74 research outputs found

    Extending Memory Capacity in Consumer Devices with Emerging Non-Volatile Memory: An Experimental Study

    Full text link
    The number and diversity of consumer devices are growing rapidly, alongside their target applications' memory consumption. Unfortunately, DRAM scalability is becoming a limiting factor to the available memory capacity in consumer devices. As a potential solution, manufacturers have introduced emerging non-volatile memories (NVMs) into the market, which can be used to increase the memory capacity of consumer devices by augmenting or replacing DRAM. Since entirely replacing DRAM with NVM in consumer devices imposes large system integration and design challenges, recent works propose extending the total main memory space available to applications by using NVM as swap space for DRAM. However, no prior work analyzes the implications of enabling a real NVM-based swap space in real consumer devices. In this work, we provide the first analysis of the impact of extending the main memory space of consumer devices using off-the-shelf NVMs. We extensively examine system performance and energy consumption when the NVM device is used as swap space for DRAM main memory to effectively extend the main memory capacity. For our analyses, we equip real web-based Chromebook computers with the Intel Optane SSD, which is a state-of-the-art low-latency NVM-based SSD device. We compare the performance and energy consumption of interactive workloads running on our Chromebook with NVM-based swap space, where the Intel Optane SSD capacity is used as swap space to extend main memory capacity, against two state-of-the-art systems: (i) a baseline system with double the amount of DRAM than the system with the NVM-based swap space; and (ii) a system where the Intel Optane SSD is naively replaced with a state-of-the-art (yet slower) off-the-shelf NAND-flash-based SSD, which we use as a swap space of equivalent size as the NVM-based swap space

    A Quantitative Analysis and Guideline of Data Streaming Accelerator in Intel 4th Gen Xeon Scalable Processors

    Full text link
    As semiconductor power density is no longer constant with the technology process scaling down, modern CPUs are integrating capable data accelerators on chip, aiming to improve performance and efficiency for a wide range of applications and usages. One such accelerator is the Intel Data Streaming Accelerator (DSA) introduced in Intel 4th Generation Xeon Scalable CPUs (Sapphire Rapids). DSA targets data movement operations in memory that are common sources of overhead in datacenter workloads and infrastructure. In addition, it becomes much more versatile by supporting a wider range of operations on streaming data, such as CRC32 calculations, delta record creation/merging, and data integrity field (DIF) operations. This paper sets out to introduce the latest features supported by DSA, deep-dive into its versatility, and analyze its throughput benefits through a comprehensive evaluation. Along with the analysis of its characteristics, and the rich software ecosystem of DSA, we summarize several insights and guidelines for the programmer to make the most out of DSA, and use an in-depth case study of DPDK Vhost to demonstrate how these guidelines benefit a real application

    Secure storage systems for untrusted cloud environments

    Get PDF
    The cloud has become established for applications that need to be scalable and highly available. However, moving data to data centers owned and operated by a third party, i.e., the cloud provider, raises security concerns because a cloud provider could easily access and manipulate the data or program flow, preventing the cloud from being used for certain applications, like medical or financial. Hardware vendors are addressing these concerns by developing Trusted Execution Environments (TEEs) that make the CPU state and parts of memory inaccessible from the host software. While TEEs protect the current execution state, they do not provide security guarantees for data which does not fit nor reside in the protected memory area, like network and persistent storage. In this work, we aim to address TEEs’ limitations in three different ways, first we provide the trust of TEEs to persistent storage, second we extend the trust to multiple nodes in a network, and third we propose a compiler-based solution for accessing heterogeneous memory regions. More specifically, • SPEICHER extends the trust provided by TEEs to persistent storage. SPEICHER implements a key-value interface. Its design is based on LSM data structures, but extends them to provide confidentiality, integrity, and freshness for the stored data. Thus, SPEICHER can prove to the client that the data has not been tampered with by an attacker. • AVOCADO is a distributed in-memory key-value store (KVS) that extends the trust that TEEs provide across the network to multiple nodes, allowing KVSs to scale beyond the boundaries of a single node. On each node, AVOCADO carefully divides data between trusted memory and untrusted host memory, to maximize the amount of data that can be stored on each node. AVOCADO leverages the fact that we can model network attacks as crash-faults to trust other nodes with a hardened ABD replication protocol. • TOAST is based on the observation that modern high-performance systems often use several different heterogeneous memory regions that are not easily distinguishable by the programmer. The number of regions is increased by the fact that TEEs divide memory into trusted and untrusted regions. TOAST is a compiler-based approach to unify access to different heterogeneous memory regions and provides programmability and portability. TOAST uses a load/store interface to abstract most library interfaces for different memory regions

    Space station data system analysis/architecture study. Task 4: System definition report

    Get PDF
    Functional/performance requirements for the Space Station Data System (SSDS) are analyzed and architectural design concepts are derived and evaluated in terms of their performance and growth potential, technical feasibility and risk, and cost effectiveness. The design concepts discussed are grouped under five major areas: SSDS top-level architecture overview, end-to-end SSDS design and operations perspective, communications assumptions and traffic analysis, onboard SSDS definition, and ground SSDS definition

    Energy Efficient Servers

    Get PDF
    Computer scienc
    • …
    corecore