1,146 research outputs found

    Operating room planning and scheduling: A literature review.

    Get PDF
    This paper provides a review of recent research on operating room planning and scheduling. We evaluate the literature on multiple fields that are related to either the problem setting (e.g. performance measures or patient classes) or the technical features (e.g. solution technique or uncertainty incorporation). Since papers are pooled and evaluated in various ways, a diversified and detailed overview is obtained that facilitates the identification of manuscripts related to the reader's specific interests. Throughout the literature review, we summarize the significant trends in research on operating room planning and scheduling and we identify areas that need to be addressed in the future.Health care; Operating room; Scheduling; Planning; Literature review;

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Gestión logística de sistemas de hospitalización domiciliaria: una revisión crítica de modelos y métodos

    Get PDF
    RESUMEN: Los servicios de Hospitalización Domiciliaria (HD) se basan en una red de distribución, en la cual los pacientes son hospitalizados en sus casas y los prestadores de servicios de salud deben entregar cuidados médicos coordinados a los pacientes. La demanda de estos servicios está creciendo rápidamente y los gobiernos y proveedores de servicios de salud enfrentan el reto de tomar un conjunto de decisiones complejas en un sector con un componente logístico importante. En este artículo se presenta una revisión crítica de los modelos y métodos utilizados para darle soporte a las decisiones logísticas en HD. Para esto se presenta primero un marco de referencia, con el objetivo de identificar las oportunidades de investigación en el campo. Con base en dicho marco, se presenta la revisión de la literatura y la identificación de brechas en la investigación. En particular, se hace énfasis en la necesidad de desarrollar e implementar metodologías más integradas para dar soporte a las decisiones estratégicas y tácticas y de considerar puntos clave de los sistemas reales.ABSTRACT: Home Health Care (HHC) services are based on a delivery network in which patients are hospitalized at their homes and health care providers must deliver coordinated medical care to patients. Demand for HHC services is rapidly growing and governments and health care providers face the challenge to make a set of complex decisions in a medical service business that has an important component of logistics problems. The objective of this paper is to provide a critical review of models and methods used to support logistics decisions in HHC. For this purpose, a reference framework is proposed first in order to identify research perspectives in the field. Based on this framework, a literature review is presented and research gaps are identified. In particular, the literature review reveals that more emphasizes is needed to develop and implement more integrated methodologies to support decisions at tactical and strategic planning levels and to consider key features from real systems

    An Optimisation-based Framework for Complex Business Process: Healthcare Application

    Get PDF
    The Irish healthcare system is currently facing major pressures due to rising demand, caused by population growth, ageing and high expectations of service quality. This pressure on the Irish healthcare system creates a need for support from research institutions in dealing with decision areas such as resource allocation and performance measurement. While approaches such as modelling, simulation, multi-criteria decision analysis, performance management, and optimisation can – when applied skilfully – improve healthcare performance, they represent just one part of the solution. Accordingly, to achieve significant and sustainable performance, this research aims to develop a practical, yet effective, optimisation-based framework for managing complex processes in the healthcare domain. Through an extensive review of the literature on the aforementioned solution techniques, limitations of using each technique on its own are identified in order to define a practical integrated approach toward developing the proposed framework. During the framework validation phase, real-time strategies have to be optimised to solve Emergency Department performance issues in a major hospital. Results show a potential of significant reduction in patients average length of stay (i.e. 48% of average patient throughput time) whilst reducing the over-reliance on overstretched nursing resources, that resulted in an increase of staff utilisation between 7% and 10%. Given the high uncertainty in healthcare service demand, using the integrated framework allows decision makers to find optimal staff schedules that improve emergency department performance. The proposed optimum staff schedule reduces the average waiting time of patients by 57% and also contributes to reduce number of patients left without treatment to 8% instead of 17%. The developed framework has been implemented by the hospital partner with a high level of success

    Optimization of Surgery Scheduling in Multiple Operating Rooms with Post Anesthesia Care Unit Capacity Constraints

    Get PDF
    Surgery schedules are subject to disruptions due to duration uncertainty in surgical activities, patient punctuality, surgery cancellation and surgical emergencies. Unavailable recovery resources, such as post-anesthesia care unit (PACU) beds may also cause deviations from the surgical schedule. Such disruptions may result in inefficient utilization of medical resources, suboptimal patient care and patient and staff dissatisfaction. To alleviate these adverse effects, we study three open challenges in the field of surgery scheduling. The case we study is in a surgical suite with multiple operating rooms (ORs) and a shared PACU. The overall objective is to minimize the expected cost incurred from patient waiting time, OR idle time, OR blocking time, OR overtime and PACU overtime.In the first part of this work, we study surgery scheduling with PACU capacity constraints. With surgery sequences predetermined in each OR, a discrete event dynamic system (DEDS) and a DEDS-based stochastic optimization model are devised for the problem. A sample-gradient-based algorithm is proposed for the sample average approximation of our formulation. Numerical experiments suggest that the proposed method identifies near-optimal solutions and outperforms previous methods. It is also shown that considerable cost savings (11.8% on average) are possible in hospitals where PACU beds are a constraint.In the second part, we propose a two-stage solution method for stochastic surgery sequencing and scheduling with PACU capacity constraints. In the first stage, we propose a mixed-integer programming model with a surrogate objective that is much easier to solve than the original problem. The Lagrangian relaxation of the surrogate model can be decomposed by patients into network-structured subproblems which can be efficiently solved by dynamic programming. The first-stage model is solved by the subgradient method to determine the surgery sequence in each OR. Given the surgery sequence, scheduled start times are determined in the second stage using the sample-gradient descent algorithm. Our solution method outperforms benchmark methods that are proposed in the literature by 11% to 43% in numerical experiments. Our sequencing method contributes 45% to 80% of the overall improvement. We also illustrate the improvement on PACU utilization after using our scheduling strategy. In the third part, we propose a proactive and reactive surgery scheduling method for surgery scheduling under surgical disruptions. A surgical schedule considering possible disruptions is constructed prior to the day of surgery, and is then adjusted dynamically in response to disruptions on the day of surgery. The proposed method is based on stochastic optimization and a sample-gradient descent algorithm, which is the first non-metaheuristic approach proposed for this problem. In addition, the to-follow scheduling policy, which is widely used in practice, is considered in this study. This differs from previous surgical scheduling studies which assume no surgery can start before its scheduled start time. The proposed method finds near-optimal solutions and outperforms the scheduling method commonly used in practice

    Flexible hospital-wide elective patient scheduling

    Get PDF
    In this paper, we build on and extend Gartner and Kolisch (2014)’s hospital-wide patient scheduling problem. Their contribution margin maximizing model decides on the patients' discharge date and therefore the length of stay. Decisions such as the allocation of scarce hospital resources along the clinical pathways are taken. Our extensions which are modeled as a mathematical program include admission decisions and flexible patient-to-specialty assignments to account for multi-morbid patients. Another flexibility extension is that one out of multiple surgical teams can be assigned to each patient. Furthermore, we consider overtime availability of human resources such as residents and nurses. Finally, we include these extensions in the rolling-horizon approach and account for lognormal distributed recovery times and remaining resource capacity for elective patients. Our computational study on real-world instances reveals that, if overtime flexibility is allowed, up to 5% increase in contribution margin can be achieved by reducing length of stay by up to 30%. At the same time, allowing for overtime can reduce waiting times by up to 33%. Our model can be applied in and generalized towards other patient scheduling problems, for example in cancer care where patients may follow defined cancer pathways
    corecore