12 research outputs found

    Total Jensen divergences: Definition, Properties and k-Means++ Clustering

    Full text link
    We present a novel class of divergences induced by a smooth convex function called total Jensen divergences. Those total Jensen divergences are invariant by construction to rotations, a feature yielding regularization of ordinary Jensen divergences by a conformal factor. We analyze the relationships between this novel class of total Jensen divergences and the recently introduced total Bregman divergences. We then proceed by defining the total Jensen centroids as average distortion minimizers, and study their robustness performance to outliers. Finally, we prove that the k-means++ initialization that bypasses explicit centroid computations is good enough in practice to guarantee probabilistically a constant approximation factor to the optimal k-means clustering.Comment: 27 page

    Approximation Algorithms for Bregman Co-clustering and Tensor Clustering

    Full text link
    In the past few years powerful generalizations to the Euclidean k-means problem have been made, such as Bregman clustering [7], co-clustering (i.e., simultaneous clustering of rows and columns of an input matrix) [9,18], and tensor clustering [8,34]. Like k-means, these more general problems also suffer from the NP-hardness of the associated optimization. Researchers have developed approximation algorithms of varying degrees of sophistication for k-means, k-medians, and more recently also for Bregman clustering [2]. However, there seem to be no approximation algorithms for Bregman co- and tensor clustering. In this paper we derive the first (to our knowledge) guaranteed methods for these increasingly important clustering settings. Going beyond Bregman divergences, we also prove an approximation factor for tensor clustering with arbitrary separable metrics. Through extensive experiments we evaluate the characteristics of our method, and show that it also has practical impact.Comment: 18 pages; improved metric cas

    kk-MLE: A fast algorithm for learning statistical mixture models

    Full text link
    We describe kk-MLE, a fast and efficient local search algorithm for learning finite statistical mixtures of exponential families such as Gaussian mixture models. Mixture models are traditionally learned using the expectation-maximization (EM) soft clustering technique that monotonically increases the incomplete (expected complete) likelihood. Given prescribed mixture weights, the hard clustering kk-MLE algorithm iteratively assigns data to the most likely weighted component and update the component models using Maximum Likelihood Estimators (MLEs). Using the duality between exponential families and Bregman divergences, we prove that the local convergence of the complete likelihood of kk-MLE follows directly from the convergence of a dual additively weighted Bregman hard clustering. The inner loop of kk-MLE can be implemented using any kk-means heuristic like the celebrated Lloyd's batched or Hartigan's greedy swap updates. We then show how to update the mixture weights by minimizing a cross-entropy criterion that implies to update weights by taking the relative proportion of cluster points, and reiterate the mixture parameter update and mixture weight update processes until convergence. Hard EM is interpreted as a special case of kk-MLE when both the component update and the weight update are performed successively in the inner loop. To initialize kk-MLE, we propose kk-MLE++, a careful initialization of kk-MLE guaranteeing probabilistically a global bound on the best possible complete likelihood.Comment: 31 pages, Extend preliminary paper presented at IEEE ICASSP 201

    Information Geometry

    Get PDF
    This Special Issue of the journal Entropy, titled “Information Geometry I”, contains a collection of 17 papers concerning the foundations and applications of information geometry. Based on a geometrical interpretation of probability, information geometry has become a rich mathematical field employing the methods of differential geometry. It has numerous applications to data science, physics, and neuroscience. Presenting original research, yet written in an accessible, tutorial style, this collection of papers will be useful for scientists who are new to the field, while providing an excellent reference for the more experienced researcher. Several papers are written by authorities in the field, and topics cover the foundations of information geometry, as well as applications to statistics, Bayesian inference, machine learning, complex systems, physics, and neuroscience
    corecore