33,704 research outputs found

    Scheduling model for systems with complex alternative behaviour

    Get PDF
    In this paper we propose a flexible model for scheduling problems, which allows the modeling of systems with complex alternative behaviour. This model could for example facilitate the step from process planning model to optimization model. We show how automatic constraint generation can be performed for both Constraint Programming and Mixed Integer Linear Programming (MILP) models. Also, for the MILP case, a new formulation for mutual exclusion of resources is proposed. This new formulation works well for proving optimality in systems with multiple capacity resources. Some benchmarks for such job shop scheduling problems as well as systems with a large number of alternatives are also presented

    A binary symmetric based hybrid meta-heuristic method for solving mixed integer unit commitment problem integrating with significant plug-in electric vehicles

    Get PDF
    Conventional unit commitment is a mixed integer optimization problem and has long been a key issue for power system operators. The complexity of this problem has increased in recent years given the emergence of new participants such as large penetration of plug-in electric vehicles. In this paper, a new model is established for simultaneously considering the day-ahead hourly based power system scheduling and a significant number of plug-in electric vehicles charging and discharging behaviours. For solving the problem, a novel hybrid mixed coding meta-heuristic algorithm is proposed, where V-shape symmetric transfer functions based binary particle swarm optimization are employed. The impact of transfer functions utilised in binary optimization on solving unit commitment and plug-in electric vehicle integration are investigated in a 10 unit power system with 50,000 plug-in electric vehicles. In addition, two unidirectional modes including grid to vehicle and vehicle to grid, as well as a bi-directional mode combining plug-in electric vehicle charging and discharging are comparatively examined. The numerical results show that the novel symmetric transfer function based optimization algorithm demonstrates competitive performance in reducing the fossil fuel cost and increasing the scheduling flexibility of plug-in electric vehicles in three intelligent scheduling modes

    Power and memory optimization techniques in embedded systems design

    Get PDF
    Embedded systems incur tight constraints on power consumption and memory (which impacts size) in addition to other constraints such as weight and cost. This dissertation addresses two key factors in embedded system design, namely minimization of power consumption and memory requirement. The first part of this dissertation considers the problem of optimizing power consumption (peak power as well as average power) in high-level synthesis (HLS). The second part deals with memory usage optimization mainly targeting a restricted class of computations expressed as loops accessing large data arrays that arises in scientific computing such as the coupled cluster and configuration interaction methods in quantum chemistry. First, a mixed-integer linear programming (MILP) formulation is presented for the scheduling problem in HLS using multiple supply-voltages in order to optimize peak power as well as average power and energy consumptions. For large designs, the MILP formulation may not be suitable; therefore, a two-phase iterative linear programming formulation and a power-resource-saving heuristic are presented to solve this problem. In addition, a new heuristic that uses an adaptation of the well-known force-directed scheduling heuristic is presented for the same problem. Next, this work considers the problem of module selection simultaneously with scheduling for minimizing peak and average power consumption. Then, the problem of power consumption (peak and average) in synchronous sequential designs is addressed. A solution integrating basic retiming and multiple-voltage scheduling (MVS) is proposed and evaluated. A two-stage algorithm namely power-oriented retiming followed by a MVS technique for peak and/or average power optimization is presented. Memory optimization is addressed next. Dynamic memory usage optimization during the evaluation of a special class of interdependent large data arrays is considered. Finally, this dissertation develops a novel integer-linear programming (ILP) formulation for static memory optimization using the well-known fusion technique by encoding of legality rules for loop fusion of a special class of loops using logical constraints over binary decision variables and a highly effective approximation of memory usage

    Retail Store Scheduling for Profit

    Get PDF
    In spite of its tremendous economic significance, the problem of sales staff schedule optimization for retail stores has received relatively scant attention. Current approaches typically attempt to minimize payroll costs by closely fitting a staffing curve derived from exogenous sales forecasts, oblivious to the ability of additional staff to (sometimes) positively impact sales. In contrast, this paper frames the retail scheduling problem in terms of operating profit maximization, explicitly recognizing the dual role of sales employees as sources of revenues as well as generators of operating costs. We introduce a flexible stochastic model of retail store sales, estimated from storespecific historical data, that can account for the impact of all known sales drivers, including the number of scheduled staff, and provide an accurate sales forecast at a high intra-day resolution. We also present solution techniques based on mixed-integer (MIP) and constraint programming (CP) to efficiently solve the complex mixed integer non-linear scheduling (MINLP) problem with a profit-maximization objective. The proposed approach allows solving full weekly schedules to optimality, or near-optimality with a very small gap. On a case-study with a medium-sized retail chain, this integrated forecasting–scheduling methodology yields significant projected net profit increases on the order of 2-3 % compared to baseline schedules

    Determination of the Optimal Manpower Size Using Linear Programming Model

    Get PDF
    There would be no meaningful development lllltil manpower that involves in the transformation of production facilities into useful goods and services is well trained and planned. Recent advances in mathematical programming methodology have included:development of interior methods, competing with the simplex method, improved simplex codes, vastly improved performance for mixed-integer programming using strong linear programming formulations and a renewed interest in decomposition. Application areas have been expanding from the traditional refinery planning and distribution models to include finance, scheduling, manufacturing, manpower planning and many others. We see the acceleration of better methods and improved codes moving together with faster, lower-cost and more interesting hardware into a variety of application areas, thereby opening up new demands for greater fi.mction of optimization codes. This study applies Linear Programming (LP) model based on integer programming to the determination of effective size of manpower to be engaged. The study also incorporates global constraints such as production capacity/demand rate and allowable time of operation into the model to reflect the reality activities in production organizations in developing colUltries. The results obtained show that the model is more efficient than the existing model for effective manpower determination

    A Unified Approach to Optimally Solving Sensor Scheduling and Sensor Selection Problems in Kalman Filtering

    Full text link
    We consider a general form of the sensor scheduling problem for state estimation of linear dynamical systems, which involves selecting sensors that minimize the trace of the Kalman filter error covariance (weighted by a positive semidefinite matrix) subject to polyhedral constraints on the selected sensors. This general form captures several well-studied problems including sensor placement, sensor scheduling with budget constraints, and Linear Quadratic Gaussian (LQG) control and sensing co-design. We present a mixed integer optimization approach that is derived by exploiting the optimality of the Kalman filter. While existing work has focused on approximate methods to specific problem variants, our work provides a unified approach to computing optimal solutions to the general version of sensor scheduling. In simulation, we show this approach finds optimal solutions for systems with 30 to 50 states in seconds
    • 

    corecore