10,457 research outputs found

    The aflatoxin B1-fumonisin B1 toxicity in BRL-3A hepatocytes is associated to induction of cytochrome P450 activity and arachidonic acid metabolism

    Get PDF
    Human oral exposure to aflatoxin B1 (AFB1) and fumonisin B1 (FB1) is associated with increased hepatocellular carcinoma. Although evidence suggested interactive AFB1–FB1 hepatotoxicity, the underlying mechanisms remain mostly unidentified. This work was aimed at evaluating the possible AFB1–FB1 interplay to induce genetic and cell cycle toxicities in BRL-3A rat hepatocytes, reactive oxygen species (ROS) involvement, and the AFB1 metabolizing pathways cytochrome P450 (CYP) and arachidonic acid (ArAc) metabolism as ROS contributors. Flow cytometry of stained BRL-3A hepatocytes was used to study the cell cycle (propidium iodide), ROS intracellular production (DCFH-DA, HE, DAF-2 DA), and phospholipase A activity (staining with bis-BODIPY FL C11-PC). The CYP1A activity was assessed by the 7-ethoxyresorufin-O-deethylase (EROD) assay. Despite a 48-h exposure to FB1 (30 μM) not being genotoxic, the AFB1 (20 μM)-induced micronucleus frequency was overcome by the AFB1–FB1 mixture (MIX), presumably showing toxin interaction. The mycotoxins blocked G1/S-phase, but only MIX caused cell death. Overall, the oxidative stress led these alterations as the pretreatment with N-acetyl-l-cysteine reduced such toxic effects. While AFB1 had a major input to the MIX pro-oxidant activity, with CYP and ArAc metabolism being ROS contributors, these pathways were not involved in the FB1-elicited weak oxidative stress. The MIX-induced micronucleus frequency in N-acetyl-l-cysteine pretreated cells was greater than that caused by AFB1 without antioxidants, suggesting enhanced AFB1 direct genotoxicity probably owing to the higher CYP activity and ArAc metabolism found in MIX. The metabolic pathways modulation by AFB1–FB1 mixtures could raise its hepatocarcinogenic properties.Fil: Mary, Verónica Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Arias, Silvina Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Otaiza González, Santiago Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Velez, Pilar Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Rubinstein, Héctor Ramón. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Theumer, Martín Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer

    Get PDF
    BACKGROUND: Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). METHODS: Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. FINDINGS: We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. INTERPRETATION: Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. FUND: This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017-87301-R and SAF2014-52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015-71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013-2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007-2009 and 2011-2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971-16 (P.A.), MINECO:SAF2015-64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16-251 (M.S.R.), MINECO - BFU2016-76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication

    Energy metabolism in human pluripotent stem cells and their differentiated counterparts

    Get PDF
    Background: Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs) and induced pluripotent stem cells (IPSCs) reprogrammed from somatic cells. Methodology/Principal Findings: We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA) cycle. In addition we determined oxygen consumption rates (OCR) using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC). Finally we explored the expression of key proteins involved in the regulation of glucose metabolism. Conclusions/Findings: Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high glycolytic rates, such as high levels of hexokinase II and inactive pyruvate dehydrogenase (PDH). © 2011 Varum et al

    Genomic and proteomic profiling of responses to toxic metals in human lung cells.

    Get PDF
    Examining global effects of toxic metals on gene expression can be useful for elucidating patterns of biological response, discovering underlying mechanisms of toxicity, and identifying candidate metal-specific genetic markers of exposure and response. Using a 1,200 gene nylon array, we examined changes in gene expression following low-dose, acute exposures of cadmium, chromium, arsenic, nickel, or mitomycin C (MMC) in BEAS-2B human bronchial epithelial cells. Total RNA was isolated from cells exposed to 3 M Cd(II) (as cadmium chloride), 10 M Cr(VI) (as sodium dichromate), 3 g/cm2 Ni(II) (as nickel subsulfide), 5 M or 50 M As(III) (as sodium arsenite), or 1 M MMC for 4 hr. Expression changes were verified at the protein level for several genes. Only a small subset of genes was differentially expressed in response to each agent: Cd, Cr, Ni, As (5 M), As (50 M), and MMC each differentially altered the expression of 25, 44, 31, 110, 65, and 16 individual genes, respectively. Few genes were commonly expressed among the various treatments. Only one gene was altered in response to all four metals (hsp90), and no gene overlapped among all five treatments. We also compared low-dose (5 M, noncytotoxic) and high-dose (50 M, cytotoxic) arsenic treatments, which surprisingly, affected expression of almost completely nonoverlapping subsets of genes, suggesting a threshold switch from a survival-based biological response at low doses to a death response at high doses

    Antitumoral actions of Vismia baccifera on human hepatocellular carcinoma HepG2

    Get PDF
    195 p.Nowadays there is an increasing interest in finding bioactive compounds which can be used as chemopreventive agents against cancer. In this work, we have studied the antitumoral actions of aqueous extracts from leaves of the Colombian Amazonian Vismia baccifera plant on the human hepatocellular carcinoma HepG2 cell line. Our results showed that V. baccifera induced a cytotoxic response to HepG2, increasing the levels of mitochondrial O2- and intracellular ROS (particularly hydrogen peroxide), inducing depletion of GSH, cell cycle arrest at G2/M phase, endoplasmic reticulum stress, autophagy and apoptosis. Interestingly, the cytotoxic actions exerted by V. baccifera are exclusive of cancer cells. Hydrogen peroxide, whose intracellular accumulation was early induced by the extract, mediated the cytotoxic response. V. baccifera promoted deregulation of antioxidant enzymes, this effect being secondary to the accumulation of ROS. The intracellular GSH depletion was not the cause, but the consequence of V. baccifera-induced toxicity. The plant extract also affected HepG2 signaling by activating and inhibiting specific pathways. Moreover, we validated the experimental approach we have used to study the toxic response under conditions of 21% atmospheric pO2, ruling out any possible superimposed oxidative stress derived from the culture conditions. Our results highlight the importance of analyzing in depth the actions of this plant to generate knowledge that can lay the bases for coadjuvant or anti-cancer therapy

    The Role of the Lysine-Specific Demethylase 1 in the Development of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) has a low survival rate and is currently the third leading cause of cancer-related deaths worldwide. Most HCC develops on the basis of chronic liver diseases, such as HBV and HCV hepatitis, alcoholic liver disease, or non-alcoholic fatty liver disease. Epigenetic alterations, including an altered pattern in histone modification, are crucial for cancer progression. However, the epigenetic aberrations involved in the development of HCC are not well understood. The lysine-specific demethylase 1 (LSD1) is involved in chromatin remodeling by demethylating lysine 4 and lysine 9 histone 3 (H3K4 and H3K9), causing transcriptional repression or activation, respectively. Strikingly, overexpression of LSD1 contributes to the malignancy of several cancers. Therefore, my research focused on the mechanistic links affected by LSD1 in liver cancer cells. To investigate this, I used three different hepatoma cells (Huh7, HepG2, and Hep3B), in which LSD1 was inhibited pharmacologically or by anti-LSD1 siRNA species. For conditional LSD1 inhibition, stable Tet-On hepatoma cell lines were generated in which expression of short-hairpin anti-LSD1 RNA was inducible after doxycycline exposure. The effect of LSD1 on cell viability was measured by the MTT test. Gene expression was studied at the transcript level by ultra-deep RNA sequencing and qPCR and at the protein level by immunoblotting. Moreover, I analyzed the histone H3K4 methylation patterns and the interaction of LSD1 with promoter sites by chromatin immunoprecipitation (ChIP) followed by whole-genome sequencing or qPCR. These studies showed that LSD1 inhibition in the different hepatoma cell types leads to cell growth arrest and downregulation of PLK1. ChIP analysis revealed that PLK1 is a direct target of LSD1 regulation in hepatoma cells. In addition, gene expression profiling by RNA sequencing followed by metabolic pathway analysis revealed striking dysregulation of genes involved in metabolic dysregulation after LSD1 was inhibited. In particular, genes of the citrate cycle and lipid metabolism were affected by LSD1 which was validated by qPCR. Noteworthy, ChIP assays showed alteration of histone methylation and LSD1 binding at promoter sites of many metabolic genes, downregulated after LSD1 inhibition. In particular, the gene FABP5, which is involved in fat metabolism, was found to be a novel direct target of LSD1. To demonstrate the effects of LSD1 on the regulation of metabolic genes, an in vivo mouse model for non-alcoholic fatty liver disease was used with respect to its high metabolic imbalance and LSD1 was pharmacologically inhibited in the early progression phase of the disease where fat accumulation occurs (steatosis). Importantly, LSD1 inhibition resulted in weight loss, lower serum AST liver enzymes, and no signs of fat accumulation, while control mice had all the features of steatosis. In conclusion, my study emphasizes that LSD1 which is an important mediator in cell cycle control affects HCC progression not only by cell cycle interruption but also by metabolism and lipid dysregulation

    Transcriptional control of glyoxalase 1 by Nrf2 provides a stress-responsive defence against dicarbonyl glycation

    Get PDF
    Abnormal cellular accumulation of the dicarbonyl metabolite MG (methylglyoxal) occurs on exposure to high glucose concentrations, inflammation, cell aging and senescence. It is associated with increased MG-adduct content of protein and DNA linked to increased DNA strand breaks and mutagenesis, mitochondrial dysfunction and ROS (reactive oxygen species) formation and cell detachment from the extracellular matrix. MG-mediated damage is countered by glutathione-dependent metabolism by Glo1 (glyoxalase 1). It is not known, however, whether Glo1 has stress-responsive up-regulation to counter periods of high MG concentration or dicarbonyl stress. We identified a functional ARE (antioxidant-response element) in the 5'-untranslated region of exon 1 of the mammalian Glo1 gene. Transcription factor Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2) binds to this ARE, increasing basal and inducible expression of Glo1. Activators of Nrf2 induced increased Glo1 mRNA, protein and activity. Increased expression of Glo1 decreased cellular and extracellular concentrations of MG, MG-derived protein adducts, mutagenesis and cell detachment. Hepatic, brain, heart, kidney and lung Glo1 mRNA and protein were decreased in Nrf2-/- mice, and urinary excretion of MG protein and nucleotide adducts were increased approximately 2-fold. We conclude that dicarbonyl stress is countered by up-regulation of Glo1 in the Nrf2 stress-responsive system, protecting protein and DNA from increased damage and preserving cell function
    corecore