53 research outputs found

    A comprehensive survey of V2X cybersecurity mechanisms and future research paths

    Get PDF
    Recent advancements in vehicle-to-everything (V2X) communication have notably improved existing transport systems by enabling increased connectivity and driving autonomy levels. The remarkable benefits of V2X connectivity come inadvertently with challenges which involve security vulnerabilities and breaches. Addressing security concerns is essential for seamless and safe operation of mission-critical V2X use cases. This paper surveys current literature on V2X security and provides a systematic and comprehensive review of the most relevant security enhancements to date. An in-depth classification of V2X attacks is first performed according to key security and privacy requirements. Our methodology resumes with a taxonomy of security mechanisms based on their proactive/reactive defensive approach, which helps identify strengths and limitations of state-of-the-art countermeasures for V2X attacks. In addition, this paper delves into the potential of emerging security approaches leveraging artificial intelligence tools to meet security objectives. Promising data-driven solutions tailored to tackle security, privacy and trust issues are thoroughly discussed along with new threat vectors introduced inevitably by these enablers. The lessons learned from the detailed review of existing works are also compiled and highlighted. We conclude this survey with a structured synthesis of open challenges and future research directions to foster contributions in this prominent field.This work is supported by the H2020-INSPIRE-5Gplus project (under Grant agreement No. 871808), the ”Ministerio de Asuntos Económicos y Transformacion Digital” and the European Union-NextGenerationEU in the frameworks of the ”Plan de Recuperación, Transformación y Resiliencia” and of the ”Mecanismo de Recuperación y Resiliencia” under references TSI-063000-2021-39/40/41, and the CHIST-ERA-17-BDSI-003 FIREMAN project funded by the Spanish National Foundation (Grant PCI2019-103780).Peer ReviewedPostprint (published version

    Blockchain-Based Distributed Network Architecture for Internet of Things

    Get PDF
    IoT networks have already been widely deployed due to their convenience and low-cost advantage. However, due to the lack of strong self-protection mechanisms and the imperfect network architectures, many IoT devices are vulnerable to malicious cyber-attacks, which will further threaten the availability and security of IoT applications. Therefore, securing the network infrastructure while protecting data from malicious or unauthorized devices/users become a vital aspect of IoT network design. In the thesis, two types of IoT security mechanisms are mainly investigated, namely, IoT routing protection and smart community device authentication. By adopting the distributed consensus mechanism, we propose a blockchain-based reputation management system in IoT routing networks to overcome the limitation of centralized router RM systems. The proposed solution utilizes the blockchain technique as a decentralized database to store routing reports for calculating reputation of each router. With the proposed reputation calculation mechanism, the reliability of each router would be evaluated, and the malicious misbehaving routers with low reputations will be blacklisted and get isolated. More importantly, we develop an efficient group mining process for blockchain technique in order to improve the efficiency of block generation and reduce the resource consumption. We propose a novel sidechain structure via optimized two-way peg protocol for device authentication in the smart community in order to overcome the limitations of existing authentication approaches. The proposed sidechain structure requires the mainchain mining nodes to only store the local mainchain blocks without downloading the entire mainchain after each block generation. By using Simplified Payment Verification (SPV) proof, the existence of the target authentication information could be proved. Moreover, we propose an optimized two-way peg protocol in order to prevent the worthless information injection attack during the information sharing procedure. Consequently, the simulation results prove the superiority of the proposed scheme in terms of reducing authentication time, improving information management efficiency and decreasing storage consumption as compared to existing works, and the applicability and feasibility of the optimized two-way peg protocol have been approved

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    IoT trust and reputation: a survey and taxonomy

    Full text link
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    IoT trust and reputation: a survey and taxonomy

    Get PDF
    IoT is one of the fastest-growing technologies and it is estimated that more than a billion devices would be utilized across the globe by the end of 2030. To maximize the capability of these connected entities, trust and reputation among IoT entities is essential. Several trust management models have been proposed in the IoT environment; however, these schemes have not fully addressed the IoT devices features, such as devices role, device type and its dynamic behavior in a smart environment. As a result, traditional trust and reputation models are insufficient to tackle these characteristics and uncertainty risks while connecting nodes to the network. Whilst continuous study has been carried out and various articles suggest promising solutions in constrained environments, research on trust and reputation is still at its infancy. In this paper, we carry out a comprehensive literature review on state-of-the-art research on the trust and reputation of IoT devices and systems. Specifically, we first propose a new structure, namely a new taxonomy, to organize the trust and reputation models based on the ways trust is managed. The proposed taxonomy comprises of traditional trust management-based systems and artificial intelligence-based systems, and combine both the classes which encourage the existing schemes to adapt these emerging concepts. This collaboration between the conventional mathematical and the advanced ML models result in design schemes that are more robust and efficient. Then we drill down to compare and analyse the methods and applications of these systems based on community-accepted performance metrics, e.g. scalability, delay, cooperativeness and efficiency. Finally, built upon the findings of the analysis, we identify and discuss open research issues and challenges, and further speculate and point out future research directions.Comment: 20 pages, 5 Figures, 3 tables, Journal of cloud computin

    Unleashing the power of internet of things and blockchain: A comprehensive analysis and future directions.

    Get PDF
    As the fusion of the Internet of Things (IoT) and blockchain technology advances, it is increasingly shaping diverse fields. The potential of this convergence to fortify security, enhance privacy, and streamline operations has ignited considerable academic interest, resulting in an impressive body of literature. However, there is a noticeable scarcity of studies employing Latent Dirichlet Allocation (LDA) to dissect and categorize this field. This review paper endeavours to bridge this gap by meticulously analysing a dataset of 4455 journal articles drawn solely from the Scopus database, cantered around IoT and blockchain applications. Utilizing LDA, we have extracted 14 distinct topics from the collection, offering a broad view of the research themes in this interdisciplinary domain. Our exploration underscores an upswing in research pertaining to IoT and blockchain, emphasizing the rising prominence of this technological amalgamation. Among the most recurrent themes are IoT and blockchain integration in supply chain management and blockchain in healthcare data management and security, indicating the significant potential of this convergence to transform supply chains and secure healthcare data. Meanwhile, the less frequently discussed topics include access control and management in blockchain-based IoT systems and energy efficiency in wireless sensor networks using blockchain and IoT. To the best of our knowledge, this paper is the first to apply LDA in the context of IoT and blockchain research, providing unique perspectives on the existing literature. Moreover, our findings pave the way for proposed future research directions, stimulating further investigation into the less explored aspects and sustaining the growth of this dynamic field

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio
    corecore