents are in waiting
states. We consider an execution Et under the following fair scheduler αt that makes agents’ movements as follows. First,
αt activates all agents once. This makes all agents leave their initial nodes and be in transit; otherwise all agents enter
waiting states at their initial nodes and cannot solve the g-partial gathering problem. Next, αt selects an agent a among
heads of FIFO sequences of transiting agents in links, and activates a and a′ at the same time where a′ is an agent whose
initial node is symmetric to that of a. By the definition of an atomic step, after a and a′ visit nodes and execute local
computation, they enter waiting states or leave the nodes. Similarly, αt continues to activate a pair of such symmetric
transiting agents at the same time. Eventually, all agents enter waiting states and they reach ct . Note that, in any algorithm,
each agent necessarily enters a waiting state in finite time (otherwise, if an agent never enters a waiting state, the agent
moves in the tree network forever). Hence, scheduler αt is fair because the system reaches configuration ct in finite number
of agents’ steps. Then, since agents are initially placed symmetrically and move symmetrically, it follows that if there exist
l waiting agents at a node v in ct , there also exist l waiting agents at node v ′ . Thus we can denote the nodes where agents
exist in ct by v1, . . . , vs, v ′

1, . . . , v
′
s . In addition, let Nl (resp., N ′

l) be the number of waiting agents at vl (resp., v ′
l) in ct .

Clearly, Nl = N ′
l (1 ≤ l ≤ s) and N1 + N2 +· · ·+ Ns = k/2 hold. Without loss of generality, we assume that N1 ≥ N2 ≥ · · · ≥ Ns

holds. Moreover, we assume that agents a j
1, a j

2, . . . , a
j
N j

(resp., a j′
1 , a j′

2 , . . . , a j′
N ′) enter waiting states at v j (resp., v ′

j) in this

j

16 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 3. Classification depending on values of N1 and N2 (N1 ≥ N2).

order. We consider the following eight cases depending on values of N1, N2, . . . , Ns (N ′
1, N

′
2, . . . , N

′
s), and show that agents

cannot solve the g-partial gathering problem in any case (contradiction). Fig. 3 represents the classification depending on
values of N1 and N2. In addition, Case 7 considers N1 = N2 = 2 and N3 = 1, and Case 8 considers N1 = N2 = N3 = 2.

〈Case 1: N2 ≥ 3 holds.〉
In this case, there exist at least three waiting agents at each of v1, v2, v ′

1 and v ′
2 (three-node three-waiting-agent configura-

tion). Hence from Lemma 2, there exist at least four nodes where agents exist at the end of algorithm execution. However,
since k = 3g − 1 holds, agents are allowed to meet at one or two nodes. This contradicts the assumption that agents can
solve the g-partial gathering problem.

〈Case 2: N1 = N2 = · · · = Ns = 1 holds.〉
In this case, there exist no nodes where more than one agents exist in ct . From the definition of a waiting state, the local
configuration of each agent does not change and each agent never leaves the current node. This contradicts the assumption.

Before considering Case 3, we introduce the notion of elimination. Let us select a set of agents Aelimi such that both
|Aelimi| ≤ g − 1 and Aelimi ⊆ {a j

i |1 ≤ j ≤ s, 2 ≤ i ≤ N j} ∪ {a j′
i |1 ≤ j′ ≤ s, 2 ≤ i ≤ N ′

j} hold. In addition, let celimi
0 be the con-

figuration obtained from c0 by eliminating all agents in Aelimi in c0. Moreover we define an execution Eelimi
t as follows:

When in Et the scheduler activates sets of agents A0, A1, . . . , At−1 in this order and the system reaches ct , then in Eelimi
t

the scheduler activates sets of agents A0 − Aelimi, A1 − Aelimi, . . . , At−1 − Aelimi in this order and the system reaches celimi
t .

Then, we have the following lemma.

Lemma 3. The locations and states of agents in A − Aelimi in celimi
t are the same as those in ct .

Proof. We prove the lemma for the case of |Aelimi | = 1. Then, we can similarly prove the lemma for the case |Aelimi | ≥ 2
by applying the following argument to each of Aelimi one by one. Let a j

i (2 ≤ i ≤ N j) be the unique agent in Aelimi . In this
case, we show that the locations and states of agents in A − Aelimi in celimi

l (0 ≤ l ≤ t) are equal to those in cl . At first, we
denote by cp the configuration in Et immediately after a j

i enters a waiting state at v j . Note that a j
i enters a waiting state

without being observed by any other agents. This is because 1) multiple agents do not exist at the same node in the initial
configuration, 2) by the definition of scheduler αt , a j

i leaves its initial node before any other agents visit the node, and
3) until cp , a j

i reaches some node v , executes local computation, and leaves v in an atomic step, that is, a j
i never waits at

any node before cp . In addition, in cp there already exist waiting agents a j
1, . . . , a

j
i−1. Moreover, we denote by cq (p < q) the

configuration in which some agent a visits v j for the first time after cp .

Now let us consider Eelimi
t . First we can show that, except for a j

i , the locations and states of agents in each of
celimi

0 , celimi
1 , . . . celimi

p in Eelimi
t are the same as those in each of c0, c1, . . . , cp in Et . This is because in Et , a j

i moves without
being observed by any other agents. Similarly, we can show that the locations and states of agents in each of celimi

p+1 , . . . , celimi
q−1

are the same as those except for a j
i in each of cp+1, . . . , cq−1. Next, we consider the locations and states of agents in celimi

q .
In celimi

q , some agent a visits v j and then there exist i − 1 waiting agents a j
1, . . . , a

j
i−1 at v j . On the other hand in cq , there

exist waiting agents a j
1, . . . , a

j
i at v j . Then, agent a cannot distinguish the difference between cq and celimi

q because i ≥ 2
holds and we consider the weak multiplicity detection model. Thus, agent a behaves in the same way as in Et and the
locations and states of agents in celimi

q are the same as those in cq , except for a j
i .

In the following, we show by induction that the locations and states of agents in each of celimi
q+1 , . . . , celimi

t are the same as

those except for a j
i in each of cq+1, . . . , ct . We assume that the locations and sates of agents in each of celimi

r (q +1 ≤ r ≤ t −1)

are the same as those except for a j in each of cr . Then, in celimi
t if there exists no agent that visits v j , the locations and
i

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 17
states of agents in celimi
r+1 in Eelimi

r+1 are the same as those in each of cr+1 in Et . This is because between cr and cr+1 in Et , a j
i

stays at v j and it is never observed by agents except for agents already staying at v j . In celimi
r+1 if there exists some agent a

that visits v j , there exist i′ (i′ ≥ i) waiting agents at v j . Then, agent a cannot distinguish the difference between cr+1 and
celimi

r+1 because i′ ≥ 2 holds and we consider the weak multiplicity detection model. Hence, agent a behaves in the same way
as in Et and the locations and states of agents in celimi

r+1 are the same as those in cr+1, except for a j
i . Thus, we can show that

the locations and states of agents in each of celimi
q+1 , . . . , celimi

t are also the same as those except for a j
i in each of cq+1, . . . , ct .

Therefore, the locations and states of agents in A − Aelimi in celimi
t are equal to those in ct , and we have the lemma. �

By Lemma 3 and the fact that in ct all agents are in waiting states, we can clearly show that in celimi
t all agents are in

waiting states. We use this lemma to show the contradiction in the remaining cases.2

〈Case 3: N1 ≥ 3 and N2 = 2 hold.〉
In this case, there exist three waiting agents a1

1, a1
2, and a1

3 (a1′
1 , a1′

2 , and a1′
3 , respectively) at v1 (v ′

1), and agents a1
2 and a1

3

(a1′
2 and a1′

3 , respectively) never leave v1 (v ′
1) by Lemma 2. Since k = 3g − 1 holds and agents are allowed to meet at one

or two nodes, all agents must meet at v1 or v ′
1.

Now let us consider the initial configuration celimi
0 obtained from c0 by eliminating agents a2

2 and a2′
2 . Then from

Lemma 3, there exists an execution Eelimi
t from celimi

0 to celimi
t , where there exists exactly one waiting agent a2

1 (a2′
1) at v2

(v ′
2) in celimi

t . In this configuration, agents a2
1 and a2′

1 need to meet at v1 or v ′
1. To do this, it is necessary that some agent

enters a waiting state at v2 and v ′
2 in order to make a2

1 and a2′
1 observe changes of local configurations and leave there.

We consider an execution Eelimi
x under the scheduler αelimi

x deciding agents and their behavior as follows. Let b1, . . . , bh

(b′
1, . . . , b

′
h) be the sequence of agents such that 1) b1 (b′

1) is an agent that can leave the current node in celimi
t , 2) bi (b′

i)
(2 ≤ i ≤ h − 1) is an agent in the waiting state at some node vbi (v ′

bi) where no other agents exist (note that bi can leave
vbi when bi−1 arrives at vbi and enters a waiting state), and 3) bh (b′

h) is an agent in the waiting state at v2 (v ′
2), that is,

bh = a2
1 (b′

h = a2′
1). Then in αelimi

x , agents b j and b′
j (1 ≤ j ≤ h − 1) are activated at the same time, and behave symmetrically.

Finally, agents bh−1 and b′
h−1 enter waiting states at v2 and v ′

2, respectively. We call such a configuration celimi
x . An example

is shown in Fig. 4. In the figure, we assume that agents a2
2 and a2′

2 of the dotted lines are eliminated. In addition, the black
agents a1

2, a
1
3, a

1′
2 , and a1′

3 never leave the current nodes by the end of the algorithm. In Fig. 4, agents a1
1 and a1′

1 move sym-

metrically and enter waiting states at v3 and v ′
3, respectively (Fig. 4 (b)). After this, agents a3

1 and a3′
1 move symmetrically

and enter waiting states at v2 and v ′
2, respectively (Fig. 4 (c) to Fig. 4 (d)).

Now, let us consider ct . In ct , there exist two waiting agents a2
1 and a2

2 (a2′
1 and a2′

2 , respectively) at v2 (v ′
2). In addition,

since a2
1 (a2′

1) is the first agent that enters a waiting state at v2 (v ′
2), a2

1 (a2′
1) can leave v2 (v ′

2). However we consider
the execution Ex similarly to Eelimi

x , that is, agents b1 and b′
1, b2 and b′

2, . . . , bh−1 and b′
h−1 are activated and behave

symmetrically in this order, while agents a2
1 and a2′

1 are not activated. Finally, agents bh−1 and b′
h−1 enter waiting states

at v2 and v ′
2, respectively. We call such a configuration cx .3 Then in cx , there exist three waiting agents a2

1, a
2
2, and bh−1

(a2′
1 , a2′

2 , and b′
h−1, respectively) at v2 (v ′

2), and agents a2
2 and bh−1 (a2′

2 and b′
h−1, respectively) never leave v2 (v ′

2) by
Lemma 2. For example in Fig. 4, agents a1

1 and a1′
1 move symmetrically and enter waiting states at v3 and v ′

3, respectively
(Fig. 4 (e) to Fig. 4 (f)). After this, agents a3

1 and a3′
1 move symmetrically and enter waiting states at v2 and v ′

2, respectively
(Fig. 4 (g) to Fig. 4 (h)). Then there exist three waiting agents a2

1, a2
2, and a3

1 (a2′
1 , a2′

2 , and a3′
1 , respectively) at v2 (v ′

2), and
agents a2

2 and a3
1 (a2′

2 and a3′
1 , respectively) never leave the current node by Lemma 2. Note that, agents a1

2, a
1
3, a

1′
2 and a1′

3
also never leave the current nodes v1 and v ′

1. Thus in cx , there exist four nodes where agents exist and never leave the
current nodes (three-node three-waiting-agent configuration), which is a contradiction.

From Case 4 to Case 6, we consider cases that there exist at least two waiting agents a1
1 and a1

2 (a1′
1 and a1′

2 , respectively)
at v1 (v ′

1), and there exists at most one waiting agent at the other nodes.

〈Case 4: 2 ≤ N1 ≤ (g + 1)/2 and N2 = 1 hold.〉
In this case, we consider the initial configuration celimi

0 obtained from c0 by eliminating agents a1
2, . . . , a

1
N1

, a1′
2 , . . . , a1′

N ′
1
. Note

that, the number of eliminated agents a1
2, . . . , a1

N1
, a1′

2 , . . . , a1′
N ′

1
is 2N1 − 2 ≤ g − 1 since N1 ≤ (g + 1)/2 holds. Then from

Lemma 3, there exists an execution Eelimi
t from celimi

0 to celimi
t , where there exists at most one waiting agent at each node in

celimi
t . This configuration is the same as the Case 2 and agents cannot solve the g-partial gathering problem.

2 From Case 6 to Case 8, we consider a configuration obtained from c0 by eliminating at least four agents, and we cannot apply this way for the case of
2 ≤ g ≤ 4.

3 Execution Ex is fair because the system reaches configuration cx in finite number of agents’ steps. Similarly, we can show that schedulers or executions
we consider in the rest of this section are fair.

18 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 4. An example of Case 3.

〈Case 5: (g + 3)/2 ≤ N1 ≤ g and N2 = 1 hold.〉
In this case, we consider the initial configuration celimi

0 obtained from c0 by eliminating agents a1
2, . . . , a

1
N1

. Note that, the
number of eliminated agents a1

2 . . . , a1
N1

is N1 − 1 ≤ g − 1 since N1 ≤ g holds. Then from Lemma 3, there exists an execution
Eelimi

t from celimi
0 to celimi

t , where there exist N ′
1 waiting agents at v ′

1 and at most one waiting agent at the other nodes in
celimi

t . Since agents are allowed to meet at one or two nodes and only a1′
1 can leave the current node v ′

1 in this configuration,
it is necessary that agent a1′

1 firstly leaves v ′
1 and enters a waiting state at some node where a waiting agent exists to make

the waiting agent leave there. Without loss of generality, we assume that a1′
1 enters a waiting state at v ′

j where waiting

agent a j′
1 exists. We call such a configuration celimi

x and define Eelimi
x as an execution from celimi

t to celimi
x . Moreover after this,

agents need to make the configuration such that some agent a′ enters a waiting state at v j in order to meet there or make
agent a j

1 leave there. We call such a configuration celimi
y and define Eelimi

y as an execution from celimi
x to celimi

y . For example in
Fig. 5, agent a1′

1 moves and enters a waiting state at v3′ (Fig. 5 (a) to Fig. 5 (b)), and after this, agent a3′
1 moves and enters

a waiting state at v3 (Fig. 5 (c)).
Now let us consider ct . In ct , agents a1

1 and a1′
1 can leave the current nodes and the other agents cannot leave the current

nodes. Then we consider an execution Ex under the fair scheduler αx , where a1
1 and a1′

1 are activated at the same time,
behave symmetrically and enter waiting states at v j and v ′

j , respectively. We call such a configuration cx . Then, the local

configurations of a j
1 and a j′

1 change and they can leave v j and v ′
j , respectively. However, we consider the execution E y

similarly to Eelimi
y , that is, agent a j′

1 leaves v ′
j and some agent a′ enters a waiting state at v j , while a j

1 is not activated.

Then there exist three waiting agents a j
, a1, and a′ at v j , and agents a1 and a′ never leave v j by Lemma 2. For example
1 1 1

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 19
Fig. 5. An example of Case 5.

in Fig. 5, agents a1
1 and a1′

1 move and enter waiting states at v3 and v ′
3, respectively (Fig. 5 (d) to Fig. 5 (e)). After this,

agent a3′
1 leaves v ′

3 and enters a waiting state at v3 (Fig. 5 (f)). Then there exist three waiting agents a3
1, a1

1, and a3′
1 at v3,

and agents a1
1 and a3′

1 never leave v3. Note that, agents a1
2, a

1
3, a

1′
2 and a1′

3 also never leave the current nodes v1 and v ′
1.

Thus in c y , there exist three nodes where agents exist at the end of algorithm execution (three-node three-waiting-agent
configuration), which is a contradiction.

〈Case 6: N1 ≥ g + 1 and N2 = 1 hold.〉
In this case, agents are allowed to meet at v1 or v ′

1. As a way to satisfy this, we consider an execution Ex from ct to cx ,
where each agent moves symmetrically until they enter waiting states at v1 or v ′

1 in cx . Then, there exist (3g − 1)/2 agents
at v1 and v ′

1, respectively.
Now let us consider the initial configuration celimi

0 obtained from c0 by eliminating agents a1
4, . . . , a

1
4+(g+1)/2−1. Then from

Lemma 3, there exists an execution Eelimi
t from celimi

0 to celimi
t , where there exist N1 − (g + 1)/2 waiting agents at v1, N ′

1
(= N1) waiting agents at v ′

1, and at most one waiting agent at the other nodes in celimi
t . Moreover we consider the execution

Eelimi
x similarly to Ex , and we define celimi

x as the configuration that all agents meet at v1 or v ′
1. Then since (g + 1)/2 agents

a1
4, . . . , a

1
4+(g−1)/2−1 are eliminated, the number of agents that meet at v1 is (3g − 1)/2 − (g + 1)/2 = g − 1. This contradicts

that agents can solve the g-partial gathering problem.

In the Cases 7 and 8, we consider the case that there exist at most two waiting agents at each node.

〈Case 7: N1 = N2 = 2 and N3 = 1 hold.〉
In this case, there are two waiting agents at v1, v2, v ′

1, and v ′
2, and at most one waiting agent at the other nodes in ct . Now

we consider the initial configuration celimi obtained from c0 by eliminating agents a1, a2, a1′
, and a2′

. Then from Lemma 3,
0 2 2 2 2

20 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 6. An example of Case 8.

there exists an execution Eelimi
t from celimi

0 to celimi
t , where there exists at most one waiting agent at each node in celimi

t . This
configuration is the same as the Case 2 and agents cannot solve the g-partial gathering problem.

〈Case 8: N1 = N2 = N3 = 2 holds.〉
In this case, there are two waiting agents at v1, v2, v3, v ′

1, v
′
2, and v ′

3 in ct . Now we consider the initial configuration celimi
0

obtained from c0 by eliminating agents a2
2, a

3
2, a

2′
2 , and a3′

2 . Then from Lemma 3, there exists an execution Eelimi
t from celimi

0

to celimi
t , where there exist two waiting agents a1

1 and a1
2 (a1′

1 and a1′
2 , respectively) at v1 (v ′

1) and one waiting agent at
v2, v3, v ′

2, and v ′
3, respectively. In this configuration, it is necessary that some agent enters a waiting state at v2, v3, v ′

2 and
v ′

3 in order to meet there or to make the waiting agents leave the current nodes. Without loss of generality, we assume that
at first some agents enter waiting states at v2 and v ′

2, respectively. After this, we assume that some agents enter waiting
states at v3 and v ′

3, respectively. To do this, we consider an execution Eelimi
x under the scheduler αelimi

x similarly to Case 3.
That is, there exist the sequence of agents b1, . . . , bh (b′

1, . . . , b
′
h) such that agent bh (b′

h) is in the waiting state at v2 (v ′
2).

Then in αelimi
x , agents b j and b′

j (1 ≤ j ≤ h − 1) are activated at the same time, behave symmetrically, and enter waiting
states at vb(j+1) and v ′

b(j+1)
, respectively. Remind that at node vb(j+1) , there exists a waiting agent b(j+1) . Then, local

configurations of agents b j+1 and b′
j+1 change. Finally, agents bh−1 and b′

h−1 enter waiting states at v2 and v ′
2, respectively.

We call such a configuration celimi
x . Then, local configurations of a2

1 and a2′
1 change and they can leave the current nodes.

For example in Fig. 6, agent a1
1 (a1′

1) leaves v1 (v ′
1) and directly enters a waiting state at v2 (v ′

2) (Fig. 6 (a) to Fig. 6 (b)).
Moreover after celimi

x , we consider an execution Eelimi
y under the scheduler αelimi

y similarly to αelimi
x , that is, there exists the

sequence of agents d1, . . . , di (d′
1, . . . , d

′
i) such that agent di (d′

i) is in the waiting state at v3 (v ′
3). Then in αelimi

y , agents
d j and d′ (1 ≤ j ≤ i − 1) are activated at the same time, behave symmetrically, and enter waiting states at vd(j+1) and
j

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 21
v ′
d(j+1)

, respectively. Note that at node vd(j+1) , we assume that there exists a waiting agent d j+1. Then, local configurations
of agents d j+1 and d′

j+1 change. Finally, agents di−1 and d′
i−1 enter waiting states at v3 and v ′

3, respectively. We call such a
configuration celimi

y . For example in Fig. 6, agent a2
1 (a2′

1) leaves v2 (v ′
2) and directly enters a waiting state at v3 (v ′

3) (Fig. 6
(b) to Fig. 6 (c)).

Now let us consider ct . In ct , agents a1
1, a

2
1, a

3
1, a

1′
1 , a2′

1 and a3′
1 can leave the current nodes. However we consider the

execution Ex similarly to Eelimi
x , that is, agents b1 and b′

1, b2 and b′
2, . . . , bh−1 and b′

h−1 are activated and behave symmet-

rically in this order, while agents a2
1 and a2′

1 are not activated. Finally, agents bh−1 and b′
h−1 enter waiting states at v2 and

v ′
2, respectively. We call such a configuration cx . Then there exist three waiting agents a2

1, a
2
2, and bh−1 (a2′

1 , a2′
2 , and b′

h−1,
respectively) at v2 (v ′

2), and a2
2 and bh−1 (a2′

2 and b′
h−1, respectively) never leave the current node. For example in Fig. 6,

agent a1
1 (a1′

1) leaves v1 (v ′
1) and directly enters a waiting state at v2 (v ′

2) (Fig. 6 (d) to Fig. 6 (e)). Then there exist three
waiting agents a2

1, a
2
2, and a1

1 (a2′
1 , a2′

2 , and a1′
1 , respectively) at v2 (v ′

2), and a2
2 and a1

1 (a2′
2 and a1′

1 , respectively) never leave
the current node. Moreover after this, we consider the execution E y similarly to Eelimi

y , that is, agents d1 and d′
1, d2 and d′

2,
. . . , di−1 and d′

i−1 are activated and behave symmetrically in this order, while agents a3
1 and a3′

1 are not activated. Finally,
agents bi−1 and b′

i−1 enter waiting states at v3 and v ′
3, respectively. We call such a configuration c y . Then there exist three

waiting agents a3
1, a

3
2, and di−1 (a3′

1 , a3′
2 , and d′

i−1, respectively) at v3 (v ′
3), and a3

2 and di−1 (a3′
2 and d′

i−1, respectively) never
leave the current node. For example in Fig. 6, agent a2

1 (a2′
1) leaves v2 (v ′

2) and directly enters a waiting state at v3 (v ′
3)

(Fig. 6 (e) to Fig. 6 (f)). Then there exist three waiting agents a3
1, a

3
2, and a2

1 (a3′
1 , a3′

2 , and a2′
1 , respectively) at v3 (v ′

3), and
a3

2 and a2
1 (a3′

2 and a2′
1 , respectively) never leave the current node. Thus in c y there exist four nodes where agents exist at

the end of algorithm execution (three-node three-waiting-agent configuration). This contradicts that agents can solve the
g-partial gathering problem.

Therefore, we have the theorem. �
5. Strong multiplicity detection and non-token model

In this section, we consider a deterministic algorithm to solve the g-partial gathering problem for Model 2 in Table 1,
that is, the strong multiplicity detection and non-token model. We propose a deterministic algorithm to solve the g-partial
gathering problem in O (kn) total moves. Recall that, in the strong multiplicity detection model, each agent can count the
number of agents at the current node.

At the beginning, each agent performs a basic walk [9]. In the basic walk, each agent ah leaves the initial node through
the port 0. Later, when ah visits a node v j through the port p of v j , ah leaves v j through the port (p + 1) mod dv j . The
basic walk allows each agent to traverse the tree in the DFS-traversal. Hence, when each agent visits nodes 2(n −1) times, it
visits all the nodes and returns to the initial node. Remind that nodes are anonymous and agents do not know the number
n of nodes. However, if an agent records the topology of the tree it ever visits, it can detect that it visits all the nodes
and returns to the initial node. Concretely, in the DFS-traversal, every time each agent ah visits a node for the first time,
it obtains the port number used to enter and pushes it a stack. When ah leaves the current node through the port p, it
compares p with the number p′ in the head of the stack. If p = p′ holds, ah removes p′ from the stack and this means that
ah moves closer to its initial node. Otherwise, it means that ah moves further from its initial node. When ah visits some
node and the stack becomes empty, it means that ah returns to its initial node. Moreover, if there exists no port p incident
to its initial node such that ah does not leave its initial node through p, it can detect that it observed all the nodes in the
tree.

The idea of the algorithm is as follows: First, each agent performs the basic walk until it obtains the whole topology of
the tree. Next, each agent computes a center node of the tree and moves there to meet other agents. If the tree has exactly
one center node, then each agent moves to the center node and terminates the algorithm. If the tree has two center nodes,
then each agent moves to one of the center nodes so that at least g agents meet at each center node. Concretely, agent ah
first moves to the closer center node v j . If there exist at most g − 1 agents except for ah , then ah terminates the algorithm
at v j . Otherwise, ah moves to another center node v j′ and terminates the algorithm.

The pseudocode is described in Algorithm 1. We have the following theorem.

Theorem 6. In the strong multiplicity detection and non-token model, agents solve the g-partial gathering problem in O (kn) total
moves.

Proof. At first, we show the correctness of the algorithm. From Algorithm 1, if the tree has one center node, agents go to
the center node and agents solve the g-partial gathering problem obviously. Otherwise, each agent ah first moves to one
of the center nodes. If there already exist g or more agents at the center node, ah moves to the other center node. Since
k ≥ 2g holds, agents can solve the g-partial gathering problem.

Next, we analyze the total number of moves. At first, agents perform the basic walk and record the topology of the tree.
This requires at most 2(n −1) total moves for each agent. Next, each agent moves to one of the center nodes, and terminates

22 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Algorithm 1 The behavior of active agent ah (v j is the current node of ah).
Main Routine of Agent ah

1: perform the basic walk until it obtains the whole topology of the tree
2: if there exists exactly one center node then
3: go to the center node via the shortest path and terminate the algorithm
4: else
5: go to the closest center node via the shortest path
6: if there exist at most g − 1 agents except for ah then
7: terminate the algorithm
8: else
9: move to the other center node

10: terminate the algorithm
11: end if
12: end if

the algorithm. This requires at most n
2 + 1 moves for each agent. Hence, each agent requires O (n) total moves. Therefore,

agents require O (kn) total moves. �
6. Weak multiplicity detection and removable-token model

In this section, we consider the g-partial gathering problem for Model 3 in Table 1, that is, the weak multiplicity de-
tection and removable-token model. We show that agents can achieve the g-partial gathering in asymptotically optimal
total moves (i.e., O (gn)) by using only one removable token of each agent. Recall that, in the removable-token model, each
agent has a token. In the initial configuration, each agent leaves a token at the initial node. We define a token node (resp.,
a non-token node) as a node that has a token (resp., does not have a token). In addition, when an agent visits a token node,
the agent can remove the token.

The idea of the algorithm is similar to [11], which considers the g-partial gathering problem for distinct agents (i.e.
having IDs) in unidirectional ring networks with whiteboards. The algorithm in [11] consists of two parts: the leader election
and leaders’ instructions. In the first part, agents execute the leader agent election partially using their IDs and whiteboards.
Then, there exist at least g − 1 non-leader agents between two leader agents. In the second part, each leader agent moves
in the ring and instructs non-leader agents which node they should meet at by using whiteboards. After this, non-leader
agents move to their gathering nodes by the instruction. When applying the above idea to the model in this section, there
exist two problems. The first is the difference of network topology, that is, [11] considers unidirectional ring networks but in
this paper we consider tree networks. The second is the difference of agents’ and nodes’ ability, that is, in [11] agents have
distinct IDs and each node has a whiteboard but in this paper agents have no IDs and each node is allowed to only have at
most one removable token. The first problem is solved by embedding the unidirectional ring in the tree network, and we
explain this in the next paragraph. The second problem is solved by the combination of port numbers and removable-tokens,
and we explain this in Section 6.1 and 6.2.

Now, we explain the way to embed the ring from the tree network. Agents perform the basic walk and embed a unidi-
rectional ring network in the tree network by the Euler tour technique. Concretely, letting v0, v1, . . . , v2(n−1) (= v0) be the
node sequence such that agent ah visits the nodes in this order in the basic walk starting at v0, we can regard that ah moves
in the unidirectional ring network with 2(n − 1) nodes. Later, we call this ring the virtual ring. In the virtual ring, we define
the direction from vi to vi+1 as a forward direction, and the direction from vi+1 to vi as a backward direction. For simplicity
in the virtual ring, operations to an index of a node assume calculation under modulo 2(n − 1), that is, v(i+1) mod 2(n−1) is
simply represented by vi+1. In addition in the virtual ring, we define the neighboring agent of ah as the first agent in ah ’s
forward (backward) direction, i.e., there exist no agents between them. Moreover, when ah visits a node v j through a port
p of v j from a node v j−1 in the virtual ring, agents also use p as the port number of (v j−1, v j) at v j . For example, let us
consider a tree in Fig. 7 (a). Agent ah performs the basic walk and visits nodes a, b, c, b, d, b in this order. Then, the virtual
ring of Fig. 7 (a) is shown in Fig. 7 (b). Each number in Fig. 7 (b) represents the port number through which ah visits each
node in the virtual ring. Next, we define a token node in a virtual ring. At the beginning of the algorithm, each agent ah
leaves its token node through the port 0 in the basic walk. Thus, when ah visits some token node in the tree such that ah
leaves there through the port 0 in the next movement, that is, when ah visit some token node v j through the port (dv j −1),
ah regards the node as the token node in the virtual ring. In Fig. 7 (a), if nodes a and b are token nodes, then in Fig. 7 (b),
nodes a and b′′ are token nodes. By this definition, a token node in the tree network is mapped to exactly one token node
in the virtual ring. Thus, by performing the basic walk, we can regard that all agents move in the same virtual ring although
agents start the algorithm at different nodes. This is because the virtual ring starting at some node in the tree is actually
represented by a port sequence P , and the virtual ring starting at other nodes in the same tree can be represented by the
cyclic transformation of P . In Fig. 7, the virtual ring starting at ah ’s initial node is represented by 001020. On the other
hand, the virtual ring starting at another token node b is represented by 000102, and this sequence can be also represented
by the cyclic transformation of 001020. Moreover, in the virtual ring, each agent also moves in a FIFO manner, that is, when
an agent ah leaves some node v j before another agent ai , ah arrives at v j+1 before ai .

In the following section, we explain the algorithm on the virtual ring. Note that we can show the asymptotical equiv-
alence in terms of total moves between a tree and a virtual ring, because a tree with n nodes is regarded as a virtual

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 23
Fig. 7. An example of the basic walk.

ring with 2n − 1 nodes. The algorithm consists of two parts. In the first part, agents elect some leader agents by partially
executing the leader agent election algorithm. In the second part, the leader agents instruct the other agents which node
they should meet at, and the other agents move to the node.

6.1. The first part: leader election

In this section, we explain how to elect multiple leader agents. Note that, in this part no token is removed. In the leader
agent election, each agent takes a state from the following three states:

• active: The agent is performing the leader agent election as a candidate for leaders.
• inactive: The agent has dropped out from the set of the leader candidates.
• leader: The agent has been elected as a leader.

The aim of the first part is similar to [11], that is, to elect some leaders and satisfy the following two properties: 1) At
least one agent is elected as a leader, and 2) in the virtual ring, there exist at least g − 1 inactive agents between two leader
agents.

At first, we explain the idea of the leader election in [11] to adopt it in this paper. In [11], the network is a unidirectional
ring, each agent is distinct, and each node has a whiteboard. First, we explain the idea under the assumption that the ring
is bidirectional for intuitively understanding. Later, we apply the idea to the unidirectional ring. The algorithm consists of
several phases. In each phase, each active agent compares its own ID with IDs of its forward and backward neighboring
active agents. More concretely, each active agent writes its ID on the whiteboard of its current node, and then moves
forward and backward to observe IDs of the forward and backward active agents. If its own ID is the smallest among the
three agents, the agent remains active (as a candidate for leaders) in the next phase. Otherwise, the agent drops out from
the candidate for the set of leader candidates and becomes inactive. Note that, in each phase, neighboring active agents
never remain as candidates for leaders. Hence at least half of the currently active agents become inactive in each phase,
that is, the number of inactive agents between two active agents at least doubles in each phase. Then from [23], after
executing j phases, there exists at least 2 j − 1 inactive agents between two active agents. Thus, after executing �log g�
phases, the following properties are satisfied: 1) At least one agent remains as a candidate for leaders, and 2) the number
of inactive agents between two active agents is at least g − 1. Therefore, all the remaining active agents become leaders.

Next, we implement the above algorithm in asynchronous unidirectional rings by using a traditional approach [23]. Let
us consider active agent ah . In unidirectional rings, ah cannot move backward or observe the ID of its backward active agent.
Instead, ah moves forward until it observes IDs of two active agents. Then, ah observes IDs of three successive active agents.
We assume ah observes id1, id2, id3 in this order. Note that id1 is the ID of ah . Here this situation is similar to that in which
the active agent with ID id2 observes id1 as its backward active agent and id3 as its forward active agent in a bidirectional
ring. For this reason, ah behaves as if it would be an active agent with ID id2 in the bidirectional ring. That is, if id2 is the
smallest among the three IDs, ah remains active as a candidate for leaders. Otherwise, ah drops out from the set of leader
candidates and becomes inactive.

In the following, we explain the way to apply the above leader election to anonymous agents in the weak multiplicity
detection and removable-token model. First, we explain the treatment about IDs. For explanation, let active nodes be nodes
where active agents start execution of each phase. In this section, agents use virtual IDs in the virtual ring. Concretely, when
agent ah moves from an active node v j to v j ’s forward active node v j′ , ah observes port sequence p1, p2, . . . pl , where
pm is the port number at v j+m through which ah visits the m-th node v j+m after leaving v j . In this case, ah uses this
port sequence p1, p2, . . . pl as its virtual ID. For example, in Fig. 7 (b), when ah moves from a to b′′ , ah observes the port

24 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
Fig. 8. An example that agents observe the same port sequence.

numbers 0, 0, 1, 0, 2 in this order. Hence, ah uses 00102 as a virtual ID from a to b′′ . Similarly, ah uses 0 as a virtual ID
from b′′ to a. Note that, multiple agents may have the same virtual IDs, and we explain the behavior in this case later. Next,
we explain the treatment of whiteboards by using removable tokens. Fortunately, we can easily overcome this problem if
agents can detect active nodes. Concretely, each active agent ah moves until ah visits three active nodes. Then, ah observes
its own virtual ID, the virtual ID of ah ’s forward active agent ai , and the virtual ID of ai ’s forward active agent a j . Thus,
ah can obtain three virtual IDs id1, id2, id3 without using whiteboards. Therefore, agents can use the above approach for a
unidirectional ring, that is, ah behaves as if it would be an active agent with ID id2 in a bidirectional ring. In the rest of this
paragraph, we explain how agents detect active nodes. In the beginning of the algorithm, each agent starts the algorithm
at a token node and all token nodes are active nodes. After each agent ah visits three active nodes, ah decides whether ah

remains active or drops out from the set of leader candidates at the active (token) node. If ah remains active, then ah starts
the next phase and leaves the active node. Thus, in some phase, when some active agent ah visits a token node v j where
no agents exist, ah knows that ah visits an active node and the other nodes are not active in the phase.

After observing three virtual IDs id1, id2, id3, each active agent ah compares virtual IDs by the lexicographical order
and decides whether ah remains active (as a candidate for leaders) in the next phase or not. Different from [11], multiple
agents may have the same IDs. To treat this case, if id2 < min(id1, id3) or id2 = id3 < id1 holds, then ah remains active
as a candidate for leaders. Otherwise, ah becomes inactive and drops out from the set of leader candidates. For example,
let us consider the initial configuration of Fig. 8 (a). In the figure, black nodes are token nodes and the numbers near
communication links are port numbers. The virtual ring of Fig. 8 (a) is shown in Fig. 8 (b). For simplicity, we omit non-token
nodes in Fig. 8 (b). The numbers in Fig. 8 (b) are virtual IDs. Each agent ah continues to move until ah visits three active
nodes. By the movement, a1 observes three virtual IDs (01, 01, 01), a2 observes three virtual IDs (01, 01, 1000101010), a3
observes three virtual IDs (01, 1000101010, 01), and a4 observes three virtual IDs (1000101010, 01, 01), respectively. Thus,
a4 remains as a candidate for leaders, and a1, a2, and a3 drop out from the set of leader candidates. Note that, like Fig. 8, if
an agent observes the same virtual IDs three times, it drops out from the set of leader candidates. This implies, if all active
agents have the same virtual IDs, all agents become inactive. However, we can show that, when there exist at least three
active agents, it does not happen that all active agents observe the same virtual IDs. Thus in each phase, at least the half
of active agents become inactive, and we show this later (Lemma 5). Moreover, if there are only one or two active agents
in some phase, then the agents notice the fact during the phase. In this case, the agents immediately become leaders. By
executing �log g� phases, agents complete the leader agent election.

Pseudocode. The pseudocode to elect leaders is given in Algorithm 2. All agents start the algorithm with active states. The
pseudocode describes the behavior of active agent ah , and v j represents the node where agent ah currently stays. If agent
ah becomes inactive or a leader, ah immediately moves to the next part and executes the algorithm for an inactive state or
a leader state in Section 6.2. In Algorithm 2, ah uses the following variables:

• id1, id2, and id3 are variables for storing three virtual IDs.
• phase is a variable for storing its own phase number.

In Algorithm 2, each active agent ah moves until ah observes three virtual IDs and decides whether ah remains active as
a candidate for leaders or not on the basis of the virtual IDs. Note that, since each agent moves in a FIFO manner, it does
not happen that some active agent passes another active agent in the virtual ring, and each active agent correctly observes
three neighboring virtual IDs in the phase. In Algorithm 2, ah uses procedure NextActive(), by which ah moves to the next
active node and returns the port sequence as a virtual ID. The pseudocode of NextActive() is described in Procedure 1. In
NextActive, ah uses the following variables:

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 25
Algorithm 2 The behavior of active agent ah (v j is the current node of ah).
Variables for Agent ah

int phase = 0;
int id1, id2, id3;
Main Routine of Agent ah

1: phase = phase + 1
2: id1 = Next Active()
3: id2 = Next Active()
4: id3 = Next Active()
5: if the number of active agents in the tree is two or less then
6: change its state to a leader state
7: break Algorithm 2
8: end if
9: if (id2 < min(id1, id3))∨(id2 = id3 < id1) then

10: if (phase = �log g�) then
11: change its state to a leader state
12: break Algorithm 2
13: else
14: go to line 1
15: end if
16: else
17: change its state to an inactive state
18: end if

Procedure 1 int NextActive() (v j is the current node of ah).
Variables for Agent ah

array port[];
int move;
Behavior of Agent ah

1: move = 0
2: leave v j through the port 0

// arrive at the forward node and v j is updated
3: let p be the port number through which ah visits v j

4: port[move] = p
5: move = move + 1
6: while (there does not exist a token) ∨

(p �= dv j − 1) ∨ (there exists another agent) do
7: leave v j through the port (p + 1) mod dv j

// arrive at the forward node and v j is updated
8: let p be the port number through which ah visits v j

9: port[move] = p
10: move = move + 1
11: end while
12: return port[]

• port is an array for storing a virtual ID.
• move is a variable for storing the number of nodes it visits.

During the basic walk, each active agent visits active node v j through the port (dv j − 1). Thus, when agent ah leaves active
node v j , it always uses the port 0 (line 2 in Procedure 1).

Note that, if there exist only one or two active agents in some phase, then the agent travels once around the virtual ring
before getting three virtual IDs. In this case, the active agent knows that there exist at most two active agents in the phase
and they become leaders (lines 5 to 8 in Algorithm 2). To do this, agents record the topology every time they visit nodes,
but we omit the description of this behavior in Algorithm 2 and Procedure 1.

First, we show the following lemma to show that at least one agent remains active or becomes a leader in each phase.

Lemma 4. When there exist three or more active agents, there exist two active agents having different virtual IDs.

Proof. To show the lemma, we use the theorem from [5]. Let t[1..q] be a port sequence that an agent observes in visiting q
nodes by performing the basic walk. In our algorithm, t[1..q] corresponds to port[] (described in Procedure 1) and represents
a virtual ID that the agent gets in traverse from an active node to the next active node. Moreover, (t[1..q])k denotes the
concatenation of k copies of t[1..q]. If t[1..q] = (t[1..q′])k holds some positive integers q′ and k (q = q′k), we call t[1..q] is
periodic. Otherwise, we call t[1..q] is aperiodic. In addition, the length of an n-node tree T is the length of its Euler tour,
that is, 2(n − 1). Then, we use the following theorem.

Theorem 7. [5] Let T be a tree of length at least q ≥ 1. Assume that t[1..q] is aperiodic and t[1..kq] = (t[1..q])k for some k ≥ 3. Then
one of the following three cases must hold.

26 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
1. The length of T is q.
2. The length of T is 2q.
3. The length of T is greater than kq. �

We show the lemma by contradiction, that is, assume that there exist k′ ≥ 3 active agents in some phase and all the
k′ active agents have the same virtual IDs. Let x be the virtual ID. Then, t[1..|x|] = x holds. In addition, when each active
agent moves in the tree and observes one virtual ID x, each link in the virtual link is passed by exactly once. Hence,
t[(�|x| + 1)..(� + 1)|x|] = x holds (0 ≤ � ≤ k′ − 1) and t[1..k′|x|] = (t[1..|x|])k′

holds. Moreover, in this case the total number
of their moves (i.e., k′|x|) is equal to the length of the tree. If x is aperiodic, the length of the tree is k′|x|. However from
Theorem 7, the length of the tree is never k′|x|, which is a contradiction. If x is periodic, t[1..|x|] = (t[1..|x′|])s holds for
some x′ and s (x′ is aperiodic). Then, t[1..k′|x|] = t([1..|x′|])k′s holds and the length of the tree is k′s|x′|(= k′|x|). However,
from Theorem 7, the length of the tree is never k′s|x′|, which is also a contradiction. �

Next, we have the following lemmas about Algorithm 2.

Lemma 5. Algorithm 2 eventually terminates, and satisfies the following two properties.

• There exists at least one leader agent.
• In the virtual ring, there exist at least g − 1 inactive agents between two leader agents.

Proof. We show the lemma in the virtual ring. Obviously, Algorithm 2 eventually terminates. In the following, we show the
above two properties.

At first, we show that there exists at least one leader agent. From lines 5 to 7 of Algorithm 2, when there exist only
one or two active agents in some phase, the agents become leaders. We assume that in some phase, active agent ah
observes three IDs ah.id1, ah.id2, and ah.id3 in this order. When there are three or more active agents in some phase, if
ah.id2 < min(ah.id1, ah.id3) or ah.id2 = ah.id3 < ah.id1 holds, agent ah remains as a candidate for leaders, and otherwise ah
drops out from the set of leader candidates. Thus, unless all agents observe the same virtual IDs, at least one agent remains
active as a candidate for leaders. From Lemma 4, it does not happen that all agents observe the same virtual IDs. Therefore,
there exists at least one leader agent.

Next, we show that there exist at least g − 1 inactive agents between two leader agents in the virtual ring. At first, we
show that in each phase, at least half of active agents become inactive. In each phase, if ah .id2 < min (ah.id1, ah.id3) or
ah.id2 = ah.id3 < ah.id1 holds, ah remains as a candidate for leaders. If the agent ah satisfies ah.id2 < min(ah.id1, ah.id3),
then the ah ’s backward and forward active agents drop out from the set of leader candidates. In the following, we consider
the case that agent ah satisfies ah.id2 = ah.id3 < ah.id1. Let ah′ be a ah ’s backward active agent and ah′′ be a ah ’s forward
active agent. Agent ah′ observes three virtual IDs ah′ .id1, ah′ .id2, ah′ .id3, and both ah′ .id2 = ah.id1 and ah′ .id3 = ah.id2 hold.
Hence, ah′ .id2 > ah′ .id3 holds, and ah′ drops out from the set of leader candidates. Next, ah′′ observes three virtual IDs
ah′′ .id1, ah′′ .id2, ah′′ .id3, and both ah′′ .id1 = ah.id2 and ah′′ .id2 = ah.id3 hold. Since ah′′ .id1 = ah′′ .id2 holds, ah′′ does not satisfy
the condition to remain as a candidate for leaders and drops out from the candidate. Thus in each phase, at least half of
active agents drop out from the set of leader candidates and become inactive. Now, we show that there exist at least g − 1
inactive agents between two leader agents. We firstly show that after executing j phases, there exist at least 2 j − 1 inactive
agents between two active agents. We show this by induction. For the case of j = 1, there exists at least 21 − 1 = 1 inactive
agent between two active agents as mentioned above. For the case of j = k, we assume that there exist at least 2k − 1
inactive agents between two active agents. After executing k + 1 phases, since at least one of neighboring active agents
becomes inactive, the number of inactive agents between two active agents is at least (2k − 1) + 1 + (2k − 1) = 2k+1 − 1.
Hence, after executing j phases, there exist at least 2 j − 1 inactive agents between two active agents. Therefore, after
executing �log g� phases, there exist at least g − 1 inactive agents between two leader agents in the virtual ring. �
Lemma 6. Algorithm 2 requires O (n log g) total moves.

Proof. In the virtual ring, each active agent moves until it observes three virtual IDs in each phase. This requires at most
O (n) total moves because each communication link of the virtual ring is passed by at most three agents (including the same
agent if only one or two active agents exist) and the length of the ring is 2(n − 1). Since agents execute �log g� phases, we
have the lemma. �
6.2. The second part: leaders’ instruction and agents’ movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-partial gathering by using the elected
agents. Let leader nodes (resp., inactive nodes) be the nodes where agents become leaders (resp., inactive agents). Note that
all leader nodes and inactive nodes are token nodes. In this part, each agent takes one of the following three states:

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 27
Fig. 9. Partial gathering in the removable-token model for the case of g = 3 (a1 and a2 are leaders, and black nodes are token nodes).

• leader: The agent instructs inactive agents where they should move.
• inactive: The agent waits for the leader’s instruction.
• moving: The agent moves to its gathering node.

We explain the idea of the algorithm in the virtual ring. The basic movement is also similar to [11], that is, to divide
agents into groups each of which consists of at least g agents. While in [11], each node has a whiteboard, in this section
each node is allowed to only have a removable token. Each leader agent ah moves to the next leader node, and during the
movement ah repeats the following behavior: ah removes tokens of inactive nodes g − 1 times consecutively and then ah
does not remove a token of the next inactive node. The behavior guarantees that at least g − 1 agents exist between any
two token nodes when all the leaders complete the behavior. After that, agents move to the nearest token nodes, which
guarantees that at least g agents meet at each token node.

First, we explain the behavior of leader agents. Whenever leader agent ah visits an inactive node v j , it counts the number
of inactive nodes (including the current node) that ah has visited. If the number plus one is not a multiple of g , ah removes
a token at v j . Otherwise, ah does not remove the token and continues to move. Agent ah continues this behavior until ah
visits the next leader node v j′ (Later, explain how ah detects whether it visits the next leader node v j′ or not). After that,
ah removes a token at v j′ . When all the leaders complete this behavior, there exist at least g − 1 inactive agents between
two token nodes. Hence, agents solve the g-partial gathering problem by moving to the nearest token node (This is done by
changing their states to moving states). For example, let us consider the configuration of Fig. 9 (a) (g = 3). We assume that
a1 and a2 are leader agents and the other agents are inactive agents. In Fig. 9 (b), a1 visits node v2 and a2 visits node v4,
respectively. The number near each node represents the number (modulo g) of inactive nodes that a1 or a2 has ever visited.
Then, agents a1 and a2 remove tokens at v1 and v3, and do not remove tokens at v2 and v4, respectively. After that, a1 and
a2 continue this behavior until they visit the next leader nodes. At the leader nodes, they remove the tokens (Fig. 9 (c)).

When a token at v j is removed, an inactive agent at v j changes its state to a moving state and starts to move. Concretely,
each moving agent moves to the nearest token node v j . Note that, since each agent moves in a FIFO manner, it does not
happen that a moving agent passes a leader agent and terminates at some token node before the leader agent removes the
token. After all agents complete their own movements, the configuration changes from Fig. 9 (c) to Fig. 9 (d) and agents can
solve the g-partial gathering problem. Note that, since each agent moves in the same virtual ring in a FIFO manner, it does
not happen that an active agent executing the leader agent election passes a leader agent and that a leader agent passes an
active agent.

Pseudocode. In the following, we show the pseudocode of the algorithm. The pseudocode of leader agents is described
in Algorithm 3. Variable tCount is used to count the number of inactive nodes ah has ever visited. When ah visits a token
node v j where another agent exists, v j is an inactive node because an inactive agent becomes inactive at a token node and
agents move in a FIFO manner. Whenever each leader agent ah visits an inactive node, ah increments the value of tCount .
At inactive node v j , ah removes a token at v j if tCount �= g − 1 (does not remove a token otherwise) and continues to move
(lines 5 to 9). This guarantees that, if a token at inactive node v j is not removed, at least g agents meet at v j . When ah
removes a token at v j , an inactive agent at v j changes its state to a moving state (line 7). When ah visits a token node v j′
where no agents exist, v j′ is the next leader node. This is because token nodes are leader nodes or inactive nodes, and from
an atomicity of the execution there exist no agents at each leader node. Note that also from an atomicity of the execution, it
does not happen that some leader agent visits a leader node v such that another agent becomes a leader at v but still stays
at v . When leader agent ah moves to the next leader node v j′ , ah removes a token at v j′ and changes its state to a moving
state. In Algorithm 3, ah uses the procedure NextToken() to move to the next token node. The pseudocode of NextToken()
is described in Procedure 2. In Procedure 2, ah performs the basic walk until ah visits a token node v j through the port
(dv j − 1).

28 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
The pseudocode of inactive agents is described in Algorithm 4. Inactive agent ah waits at v j until either a token at v j
is removed or ah observes another agent. If the token is removed, ah changes its state to a moving state (lines 4 to 6). If
ah observes another agent, the agent is a moving agent and terminates the algorithm at v j (lines 7 to 9). This means v j
is selected as a token node where at least g agents meet at the end of the algorithm. Hence, ah terminates the algorithm
at v j .

The pseudocode of moving agents is described in Algorithm 5. In the virtual ring, each moving agent ah moves to the
nearest token node by using NextToken().

Algorithm 3 The behavior of leader agent ah (v j is the current node of ah).
Variable in Agent ah

int tCount = 0;
Main Routine of Agent ah

1: NextToken()
2: while there exists another agent at v j do
3: //this is an inactive node
4: tCount = (tCount + 1) mod g
5: if tCount �= g − 1 then
6: remove a token at v j

7: //an inactive agent at v j changes its state to a moving state
8: end if
9: NextToken()

10: end while
11: remove a token at v j // this is a leader node
12: change its state to a moving state

Procedure 2 void NextToken() (v j is the current node of ah).
1: leave v j through the port 0

// arrive at the forward node and v j is updated
2: let p be the port number through which ah visits v j

3: while (there does not exist a token) ∨ (p �= dv j − 1) do
4: leave v j through the port (p + 1) mod dv j

// arrive at the forward node and v j is updated
5: let p be the port number through which ah visits v j

6: end while

Algorithm 4 The behavior of inactive agent ah (v j is the current node of ah).
Main Routine of Agent ah

1: while (there does not exist another agent at v j)∨(there exists a token at v j) do
2: wait at v j

3: end while
4: if there exists another agent at v j then
5: terminate the algorithm
6: end if
7: if there does not exist a token then
8: change its state to a moving state
9: end if

Algorithm 5 The behavior of moving agent ah (v j is the current node of ah).
Main Routine of Agent ah

1: NextToken()
2: terminate the algorithm

We have the following lemma about the algorithms.

Lemma 7. After the leader agent election, agents solve the g-partial gathering problem in O (gn) total moves.

Proof. We show the lemma in the virtual ring. At first, we show the correctness of the proposed algorithms. Let
v g

0 , v g
1 , . . . , v g

l be inactive nodes that still have tokens after all leader agents complete their behaviors, and we call these
nodes gathering nodes. From Algorithm 3, each leader agent ah removes the tokens at the consecutive g − 1 inactive nodes
and does not remove the token at the next inactive node. By this behavior and Lemma 5, there exist at least g − 1 moving

M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30 29
agents between v g
i and v g

i+1. Moreover, these moving agents move to the nearest gathering node v g
i+1. Therefore, agents

solve the g-partial gathering problem.
In the following, we evaluate the total number of moves required for the algorithms. At first, let us consider the total

number of moves required for leader agents to move to the next leader nodes. This requires 2(n − 1) total moves since
all leader agents travel once around the virtual ring. Next, let us consider the total number of moves required for moving
(inactive) agents to move to the nearest token nodes (For example, the total number of moves form Fig. 9 (c) to Fig. 9 (d)).
From Algorithm 5, each moving agent moves to the nearest gathering node. In the following, we show that the number
of moving agents between some gathering node v g

i and its forward gathering node v g
i+1 is O (g). From Algorithm 3, the

moving agents between v g
i and v g

i+1 consist of inactive agents and leader agents between v g
i and v g

i+1. Since there exists
at least one gathering node between two leader nodes, there exists at most one leader node between v g

i and v g
i+1. If there

exist no leader node between v g
i and v g

i+1, then clearly there exist g − 1 inactive nodes between v g
i and v g

i+1. If there exists
one leader node vl between v g

i and v g
i+1, there exist at most g − 1 inactive nodes between v g

i and vl , and at most g − 1

inactive nodes between vl and v g
i+1, respectively. Thus, there exist at most O (g) moving agents between gathering nodes

v g
i and v g

i+1, and the total number of moves required for moving (inactive) agents to move to the nearest gathering nodes
is at most O (gn) since each communication link is passed by at most O (g) times.

Therefore, we have the lemma. �
From Lemma 6 and Lemma 7, we have the following theorem.

Theorem 8. In the weak multiplicity detection and the removable-token model, our algorithm solves the g-partial gathering problem
in O (gn) total moves. �
7. Conclusion

In this paper, we considered the g-partial gathering problem in asynchronous tree networks. At first, in the non-token
model we showed that agents require �(kn) total moves to solve the g-partial gathering problem. After this, we considered
three model variants. First, in the weak multiplicity detection and non-token model, for asymmetric trees agents can solve
the g-partial gathering problem in O (kn) total moves by the previous result in [10], and we showed that there exist no
algorithms to solve the g-partial gathering problem for symmetric trees. Second, in the strong multiplicity detection and
non-token model, we proposed a deterministic algorithm to solve the g-partial gathering problem in O (kn) total moves.
Finally, in the weak multiplicity detection and removable-token model, we proposed a deterministic algorithm to solve the
g-partial gathering problem in O (gn) total moves.

Open problems are as follows. The first is to consider the weak multiplicity detection and non-token model for symmetric
trees (the same model as in Section 4) when the locations of agents are asymmetric or 2 ≤ g ≤ 4 holds. We conjecture that,
even in this case, the g-partial gathering problem is not solvable by the similar discussion in Section 4. The second is to
consider the g-partial gathering problem in general networks. We conjecture that in this model, the g-partial gathering
problem can be solved efficiently in terms of total moves by the similar way to Section 6, that is, agents execute the leader
agent election partially and elected leaders instruct non-leaders gathering nodes.

References

[1] E. Kranakis, D. Krozanc, E. Markou, The Mobile Agent Rendezvous Problem in the Ring, Synthesis Lectures on Distributed Computing Theory, vol. 1,
2010, pp. 1–122.

[2] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Mobile search for a black hole in an anonymous ring, Algorithmica 48 (1) (2007) 67–90.
[3] T. Suzuki, T. Izumi, F. Ooshita, H. Kakugawa, T. Masuzawa, Move-optimal gossiping among mobile agents, Theoret. Comput. Sci. 393 (1) (2008) 90–101.
[4] J. Chalopin, S. Das, A. Kosowski, Constructing a map of an anonymous graph: applications of universal sequences, in: Proc. of the 12th International

Conference on Principles of Distributed Systems, in: LNCS, vol. 6490, 2010, pp. 119–134.
[5] L. Gasieniec, A. Pelc, T. Radzik, X. Zhang, Tree exploration with logarithmic memory, in: Proc. of the 18th Annual ACM–SIAM Symposium on Discrete

Algorithms, 2007, pp. 585–594.
[6] P. Fraigniaud, A. Pelc, Deterministic rendezvous in trees with little memory, in: Proc. of the 22nd International Symposium on Distributed Computing,

in: LNCS, vol. 6950, 2008, pp. 242–256.
[7] P. Fraigniaud, A. Pelc, Delays induce an exponential memory gap for rendezvous in trees, ACM Trans. Algorithms 9 (2) (2013) 17.
[8] J. Czyzowicz, A. Kosowski, A. Pelc, Time vs. space trade-offs for rendezvous in trees, in: Proc. of the 24th ACM Symposium on Parallelism in Algorithms

and Architectures, 2012, pp. 1–10.
[9] S. Elouasbi, A. Pelc, Time of anonymous rendezvous in trees: determinism vs. randomization, in: Proc. of the 19th International Colloquium on Struc-

tural Information and Communication Complexity, in: LNCS, vol. 7355, 2012, pp. 291–302.
[10] D. Baba, T. Izumi, F. Ooshita, H. Kakugawa, T. Masuzawa, Linear time and space gathering of anonymous mobile agents in asynchronous trees, Theoret.

Comput. Sci. 478 (2013) 118–126.
[11] M. Shibata, S. Kawai, F. Ooshita, H. Kakugawa, T. Masuzawa, Algorithms for partial gathering of mobile agents in asynchronous rings, in: Proc. of the

16th International Conference on Principles of Distributed Systems, in: LNCS, vol. 7702, 2012, pp. 254–268.
[12] S. Dobrev, P. Flocchini, G. Prencipe, N. Santoro, Multiple agents rendezvous in a ring in spite of a black hole, in: Proc. of the 8th International Conference

on Principles of Distributed Systems, in: LNCS, vol. 3144, 2004, pp. 34–46.
[13] L. Barriere, P. Flocchini, P. Fraigniaud, N. Santoro, Rendezvous and election of mobile agents: impact of sense of direction, Theory Comput. Syst. 40 (2)

(2007) 143–162.

http://refhub.elsevier.com/S0304-3975(17)30678-3/bib676174686572696E67s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib676174686572696E67s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib626C61636B31s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4D72732E53757A756B69s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4D617031s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4D617031s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib54726565536561726368s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib54726565536561726368s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib6C6974746C654D656D6F7279s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib6C6974746C654D656D6F7279s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib6D656D6F727947617054726565s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656531s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656531s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656532s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656532s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656533s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib5472656533s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4F706F646973s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4F706F646973s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib626C61636B32s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib626C61636B32s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib646972656374696F6Es1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib646972656374696F6Es1

30 M. Shibata et al. / Theoretical Computer Science 705 (2018) 9–30
[14] S. Kawai, F. Ooshita, H. Kakugawa, T. Masuzawa, Randomized rendezvous of mobile agents in anonymous unidirectional ring networks, in: Proc. of the
19th International Colloquium on Structural Information and Communication Complexity, in: LNCS, vol. 7355, 2012, pp. 303–314.

[15] G.D. Marco, L. Gargano, E. Kranakis, D. Krizanc, A. Pelc, U. Vaccaro, Asynchronous deterministic rendezvous in graphs, Theoret. Comput. Sci. 355 (3)
(2005) 315–326.

[16] S. Guilbault, A. Pelc, Gathering asynchronous oblivious agents with restricted vision in an infinite line, in: Proc. of the 15th International Symposium
on Stabilization, Safety, and Security of Distributed Systems, in: LNCS, vol. 8255, 2013, pp. 296–310.

[17] A. Collins, J. Czyzowicz, L. Gasieniec, A. Kosowski, R. Martin, Synchronous rendezvous for location-aware agents, in: Proc. of the 25th International
Symposium on Distributed Computing, in: LNCS, vol. 6950, 2011, pp. 447–459.

[18] E. Kranakis, D. Krizanc, E. Markou, Mobile agent rendezvous in a synchronous torus, in: Proc. of the 8th Latin American Theoretical Informatics, in:
LNCS, vol. 3887, 2006, pp. 653–664.

[19] S. Guilbault, A. Pelc, Asynchronous rendezvous of anonymous agents in arbitrary graphs, in: Proc. of the 32nd International Symposium on Distributed
Computing, in: LNCS, vol. 7109, 2011, pp. 421–434.

[20] Y. Dieudonne, A. Pelc, D. Peleg, Gathering despite mischief, in: Proc. of the 23nd Annual ACM–SIAM Symposium on Discrete Algorithms, 2012,
pp. 527–540.

[21] P. Flocchini, E. Kranakis, D. Krizanc, F.L. Luccio, N. Santoro, C. Sawchuk, Mobile agents rendezvous when tokens fail, in: Proc. of the 11th International
Colloquium on Structural Information and Communication Complexity, in: LNCS, vol. 3104, 2004, pp. 161–172.

[22] N. Santoro, Determining topology information in distributed networks, in: Proc. of the 11th Southeaster Conference on Combinatorics, Graph Theory
and Computing, 1980, pp. 869–878.

[23] G.L. Peterson, An O (n log n) unidirectional algorithm for the circular extrema problem, ACM Trans. Program. Lang. Syst. 4 (4) (1982) 758–762.

http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4D722E4B61776169s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4D722E4B61776169s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib46697273744173796E6368726F6E6F7573s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib46697273744173796E6368726F6E6F7573s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib726F626F7431s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib726F626F7431s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4C6F636174696F6E4177617265s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib4C6F636174696F6E4177617265s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib746F6B656E33s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib746F6B656E33s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib41726269747261727931s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib41726269747261727931s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib42797A616E74696E65s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib42797A616E74696E65s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib746F6B656E34s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib746F6B656E34s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib63656E746572s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib63656E746572s1
http://refhub.elsevier.com/S0304-3975(17)30678-3/bib506572746572736F6Es1

	Move-optimal partial gathering of mobile agents in asynchronous trees
	1 Introduction
	1.1 Background and our contribution
	1.2 Related works
	1.3 Organization

	2 Preliminaries
	2.1 Network and agent model
	2.2 System conﬁguration
	2.3 Partial gathering problem

	3 Lower bound of the total moves for the non-token model
	4 Weak multiplicity detection and non-token model
	5 Strong multiplicity detection and non-token model
	6 Weak multiplicity detection and removable-token model
	6.1 The ﬁrst part: leader election
	6.2 The second part: leaders' instruction and agents' movement

	7 Conclusion
	References

