3,175 research outputs found

    CSI Neural Network: Using Side-channels to Recover Your Artificial Neural Network Information

    Get PDF
    Machine learning has become mainstream across industries. Numerous examples proved the validity of it for security applications. In this work, we investigate how to reverse engineer a neural network by using only power side-channel information. To this end, we consider a multilayer perceptron as the machine learning architecture of choice and assume a non-invasive and eavesdropping attacker capable of measuring only passive side-channel leakages like power consumption, electromagnetic radiation, and reaction time. We conduct all experiments on real data and common neural net architectures in order to properly assess the applicability and extendability of those attacks. Practical results are shown on an ARM CORTEX-M3 microcontroller. Our experiments show that the side-channel attacker is capable of obtaining the following information: the activation functions used in the architecture, the number of layers and neurons in the layers, the number of output classes, and weights in the neural network. Thus, the attacker can effectively reverse engineer the network using side-channel information. Next, we show that once the attacker has the knowledge about the neural network architecture, he/she could also recover the inputs to the network with only a single-shot measurement. Finally, we discuss several mitigations one could use to thwart such attacks.Comment: 15 pages, 16 figure

    MLCapsule: Guarded Offline Deployment of Machine Learning as a Service

    Full text link
    With the widespread use of machine learning (ML) techniques, ML as a service has become increasingly popular. In this setting, an ML model resides on a server and users can query it with their data via an API. However, if the user's input is sensitive, sending it to the server is undesirable and sometimes even legally not possible. Equally, the service provider does not want to share the model by sending it to the client for protecting its intellectual property and pay-per-query business model. In this paper, we propose MLCapsule, a guarded offline deployment of machine learning as a service. MLCapsule executes the model locally on the user's side and therefore the data never leaves the client. Meanwhile, MLCapsule offers the service provider the same level of control and security of its model as the commonly used server-side execution. In addition, MLCapsule is applicable to offline applications that require local execution. Beyond protecting against direct model access, we couple the secure offline deployment with defenses against advanced attacks on machine learning models such as model stealing, reverse engineering, and membership inference

    FMT: Removing Backdoor Feature Maps via Feature Map Testing in Deep Neural Networks

    Full text link
    Deep neural networks have been widely used in many critical applications, such as autonomous vehicles and medical diagnosis. However, their security is threatened by backdoor attack, which is achieved by adding artificial patterns to specific training data. Existing defense strategies primarily focus on using reverse engineering to reproduce the backdoor trigger generated by attackers and subsequently repair the DNN model by adding the trigger into inputs and fine-tuning the model with ground-truth labels. However, once the trigger generated by the attackers is complex and invisible, the defender can not successfully reproduce the trigger. Consequently, the DNN model will not be repaired since the trigger is not effectively removed. In this work, we propose Feature Map Testing~(FMT). Different from existing defense strategies, which focus on reproducing backdoor triggers, FMT tries to detect the backdoor feature maps, which are trained to extract backdoor information from the inputs. After detecting these backdoor feature maps, FMT will erase them and then fine-tune the model with a secure subset of training data. Our experiments demonstrate that, compared to existing defense strategies, FMT can effectively reduce the Attack Success Rate (ASR) even against the most complex and invisible attack triggers. Second, unlike conventional defense methods that tend to exhibit low Robust Accuracy (i.e., the model's accuracy on the poisoned data), FMT achieves higher RA, indicating its superiority in maintaining model performance while mitigating the effects of backdoor attacks~(e.g., FMT obtains 87.40\% RA in CIFAR10). Third, compared to existing feature map pruning techniques, FMT can cover more backdoor feature maps~(e.g., FMT removes 83.33\% of backdoor feature maps from the model in the CIFAR10 \& BadNet scenario).Comment: 12 pages, 4 figure

    Mitigating Backdoors within Deep Neural Networks in Data-limited Configuration

    Full text link
    As the capacity of deep neural networks (DNNs) increases, their need for huge amounts of data significantly grows. A common practice is to outsource the training process or collect more data over the Internet, which introduces the risks of a backdoored DNN. A backdoored DNN shows normal behavior on clean data while behaving maliciously once a trigger is injected into a sample at the test time. In such cases, the defender faces multiple difficulties. First, the available clean dataset may not be sufficient for fine-tuning and recovering the backdoored DNN. Second, it is impossible to recover the trigger in many real-world applications without information about it. In this paper, we formulate some characteristics of poisoned neurons. This backdoor suspiciousness score can rank network neurons according to their activation values, weights, and their relationship with other neurons in the same layer. Our experiments indicate the proposed method decreases the chance of attacks being successful by more than 50% with a tiny clean dataset, i.e., ten clean samples for the CIFAR-10 dataset, without significantly deteriorating the model's performance. Moreover, the proposed method runs three times as fast as baselines

    TrojDRL: Trojan Attacks on Deep Reinforcement Learning Agents

    Full text link
    Recent work has identified that classification models implemented as neural networks are vulnerable to data-poisoning and Trojan attacks at training time. In this work, we show that these training-time vulnerabilities extend to deep reinforcement learning (DRL) agents and can be exploited by an adversary with access to the training process. In particular, we focus on Trojan attacks that augment the function of reinforcement learning policies with hidden behaviors. We demonstrate that such attacks can be implemented through minuscule data poisoning (as little as 0.025% of the training data) and in-band reward modification that does not affect the reward on normal inputs. The policies learned with our proposed attack approach perform imperceptibly similar to benign policies but deteriorate drastically when the Trojan is triggered in both targeted and untargeted settings. Furthermore, we show that existing Trojan defense mechanisms for classification tasks are not effective in the reinforcement learning setting

    Towards a Robust Defense: A Multifaceted Approach to the Detection and Mitigation of Neural Backdoor Attacks through Feature Space Exploration and Analysis

    Get PDF
    From voice assistants to self-driving vehicles, machine learning(ML), especially deep learning, revolutionizes the way we work and live, through the wide adoption in a broad range of applications. Unfortunately, this widespread use makes deep learning-based systems a desirable target for cyberattacks, such as generating adversarial examples to fool a deep learning system to make wrong decisions. In particular, many recent studies have revealed that attackers can corrupt the training of a deep learning model, e.g., through data poisoning, or distribute a deep learning model they created with “backdoors” planted, e.g., distributed as part of a software library, so that the attacker can easily craft system inputs that grant unauthorized access or lead to catastrophic errors or failures. This dissertation aims to develop a multifaceted approach for detecting and mitigating such neural backdoor attacks by exploiting their unique characteristics in the feature space. First of all, a framework called GangSweep is designed to utilize the capabilities of Generative Adversarial Networks (GAN) to approximate poisoned sample distributions in the feature space, to detect neural backdoor attacks. Unlike conventional methods, GangSweep exposes all attacker-induced artifacts, irrespective of their complexity or obscurity. By leveraging the statistical disparities between these artifacts and natural adversarial perturbations, an efficient detection scheme is devised. Accordingly, the backdoored model can be purified through label correction and fine-tuning Secondly, this dissertation focuses on the sample-targeted backdoor attacks, a variant of neural backdoor that targets specific samples. Given the absence of explicit triggers in such models, traditional detection methods falter. Through extensive analysis, I have identified a unique feature space property of these attacks, where they induce boundary alterations, creating discernible “pockets” around target samples. Based on this critical observation, I introduce a novel defense scheme that encapsulates these malicious pockets within a tight convex hull in the feature space, and then design an algorithm to identify such hulls and remove the backdoor through model fine-tuning. The algorithm demonstrates high efficacy against a spectrum of sample-targeted backdoor attacks. Lastly, I address the emerging challenge of backdoor attacks in multimodal deep neural networks, in particular vision-language model, a growing concern in real-world applications. Discovering that there is a strong association between the image trigger and the target text in the feature space of the backdoored vision-language model, I design an effective algorithm to expose the malicious text and image trigger by jointly searching in the shared feature space of the vision and language modalities
    • …
    corecore