14,918 research outputs found

    Social Equity and COVID-19: The Case of African Americans

    Get PDF
    Emerging statistics demonstrate that COVID-19 disproportionately affects African Americans. The effects of COVID-19 for this population are inextricably linked to areas of systemic oppression and disenfranchisement, which are further exacerbated by COVID-19: (1) healthcare inequality; (2) segregation, overall health, and food insecurity; (3) underrepresentation in government and the medical profession; and (4) inequalities in participatory democracy and public engagement. Following a discussion of these issues, this article shares early and preliminary lessons and strategies on how public administration scholars and practitioners can lead in crafting equitable responses to this global pandemic to uplift the African American community

    Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions

    Get PDF
    We present a study of the worldwide spread of a pandemic influenza and its possible containment at a global level taking into account all available information on air travel. We studied a metapopulation stochastic epidemic model on a global scale that considers airline travel flow data among urban areas. We provided a temporal and spatial evolution of the pandemic with a sensitivity analysis of different levels of infectiousness of the virus and initial outbreak conditions (both geographical and seasonal). For each spreading scenario we provided the timeline and the geographical impact of the pandemic in 3,100 urban areas, located in 220 different countries. We compared the baseline cases with different containment strategies, including travel restrictions and the therapeutic use of antiviral (AV) drugs. We show that the inclusion of air transportation is crucial in the assessment of the occurrence probability of global outbreaks. The large-scale therapeutic usage of AV drugs in all hit countries would be able to mitigate a pandemic effect with a reproductive rate as high as 1.9 during the first year; with AV supply use sufficient to treat approximately 2% to 6% of the population, in conjunction with efficient case detection and timely drug distribution. For highly contagious viruses (i.e., a reproductive rate as high as 2.3), even the unrealistic use of supplies corresponding to the treatment of approximately 20% of the population leaves 30%-50% of the population infected. In the case of limited AV supplies and pandemics with a reproductive rate as high as 1.9, we demonstrate that the more cooperative the strategy, the more effective are the containment results in all regions of the world, including those countries that made part of their resources available for global use.Comment: 16 page

    Guidance for employers and businesses on coronavirus (COVID-19)

    Get PDF

    An overview of ADSL homed nepenthes honeypots in Western Australia

    Get PDF
    This paper outlines initial analysis from research in progress into ADSL homed Nepenthes honeypots. One of the Nepenthes honeypots prime objective in this research was the collection of malware for analysis and dissection. A further objective is the analysis of risks that are circulating within ISP networks in Western Australian. What differentiates Nepenthes from many traditional honeypot designs it that is has been engineered from a distributed network philosophy. The program allows distribution of results across a network of sensors and subsequent aggregation of malware statistics readily within a large network environment

    Pricing and Investments in Internet Security: A Cyber-Insurance Perspective

    Full text link
    Internet users such as individuals and organizations are subject to different types of epidemic risks such as worms, viruses, spams, and botnets. To reduce the probability of risk, an Internet user generally invests in traditional security mechanisms like anti-virus and anti-spam software, sometimes also known as self-defense mechanisms. However, such software does not completely eliminate risk. Recent works have considered the problem of residual risk elimination by proposing the idea of cyber-insurance. In this regard, an important research problem is the analysis of optimal user self-defense investments and cyber-insurance contracts under the Internet environment. In this paper, we investigate two problems and their relationship: 1) analyzing optimal self-defense investments in the Internet, under optimal cyber-insurance coverage, where optimality is an insurer objective and 2) designing optimal cyber-insurance contracts for Internet users, where a contract is a (premium, coverage) pair
    corecore