41 research outputs found

    A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

    Get PDF
    This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.publishedVersio

    Mitigation of Power Quality Problems Using Custom Power Devices: A Review

    Get PDF
    Electrical power quality (EPQ) in distribution systems is a critical issue for commercial, industrial and residential applications. The new concept of advanced power electronic based Custom Power Devices (CPDs) mainly distributed static synchronous compensator (D-STATCOM), dynamic voltage restorer (DVR) and unified power quality conditioner (UPQC) have been developed due to lacking the performance of traditional compensating devices to minimize power quality disturbances. This paper presents a comprehensive review on D-STATCOM, DVR and UPQC to solve the electrical power quality problems of the distribution networks. This is intended to present a broad overview of the various possible DSTATCOM, DVR and UPQC configurations for single-phase (two wire) and three-phase (three-wire and four-wire) networks and control strategies for the compensation of various power quality disturbances. Apart from this, comprehensive explanation, comparison, and discussion on D-STATCOM, DVR, and UPQC are presented. This paper is aimed to explore a broad prospective on the status of D-STATCOMs, DVRs, and UPQCs to researchers, engineers and the community dealing with the power quality enhancement. A classified list of some latest research publications on the topic is also appended for a quick reference

    Power quality improvement in low voltage distribution network utilizing improved unified power quality conditioner.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The upgrade of the power system, network, and as it attained some complexity level, the voltage related problems and power loss has become frequently pronounced. The power quality challenges load at extreme end of the feeder like voltage sag and swell, and power loss at load centre due to peak load as not received adequate attention. Therefore, this research proposes a Power Angle Control PAC approach for enhancing voltage profile and mitigating voltage sag, voltage swell, and reduced power loss in low voltage radial distribution system (RDS). The amelioration of voltage sag, voltage swell, weak voltage profile, and power loss with a capable power electronics-based power controller device known as Improve Unified Power Quality Conditioner I-UPQC was conceived. Also, the same controller was optimally implemented using hybrid of genetic algorithm and improved particle swarm optimization GA-IPSO in RDS to mitigate the voltage issues, and power loss experienced at peak loading. A new control design-model of Power Angle Control (PAC) of the UPQC has been designed and established using direct, quadrature, and zero components dq0 and proportional integral (PI) controller method. The simulation was implemented in MATLAB/Simulink environment. The results obtained at steady-state condition and when the new I-UPQC was connected show that series inverter can participate actively in ameliorating in the process of mitigating sag and swell by maintaining a PAC of 25% improvement. It was observed that power loss reduced from 1.7% to 1.5% and the feeder is within the standard limit of ±5%. Furthermore, the interconnection of I-UPQC with photovoltaic solar power through the DC link shows a better voltage profile while the load voltage within the allowable range of ±5% all through the disturbance and power loss reduction is 1.3%. Lastly, results obtained by optimal allocation of I-UPQC in RDS using analytical and GA-IPSO show that reactive power injection improved the voltage related issues from 0.952 to 0.9989 p.u., and power loss was further reduced to 1.2% from 3.4%. Also, the minimum bus voltage profile, voltage sag, and power loss are within statutory limits of ±5 % and less than 2 %, respectively. The major contributions of this research are the reduction of sag impact and power loss on the sensitive load in RDS feeder.Publications on page iii

    Implementation of ANN Controller Based UPQC Integrated with Microgrid

    Get PDF
    This study discusses how to increase power quality by integrating a unified power quality conditioner (UPQC) with a grid-connected microgrid for clean and efficient power generation. An Artificial Neural Network (ANN) controller for a voltage source converter-based UPQC is proposed to minimize the system’s cost and complexity by eliminating mathematical operations such as a-b-c to d-q-0 translation and the need for costly controllers such as DSPs and FPGAs. In this study, nonlinear unbalanced loads and harmonic supply voltage are used to assess the performance of PV-battery-UPQC using an ANN-based controller. Problems with voltage, such as sag and swell, are also considered. This work uses an ANN control system trained with the Levenberg-Marquardt backpropagation technique to provide effective reference signals and maintain the required dc-link capacitor voltage. In MATLAB/Simulink software, simulations of PV-battery-UPQC employing SRF-based control and ANN-control approaches are performed. The findings revealed that the proposed approach performed better, as presented in this paper. Furthermore, the influence of synchronous reference frame (SRF) and ANN controller-based UPQC on supply currents and the dc-link capacitor voltage response is studied. To demonstrate the superiority of the suggested controller, a comparison of percent THD in load voltage and supply current utilizing SRF-based control and ANN control methods is shown

    Brief Review on Identification, Categorization and Elimination of Power Quality Issues in a Microgrid Using Artificial Intelligent Techniques

    Get PDF
    Power quality is the manifestation of a disruption in the supply voltage, current or frequency that damages the utility equipment and has become an important issue with the introduction of more sophisticated and sensitive devices. So, the supply power quality issue still remains a major challenge as its degradation can cause huge destabilization of electrical networks. As renewable energy sources have irregular nature, a microgrid essentially needs energy storage system containing advanced power electronic converters which is the root cause of majority of power quality disturbances. Also, the integration of non-linear and unbalanced loads into the grid adds to its power quality problems. This article gives a compact overview on the identification, categorization and mitigation of these power quality events in a microgrid by using various Artificial Intelligence-based techniques like Optimization techniques, Adaptive Learning techniques, Signal Processing and Pattern Recognition, Neural Networks and Fuzzy Logic

    Unified Power Quality Conditioner: protection and performance enhancement

    Get PDF
    The proliferation of power electronics-based equipment has produced a significant impact on the quality of electric power supply. Nowadays, much of the equipment is based on power electronic devices, often leading to problems of power quality. At the same time this equipment is typically equipped with microprocessor-based controllers which are quite sensitive to deviations from the ideal sinusoidal line voltage. Conventional power quality mitigation equipment is proving to be inadequate for an increasing number of applications, and this fact has attracted the attention of power engineers to develop dynamic and adjustable solutions to power quality problems. One modern and very promising solution that deals with both load current and supply voltage imperfections is the Unified Power Quality Conditioner (UPQC). This thesis investigates the development of UPQC protection scheme and control algorithms for enhanced performance. This work is carried out on a 12 kVA prototype UPQC. In order to protect the series inverter of the UPQC from overvoltage and overcurrent during short circuits on the load side of the UPQC, the secondary of the series transformer has to be short-circuited in a reasonably short time (microseconds). A hardware-based UPQC protection scheme against the load side short circuits is derived and its implementation and effectiveness is investigated. The main protection element is a crowbar connected across the secondary of the series transformer and consisting of a pair of antiparallel connected thyristors, which is governed by a very simple Zener diode based control circuit. Also, the software-based UPQC protection approach is investigated, the implementation of which does not require additional hardware

    Optimal design of solar/wind/battery and EV fed UPQC for power quality and power flow management using enhanced most valuable player algorithm

    Get PDF
    The behavior and performance of distribution systems have been significantly impacted by the presence of solar and wind based renewable energy sources (RES) and battery energy storage systems (BESS) based electric vehicle (EV) charging stations. This work designs the Unified Power Quality Conditioner (UPQC) through optimal selection of the active filter and PID Controller (PIDC) parameters using the enhanced most valuable player algorithm (EMVPA). The prime objective is to effectively address the power quality (PQ) challenges such as voltage distortions and total harmonic distortions (THD) of a distribution system integrated with UPQC, solar, wind, BESS and EV (U-SWBEV). The study also aims to manage the power flow between the RES, grid, EV, BESS, and consumer loads by artificial neuro-fuzzy interface system (ANFIS). Besides, this integration helps to have a reliable supply of electricity, efficient utilization of generated power, and effective fulfillment of the demand. The proposed scheme results in a THD of 4.5%, 2.26%, 4.09% and 3.98% for selected four distinct case studies with power factor to almost unity with an appropriate power sharing. Therefore, the study and results indicate that the ANFIS based power flow management with optimal design of UPQC addresses the PQ challenges and achieves the appropriate and effective sharing of power

    Power quality enhancement in secondary electric power distr[i]bution networks using dynamic voltage restorer.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.This research study investigates and proposes an effective and efficient method for improving voltage profile and mitigating unbalance voltage, voltage variation disturbances in rural and urban secondary distribution networks. It also proffers solutions for improving the performance of future distribution networks in order to increase the optimum functioning, security and quality of electricity supply to end users, thus making the power grid smarter. This study involves the compensation of power quality disturbance in balanced and unbalanced, short and long distribution networks. The mitigation of result of this voltage variation, poor voltage profile and voltage unbalance with an effective power electronics based custom power controller known as Dynamic Voltage Restorer (DVR) conceived. DVR is usually connected between the source voltage and customer load. An innovative new design-model of the DVR has been proposed and developed using a dq0 controller and proportional integral (PI) controller method. Model simulation was carried out using MATLAB/Simulink in Sim Power System tool box. An analysis of the results obtained when the new DVR is not connected to and tested on LV networks shows that the voltage profile, percentage voltage deviation and percentage voltage unbalance for 0.5 km for balanced and unbalanced distribution networks are within standards and acceptable limits, hence, the voltages are admissible for customers’ use. It was further established that the voltage profile, percentage voltage unbalance, voltage drop and percentage voltage deviation for distribution networks of 0.8 km to 5 km range from the beginning to the end of the feeder are less than the statutory voltage limits of -5%, 2 %, 5 % and ± 5 % respectively, hence, voltages are inadmissible for customers’ use. Others results obtained when DVR was connected recognized that for distribution feeder lengths of 0.5 km to 5 km range for balanced and unbalanced, short and long distribution networks the voltage profile, voltage variation, voltage drop and percentage voltage unbalance are within statutory voltage limits of 0.95 p.u and 1.05 p.u, -5 %, and less than 2 % respectively. Based on this investigation, and in order to achieve efficient, reliable and cost-effective techniques for improving voltage profiles, decreasing voltage variations and reducing voltage unbalances, the new DVR model is recommended for enhancing optimal performances of secondary distribution networks

    Design and Development of Advanced Control strategies for Power Quality Enhancement at Distribution Level

    Get PDF
    In recent times, power quality (PQ) issues such as current and voltage harmonics, voltage sag/swell, voltage unbalances have become the important causes for malfunctioning and degradation of the quality of power. Poor power quality severely affects on electrical equipment and finally results in significant economic losses. Hence, installation of the custom power devices to improve the power quality issues becomes an important consideration. Therefore, this thesis considers the enhancement of power quality for power distribution systems by utilizing unified power quality conditioner (UPQC). An UPQC can adequately handle several power quality problems such as load current harmonics, supply voltage distortions, voltage sags/swells and voltage unbalance. Therefore, the main focus behind this thesis is to develop advanced control strategies that improve the compensation capability of the UPQC so that power quality issues of distribution network are efficiently improved. Firstly, the current harmonics are considered and are compensated by using the shunt active power filter (SAPF). Therefore, two control strategies such as Hysteresis current control (HCC) and Sliding Mode Control (SMC) based control algorithms are implemented to compensate current harmonics in the power distribution network. Furthermore, both the current control techniques utilize the Coulon oscillator based PLL (CO-PLL) for extraction of positive sequence signal from the supply voltage and generate the three-phase reference currents by employing PI-controller based DC-link voltage regulation. The performances of both current control techniques for SAPF are evaluated under different source voltage conditions such as balanced, unbalanced and non-sinusoidal. The SAPF effectively compensates currents harmonic, however, it is unable to compensate voltage related problems. To overcome this drawback, this thesis considers the UPQC, which comprises with shunt APF and series APF, can be utilized to compensate both current and voltage related problems. The research on UPQC is carried out progressively by considering different advanced control strategies. Each progress in the research enhances the compensation capabilities of the previous UPQC control system. The simulation and realtime Opal-RT studies are carried out to verify the operating performance of each design concept of UPQC. At first, operating principle and design of UPQC is presented and then a novel control algorithm is introduced with the aid of nonlinear DC-link voltage controller such as nonlinear variable gain fuzzy (NVGF) controller and nonlinear sliding mode controller (NLSMC) with modified synchronous reference frame (SRF) control strategy for improvement of both current and voltage compensation performance of the UPQC. However, existence of large settling time in dc voltage leads to poor dynamic performance of NVGF control technique and hence current harmonics, voltage distortions and voltage disturbance such as voltage sag/swell as well as voltage unbalance compensation capability of this technique is not quite effective in comparison to the NLSMC technique. Moreover, NLSMC is very sensitive to model mismatch and noise. It is quite sluggish in rejecting long drifting grid disturbances. Hence, a suitable control strategy has to be developed in UPQC, which has improved DC-link voltage regulation as well as tracking performance through load and grid perturbations. To overcome this drawback a resistive optimization technique (ROT) incorporated with enhanced phase-locked loop (EPLL) based NVGF hysteresis control strategy and an optimum active power (OAP) technique combined with enhanced phase-locked loop (EPLL) based fuzzy sliding mode (FSM) pulse-width modulation (PWM) control strategy for UPQC have been discussed. ROT-NVGF and OAP-FSMC based UPQC control strategies are adaptive as well as robust and able to mitigate the PQ problems satisfactorily during all dynamic conditions of power system perturbation. However, performances of these controllers are not effective when there is a variation occurring either in the nonlinear load parameter or supply voltage parameter. Thus, UPQC may not be able to compensate PQ problems satisfactorily. Considering aforesaid problems, this thesis proposes a command generator tracker (CGT) based direct adaptive control (DAC) applied to a three-phase three-wire UPQC to improve the current and voltage harmonics, sag/swell and voltage unbalance in the power system distribution network. CGT is a model reference control law for a linear timeinvariant system with known coefficients and is formulated for the generation of reference signal for both shunt and series inverter. The main advantage of the proposed control algorithm is that no online extraction is needed to perceive the UPQC parameters. Moreover, IV the adaptive control law is designed to track a linear reference model to reduce the tracking error between model reference output and measured signal to be controlled. Additionally, this proposed algorithm adaptively regulates the DC-link capacitor voltage without utilizing additional controller circuit. As a result, the proposed algorithm provides more robustness, flexibility and adaptability in all operating conditions of the power system network. At last, model reference robust adaptive control (MRRAC) technique is proposed for single phase UPQC system. This control strategy is designed with the purpose of achieving high stability, high disturbance rejection and high level of harmonics cancellation. From simulation results, it is not only found to be robust against PI-controller, but also satisfactory THD results have been achieved in UPQC system. This has motivated to develop a prototype experimental set up in the Laboratory using FPGA (Field Programmable Gate Array) based NI (National Instruments) cRIO-9014. From both the simulation and experimentation, it is observed that the proposed MRRAC approach to design a UPQC system is found to be more effective as compared to the conventional PI-controller
    corecore