3,354 research outputs found

    On the influence of geometry updating on modal correlation of brake components.

    Get PDF
    In most industries dealing with vibration, test/analysis correlation of modal properties is considered a key aspect of the design process. The success of test/analysis methods however often show mixed results. The aim of this paper is to assess and answer some classical correlation problems in structural dynamics. First an investigation of correlation problems from tests is proposed. Tools based on the modal assurance criterion are presented to provide a deeper analysis of correlation and results improvement. In a second part, the need of FEM topology correlation and update is demonstrated, using an efficient morphing technique. Tolerances in the manufacturing process that are well accepted in design and production stages are shown to lead to significant degradation of the test/analysis correlation. An application to an industrial brake part is eventually presented, in an approach of correlation procedure automatization for recurrent use

    Gradient-Based Multi-Component Topology Optimization for Manufacturability

    Full text link
    Topology optimization is a method where the distribution of materials within a design domain is optimized for a structural performance. Since the geometry is represented non-parametrically, it facilitates innovative designs through the exploration of arbitrary shapes. Due to its unconstrained exploration, however, topology optimization often generates impractical designs with features that prevent economical manufacturing, e.g., complex perimeters and many holes. Above all, existing topology optimization methods assume that the optimized structure will be made as a single piece. However, structures are usually not monolithic (i.e., single-piece), but assemblies of multiple components, e.g., cars, airplanes, or even chairs. It is mainly because producing multiple components with simple geometries is often less expensive (i.e., better manufacturability) than producing a large single-piece part with complex geometries, even with the additional cost of assembly. This dissertation discussed a topology optimization method for designing structures assembled from components, each built by a certain manufacturing process, termed the MTO. The prior art of MTO used discrete formulations solved by genetic algorithms. To overcome the high computational cost associated with non-gradient heuristic optimization, this dissertation proposed a continuously relaxed gradient-based formulation for MTO. The proposed formulation was demonstrated with three manufacturing processes. For the sheet metal stamping process, by modeling stamping die cost manufacturing constraints and assuming resistant spot welding joints, the simultaneous optimization of base topology and component decomposition was, for the first time, attained using an efficient gradient-based optimization algorithm based on design sensitivities. For the composite manufacturing process, a cube-to-simplex projection and penalization method was proposed to handle the membership unity requirement. With the multi-component concept, a unique structural design solution for economical composite manufacturing was achieved. The component-wise anisotropic material orientation design for topology optimization was presented without prescribing a set of alternative discrete angles as required by most existing material orientation methods. For the additive manufacturing process, the MTO method enabled the design of additively manufactured structures larger than the printer's build volume. By modeling manufacturing constraints on the build volume limit and elimination of enclosed holes, the optimized structure was an assembly of multiple components, each produced by a powder bed additive manufacturing machine. The first reported 3D example of MTO was presented.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145989/1/yuqingz_1.pd

    On the influence of geometry updating on modal correlation of brake components.

    Get PDF
    In most industries dealing with vibration, test/analysis correlation of modal properties is considered a key aspect of the design process. The success of test/analysis methods however often show mixed results. The aim of this paper is to assess and answer some classical correlation problems in structural dynamics. First an investigation of correlation problems from tests is proposed. Tools based on the modal assurance criterion are presented to provide a deeper analysis of correlation and results improvement. In a second part, the need of FEM topology correlation and update is demonstrated, using an efficient morphing technique. Tolerances in the manufacturing process that are well accepted in design and production stages are shown to lead to significant degradation of the test/analysis correlation. An application to an industrial brake part is eventually presented, in an approach of correlation procedure automatization for recurrent use

    Compliant Mechanism Synthesis Using Nonlinear Elastic Topology Optimization with Variable Boundary Conditions

    Full text link
    In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are often difficult to find manually. This substantially limits topology optimization's effectiveness for many mechanism design problems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize a variety of compliant mechanisms with large output displacements, snap-through responses, and prescribed output paths, producing designs with significantly improved performance in every case tested. Compared to optimal designs generated using best-guess boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases ranging from 23%-430%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition locations and that effective placements can be difficult to find without an automated method.Comment: 30 pages, 14 figures, 4 table

    Validação de heterogeneidade estrutural em dados de Crio-ME por comitês de agrupadores

    Get PDF
    Orientadores: Fernando José Von Zuben, Rodrigo Villares PortugalDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Análise de Partículas Isoladas é uma técnica que permite o estudo da estrutura tridimensional de proteínas e outros complexos macromoleculares de interesse biológico. Seus dados primários consistem em imagens de microscopia eletrônica de transmissão de múltiplas cópias da molécula em orientações aleatórias. Tais imagens são bastante ruidosas devido à baixa dose de elétrons utilizada. Reconstruções 3D podem ser obtidas combinando-se muitas imagens de partículas em orientações similares e estimando seus ângulos relativos. Entretanto, estados conformacionais heterogêneos frequentemente coexistem na amostra, porque os complexos moleculares podem ser flexíveis e também interagir com outras partículas. Heterogeneidade representa um desafio na reconstrução de modelos 3D confiáveis e degrada a resolução dos mesmos. Entre os algoritmos mais populares usados para classificação estrutural estão o agrupamento por k-médias, agrupamento hierárquico, mapas autoorganizáveis e estimadores de máxima verossimilhança. Tais abordagens estão geralmente entrelaçadas à reconstrução dos modelos 3D. No entanto, trabalhos recentes indicam ser possível inferir informações a respeito da estrutura das moléculas diretamente do conjunto de projeções 2D. Dentre estas descobertas, está a relação entre a variabilidade estrutural e manifolds em um espaço de atributos multidimensional. Esta dissertação investiga se um comitê de algoritmos de não-supervisionados é capaz de separar tais "manifolds conformacionais". Métodos de "consenso" tendem a fornecer classificação mais precisa e podem alcançar performance satisfatória em uma ampla gama de conjuntos de dados, se comparados a algoritmos individuais. Nós investigamos o comportamento de seis algoritmos de agrupamento, tanto individualmente quanto combinados em comitês, para a tarefa de classificação de heterogeneidade conformacional. A abordagem proposta foi testada em conjuntos sintéticos e reais contendo misturas de imagens de projeção da proteína Mm-cpn nos estados "aberto" e "fechado". Demonstra-se que comitês de agrupadores podem fornecer informações úteis na validação de particionamentos estruturais independetemente de algoritmos de reconstrução 3DAbstract: Single Particle Analysis is a technique that allows the study of the three-dimensional structure of proteins and other macromolecular assemblies of biological interest. Its primary data consists of transmission electron microscopy images from multiple copies of the molecule in random orientations. Such images are very noisy due to the low electron dose employed. Reconstruction of the macromolecule can be obtained by averaging many images of particles in similar orientations and estimating their relative angles. However, heterogeneous conformational states often co-exist in the sample, because the molecular complexes can be flexible and may also interact with other particles. Heterogeneity poses a challenge to the reconstruction of reliable 3D models and degrades their resolution. Among the most popular algorithms used for structural classification are k-means clustering, hierarchical clustering, self-organizing maps and maximum-likelihood estimators. Such approaches are usually interlaced with the reconstructions of the 3D models. Nevertheless, recent works indicate that it is possible to infer information about the structure of the molecules directly from the dataset of 2D projections. Among these findings is the relationship between structural variability and manifolds in a multidimensional feature space. This dissertation investigates whether an ensemble of unsupervised classification algorithms is able to separate these "conformational manifolds". Ensemble or "consensus" methods tend to provide more accurate classification and may achieve satisfactory performance across a wide range of datasets, when compared with individual algorithms. We investigate the behavior of six clustering algorithms both individually and combined in ensembles for the task of structural heterogeneity classification. The approach was tested on synthetic and real datasets containing a mixture of images from the Mm-cpn chaperonin in the "open" and "closed" states. It is shown that cluster ensembles can provide useful information in validating the structural partitionings independently of 3D reconstruction methodsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    A Review on Topology Optimization Strategies for Additively Manufactured Continuous Fiber-Reinforced Composite Structures

    Get PDF
    Topology Optimization (TO) recently gained importance due to the development of Ad- ditive Manufacturing (AM) processes that produce components with good mechanical properties. Among all additive manufacturing technologies, continuous fiber fused filament fabrication (CF4) can fabricate high-performance composites compared to those manufactured with conventional technolo- gies. In addition, AM provides the excellent advantage of a high degree of reconfigurability, which is in high demand to support the immediate short-term manufacturing chain in medical, transportation, and other industrial applications. CF4 enables the fabrication of continuous fiber-reinforced compos- ite (FRC) materials structures. Moreover, it allows us to integrate topology optimization strategies to design realizable CFRC structures for a given performance. Various TO strategies for attaining lightweight and high-performance designs have been proposed in the literature, exploiting AM’s design freedom. Therefore, this paper attempts to address works related to strategies employed to obtain optimal FRC structures. This paper intends to review and compare existing methods, analyze their similarities and dissimilarities, and discuss challenges and future trends in this field
    corecore