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A MIXED INTEGER OPTIMIZATION STRATEGY 

FOR OIL AND GAS PRODUCTION PLANNING 

Dimitrios I. Gerogiorgis* and Efstratios N. Pistikopoulos 

Centre for Process Systems Engineering, Imperial College London, SW7 2AZ, U.K. 

 

Abstract 

Oil and gas production is the cornerstone of the modern petrochemical industry, and its upstream as well as 

downstream processing provides many challenges to the process modeling, optimization and control areas. 

Mixed-integer optimization is a research field with a strong implementation record, having already been used 

to solve a wide spectrum of crude oil production, transport, distribution, planning and scheduling problems. 

Production optimization challenges are however perplexed by multiphase flow of oil, gas and water in the 

sub-surface circuits: the respective elements (reservoirs, wells) induce complexity in oil and gas transport 

which can only be handled suboptimally by use of linearized approximations of true pressure-flowrate curves. 

This paper addresses the problem of oil production maximization from a particular oilfield with several oil 

wells, all connected to one production platform and operating assisted by gas injection (secondary extraction). 

The proposed approach explicitly takes into account multiphase flow (based on a previously presented model) 

and relies on an MINLP model formulation toward calculating: (a) the operation (or shutting-in) of each well, 

(b) the volumetric flows of gas injection required in order to operate open production wells in gas-lift mode. 

An improved oil production optimum has been obtained for a case study considering a set of 6 gas-lift wells. 

This MINLP model can also be used for multiperiod optimization under additional cost and price constraints. 
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Introduction
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Petroleum is by far the most valued natural resource: either 

as energy carrier or as process feedstock, its availability is 

always of paramount importance to the chemical industry. 

Field exploration, oil production, transport and processing 

operations provide an expanding portfolio of challenges. 

Many modeling and optimization problems have thus been 

tackled in both upstream and downstream processing areas: 

gas-lift well operation (Alarcón et al., 2002), oilfield 

infrastructure planning (Van den Heever and Grossmann, 

1999; Van den Heever et al., 2000; Lin and Floudas, 2003), 

gas field development (Goel et al., 2006), oil scheduling 

(Shah, 1996), oil distribution (Más and Pinto, 2003), and 

planning and scheduling of the many process operations in 

refinery complexes (Moro et al., 1998; Pinto et al., 2000). 

Multidisciplinary insights into geological complexity and 

multiphase flow in porous strata can also provide benefits. 

The time-dependent performance of each production well is 

monitored by the characteristic pressure-flowrate curve: its 

effect has been explicitly considered in determining the 

optimal well oil rate allocation (Kosmidis et al., 2004) as 

well as optimal well scheduling (Kosmidis et al., 2005). 

Mathematical modeling of sub-surface elements increases 

accuracy and reliability (Barragán-Hernández et al., 2005). 

Further model integration can thus employ multiphase flow 

simulations for enhancing operations (e.g. selectively assist 

gas production from gas-rich or even oil-depleted reserves). 

Upper-level optimization gains from low-level multiphase 

simulation of oil, gas and water flow: indeed, a dynamic 

reservoir flow simulator (ECLIPSE
®
) has been combined 

with an equation-oriented process optimizer (gPROMS
®
), 

thus yielding more accurate valve settings and production 

resource allocations (Gerogiorgis and Pistikopoulos, 2006). 



  

 

Petroleum production: the operation of gas-lift wells 

Petroleum production platforms house many elements, 

all essential to primary (natural) and secondary (gas-lift) 

oil production: all are illustrated in Figure 1 (Biggs, 1975). 

 

Figure 1.   Operation of gas-lift oil production wells. 

The effect of gas injection rate on oil production rate 

for different cases of gas-lift wells is illustrated in Figure 

2: the most responsive wells react immediately to gas lift, 

yielding oil flow even for very low gas injection (curve B); 

conversely, mature wells require a minimum gas injection 

flowrate before they even begin to produce oil (curve C). 

In both cases, oil production flow can only be increased up 

to a maximum, beyond which gas lift is no longer viable. 

 

Figure 2.   Two typical gas-lift performance curves. 

Mathematical model of multiphase flow in wells 

Explicit reservoir flow simulation can be employed for 

enhancing the accuracy of production well performance 

models, using a dynamic reservoir simulator (ECLIPSE
®
). 

Resulting pressure-flowrate data can be readily used by an 

equation-oriented process optimizer (GAMS
®
, gPROMS

®
) 

in order to determine optimal reservoir operation setpoints. 

A relevant methodology for optimal production planning is 

found in an upcoming publication (Gerogiorgis et al., 2008). 

Table 1. Multiphase flow model for reservoir simulation. 
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Gas phase distribution 
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Total pressure gradient calculation 
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Capillary pressure (oil/gas interface) 
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Capillary pressure (oil/water interface) 
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Multiphase mixture saturation closure 
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Multiphase mixture density   
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Multiphase mixture viscosity 
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Multiphase mixture holdup closure 
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Drift flux model (gas holdup) 
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Well phase flowrate as a function of saturations 
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Optimization model for efficient gas-lift well operation  

The proposed model includes the following elements, 

as explained in our methodology (Gerogiorgis et al., 2008): 

(i) the objective function (maximization of oil production), 

(ii) the multiphase flow model, (iii) the mass, momentum 

and energy balances in the set of gas-lift production wells, 

(iv) the logic constraints for operating or shutting-in wells.    
The simplifying assumptions introduced here follow: 

(i) there are only gas-lift production wells in the oil field, 
(ii) all wells are independently connected to the platform, 
(iii) only a single liquid-gas phase separator is available, 
(iv) gas injection is local in each gas-lift well (Figure 1), 
and does not significantly affect (either in space or in time) 
the underlying multiphase flow and the reservoir dynamics.  

The objective function and the most crucial constraints 
for the case study considered here are presented in Table 2. 

Table 2. Optimization model for gas-lift oil production. 

Oil production maximization (objective function) 
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Well oil flowrate vs. gas injection (Alarcón et al., 2002) 
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Case study and results 

The case study selected for evaluating the proposed 

approach is adapted from a petroleum engineering paper 

(Alarcón et al., 2002) which uses the classic approximation 

of  pressure-flowrate curves (as in Kosmidis et al., 2004), 
but considers: (a) continuous nonlinear (

ioq ,
vs. inj

igq ,
) curves, 

(b) a systematic NLP optimization method (SQP algorithm), 

rather than use of equal slope heuristics (Kanu et al., 1981). 

Therein, all systematically determined oil production optima 

are lower than those calculated by the equal slope heuristic, 

yet they are proved more consistent to production well data. 

The present paper considers the same example problems 

(5 type-B with/without 1 type-C gas-lift oil wells – Fig. 2). 

The novelty here is that we compute state variable profiles 

(pressure, oil-gas-water saturation, flows) via Eqs. (1)-(14), 

using a reservoir multiphase flow simulator (ECLIPSE
®
), 

via realistic rock permeability data from a built-in database; 

here, we model the reservoir but not the wells themselves. 

Thus, the use of phase distribution correlations is avoided 

(employing the underlying black-oil thermodynamic model), 

and the flows and saturations computed by Eq. (1)-(3)+(14) 

can be utilized in the MINLP formulation of Eqs. (15)-(29). 

Asynchronous interfacing is possible when assuming that all 

gas-lift production wells are located at reasonable distances. 

Oil production and well operation results (Table 3) refer 

to 2 different cases, under gas injection capacity bounds (Cc). 

Table 3. Oil well operation and optimal production results. 

Well 

(i) 

Operation† 

(yi) 

inj

igq ,
 

(std m3.d-1) 

ioq ,
 

(m3.d-1) 

inj

igq ,
 

(std m3.d-1) 

ioq ,
 

(m3.d-1) 

Cc=84950.6 m3.d-1  (Alarcón et al., 2002) †This Work 

1 y1 = 1   7455.8   51.7   7458.6   51.9 

2 y2 = 1 15786.6 114.7 15790.2 114.8 

3 y3 = 1 25037.8 172.1 25069.3 172.3 

4 y4 = 1 16588.0   92.4 16603.1   93.1 

5 y5 = 1† 20082.3 107.7 20029.3 108.1 

Total Σ 84950.6 538.6 84950.6 540.2 

      
Well 

(i) 

Operation‡ 

(yi) 

inj

igq ,
 

(std m3.d-1) 

ioq ,
 

(m3.d-1) 

inj

igq ,
 

(std m3.d-1) 

ioq ,
 

(m3.d-1) 

Cc=130257.5 m3.d-1 (Alarcón et al., 2002) ‡This Work 

1 y1 = 1    9844.4   54.4 15543.0   60.6 

2 y2 = 1 17457.6 116.7 21287.9 121.6 

3 y3 = 1 27814.5 175.4 34254.8 183.1 

4 y4 = 1 18910.0   95.1 24606.3 101.8 

5 y5 = 1 23859.5 112.1 34565.5 123.3 

6 y6 = 0‡ 32371.8   14.7 0 0 

Total Σ 130257.5 568.5 130257.5 590.4 

 These optimization results indicate that shutting-in the 

most expensive (in terms of gas injection flowrate) oil wells 

can indeed yield an improved total oil production maximum.  

Even when shutting-in is found impossible (first example),  

a marginal improvement can be achieved in oil production. 



  
 

Conclusions 

Integrated modeling and optimization of oil and gas 

production is a research trend aiming to bridge the gap 

between the classic paradigm in petroleum engineering 

(detailed study of rock permeability and multiphase flow) 

and prevalent process systems engineering methodologies 

(systematic multiperiod or dynamic optimization models). 

Oil reservoirs, wells and surface facilities are thus regarded 

as a single yet multiscale process system, whose operation 

can be optimized by discrete (e.g. open/closed well valves) 

and continuous (e.g. gas injection rates) decision variables. 

A literature problem solved shows that using flow results 

yields an improved oil production maximum, due to the 

enhanced accuracy achieved in flow and phase distribution. 

An augmented multiperiod MINLP optimization model can 

use an economic objective function (profit maximization) 

in order to determine optimal production planning under 

more (transport cost, oil vs. gas demand, price) constraints.  

Nomenclature 

Latin letters 

A surface area  m2 

C facility capacity  W 

E holdup   dimensionless 

g gravitational acceleration m.s-2 

h height   m 

k absolute permeability Darcy (~10-6 m2) 

kr relative permeability dimensionless 

P pressure   Pa (N.m-2) 

q flow   (bbl.d-1) o (std. m3.d-1)g 

S phase saturation  dimensionless 

t time   s 

U fluid velocity  m.s-1 

x position   m 

y well valve setting (on/off) binary variable 
 

Greek letters 

θ inclination angle  rad 

µ viscosity   kg.m-1.s-1 

ρ density   kg.m-3 

φ rock porosity  dimensionless 
 

Subscripts 

c compressor  m mixture 

g gas   o oil 

i well index  r relative 

j phase index    s superficial 

l liquid   w water 
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