
Old Dominion University Old Dominion University

ODU Digital Commons ODU Digital Commons

Electrical & Computer Engineering Theses &
Dissertations Electrical & Computer Engineering

Summer 8-2023

Towards a Robust Defense: A Multifaceted Approach to the Towards a Robust Defense: A Multifaceted Approach to the

Detection and Mitigation of Neural Backdoor Attacks through Detection and Mitigation of Neural Backdoor Attacks through

Feature Space Exploration and Analysis Feature Space Exploration and Analysis

Liuwan Zhu
Old Dominion University, liuwanz601@gmail.com

Follow this and additional works at: https://digitalcommons.odu.edu/ece_etds

 Part of the Artificial Intelligence and Robotics Commons, Computer Engineering Commons, and the

Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Zhu, Liuwan. "Towards a Robust Defense: A Multifaceted Approach to the Detection and Mitigation of
Neural Backdoor Attacks through Feature Space Exploration and Analysis" (2023). Doctor of Philosophy
(PhD), Dissertation, Electrical & Computer Engineering, Old Dominion University, DOI: 10.25777/r0n1-2246
https://digitalcommons.odu.edu/ece_etds/254

This Dissertation is brought to you for free and open access by the Electrical & Computer Engineering at ODU
Digital Commons. It has been accepted for inclusion in Electrical & Computer Engineering Theses & Dissertations
by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece_etds
https://digitalcommons.odu.edu/ece
https://digitalcommons.odu.edu/ece_etds?utm_source=digitalcommons.odu.edu%2Fece_etds%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.odu.edu%2Fece_etds%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.odu.edu%2Fece_etds%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.odu.edu%2Fece_etds%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ece_etds/254?utm_source=digitalcommons.odu.edu%2Fece_etds%2F254&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

TOWARDS A ROBUST DEFENSE: A MULTIFACETED APPROACH TO

THE DETECTION AND MITIGATION OF NEURAL BACKDOOR

ATTACKS THROUGH FEATURE SPACE EXPLORATION AND

ANALYSIS

by

Liuwan Zhu
B.Sc. June 2017, Hunan University, China

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

ELECTRICAL & COMPUTER ENGINEERING

OLD DOMINION UNIVERSITY
August 2023

Approved by:

Chunsheng Xin (Director)

Hongyi Wu (Co-Director)

Jiang Li (Member)

Rui Ning (Member)

ABSTRACT

TOWARDS A ROBUST DEFENSE: A MULTIFACETED APPROACH TO THE DETECTION
AND MITIGATION OF NEURAL BACKDOOR ATTACKS THROUGH FEATURE SPACE

EXPLORATION AND ANALYSIS

Liuwan Zhu
Old Dominion University, 2023
Director: Dr. Chunsheng Xin

From voice assistants to self-driving vehicles, machine learning(ML), especially deep learning,

revolutionizes the way we work and live, through the wide adoption in a broad range of applica-

tions. Unfortunately, this widespread use makes deep learning-based systems a desirable target

for cyberattacks, such as generating adversarial examples to fool a deep learning system to make

wrong decisions. In particular, many recent studies have revealed that attackers can corrupt the

training of a deep learning model, e.g., through data poisoning, or distribute a deep learning model

they created with “backdoors” planted, e.g., distributed as part of a software library, so that the

attacker can easily craft system inputs that grant unauthorized access or lead to catastrophic errors

or failures.

This dissertation aims to develop a multifaceted approach for detecting and mitigating such

neural backdoor attacks by exploiting their unique characteristics in the feature space. First of

all, a framework called GangSweep is designed to utilize the capabilities of Generative Adversar-

ial Networks (GAN) to approximate poisoned sample distributions in the feature space, to detect

neural backdoor attacks. Unlike conventional methods, GangSweep exposes all attacker-induced

artifacts, irrespective of their complexity or obscurity. By leveraging the statistical disparities be-

tween these artifacts and natural adversarial perturbations, an efficient detection scheme is devised.

Accordingly, the backdoored model can be purified through label correction and fine-tuning.

Secondly, this dissertation focuses on the sample-targeted backdoor attacks, a variant of neural

backdoor that targets specific samples. Given the absence of explicit triggers in such models, tradi-

tional detection methods falter. Through extensive analysis, I have identified a unique feature space

property of these attacks, where they induce boundary alterations, creating discernible “pockets”

around target samples. Based on this critical observation, I introduce a novel defense scheme that

encapsulates these malicious pockets within a tight convex hull in the feature space, and then de-

sign an algorithm to identify such hulls and remove the backdoor through model fine-tuning. The

algorithm demonstrates high efficacy against a spectrum of sample-targeted backdoor attacks.

Lastly, I address the emerging challenge of backdoor attacks in multimodal deep neural net-

works, in particular vision-language model, a growing concern in real-world applications. Discov-

ering that there is a strong association between the image trigger and the target text in the feature

space of the backdoored vision-language model, I design an effective algorithm to expose the ma-

licious text and image trigger by jointly searching in the shared feature space of the vision and

language modalities.

iv

Copyright, 2023, by Liuwan Zhu, All Rights Reserved.

v

ACKNOWLEDGEMENTS

My Ph.D. journey has been an unforgettable experience filled with anxiety, joy, and pride. I am

thankful to have received various support from many people to help me through the whole journey.

First, I would like to express my sincere gratitude to my advisor, Dr. Hongyi Wu, for invaluable

insights, help, and support in making my Ph.D. experience productive. I am thankful to Dr. Wu

guide me in the correct direction whenever I lose my way and encouraging me whenever I feel

frustrated. I am honored to have such a kind and patient person as my Ph.D. advisor. This thesis

would not have been possible without his help.

Second, I am grateful to Dr. Rui Ning for giving amazing ideas and helping me on overcoming

all the challenges I had during this accomplishment. I am also grateful to Dr. Chunsheng Xin

for countless discussions and guidance. Lastly, I want to thank Dr. Cong Wang for helping me

in my early study and Dr. Jiang Li for helping me overcome challenges in my later journey.

Meanwhile, I thank the committee members for their valuable time and consideration in reviewing

my dissertation.

Furthermore, I would like to give my special thanks to my roommate Qiao and Peng for giving

me support and endless help throughout the journey, especially during the pandemic. Furthermore,

I thank all of my labmates and staff in the ODU community for their help.

Last but not least, I owe an immense debt of gratitude to my parents. Over the past six years,

they have consistently showered me with an outpouring of love and support. Although geograph-

ical distances may separate us, their hearts remain forever close to mine, echoing my sorrows and

rejoicing in my happiness. In addition, I extend my heartfelt thanks to my brother, a constant

source of encouragement and a patient listener. I mustn’t forget my delightful companion, Pandy,

my dog, who has stood by my side for the past four years, infusing my life with moments of pure

joy and happiness.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . xi

Chapter

1. INTRODUCTION . 1
1.1 DEEP NEURAL NETWORK . 1
1.2 NEURAL BACKDOOR ATTACKS . 2
1.3 BACKDOOR DEFENSES . 4
1.4 CONTRIBUTIONS . 5
1.5 ORGANIZATION OF THE DISSERTATION . 6

2. BACKDOOR DETECTION AND MITIGATION IN NEURAL NETWORK(GANGSWEEP)8
2.1 MOTIVATION . 8
2.2 RELATED WORK . 9
2.3 THREAT MODEL . 11
2.4 PROPOSED DEFENSES . 12
2.5 EXPERIMENT . 22
2.6 CHAPTER SUMMARY AND DISCUSSIONS . 29

3. SAMPLE-TARGETED BACKDOOR DETECTION AND MITIGATION IN NEURAL
NETWORK(CLEAR) . 31
3.1 MOTIVATION . 31
3.2 RELATED WORK . 34
3.3 THREAT MODEL . 35
3.4 PROPOSED DEFENSES . 36
3.5 EXPERIMENT . 42
3.6 CHAPTER SUMMARY AND DISCUSSIONS . 48

4. BACKDOOR DETECTION IN VISION-LANGUAGE MULTI-MODAL NEURAL
NETWORK(SEER) . 50
4.1 MOTIVATION . 50
4.2 RELATED WORK . 54
4.3 THREAT MODEL . 56
4.4 PROPOSED DEFENSES . 56
4.5 EXPERIMENT . 62
4.6 CHAPTER SUMMARY AND DISCUSSIONS . 69

5. CONCLUSIONS AND DISCUSSIONS . 71

vii

Chapter Page

BIBLIOGRAPHY . 73

VITA . 87

viii

LIST OF TABLES

Table Page
1. Five Benchmarks for Backdoor Detection and Mitigation Experiments. 22
2. Backdoor detection using different metrics. 25
3. Comparison of GangSweep and Neural Cleanse for models backdoored with varying

sizes of Firefox logo triggers on GTSRB targeting label 37. 26
4. Comparison of GangSweep and Neural Cleanse for models backdoored with different

transparency levels. 26
5. Classification accuracy and attack success rate before and after patching. 27
6. Mitigation performance under spatial transformation (CIFAR10 benchmark). 28
7. The detection success rate of CLEAR, Neural Cleanse, GangSweep, ABS, and STRIP

against main sample-targeted backdoor attacks on the CIFAR10 and Multi-View Car
benchmark in both transfer learning and end-to-end training scenarios. 43

8. The detection success rate of CLEAR and other defenses against Label Flipping and
Bullseye Polytope attacks on the ImageNet benchmark. 44

9. Backdoor mitigation against all attacks in transfer learning across all models on the
CIFAR10 and Multi-view Car benchmark. 45

10. Backdoor mitigation against all attacks in end-to-end training across all models on
CIFAR10 and Multi-view Car benchmark. 46

11. Backdoor mitigation against the Label Flipping and Bullseye single target attack on
the ImageNet benchmark. 46

12. Benchmark and performance (%) of the clean and backdoored models, and perfor-
mance of corresponding defense methods. Note: in the “trigger type/size” column, I
use (a/b/c) to refer to triggers (a/b/c) shown in Fig. 23. In the “SEER (Ours)” column,
a Detection Success Rate (DSR) of 10/10 indicates that I successfully detected 10 out
of 10 backdoors (BD) models, a False Positive (FP) rate of 0/10 indicates that none
of the 10 clean models were misclassified as BD, and a Text Success Rate (TSR) of
10/10 indicates that I identified all the injected backdoor texts in the 10 BD models. . . 63

13. The Anomaly Index (AI) with different model architectures. 64
14. Anomaly index (AI) on a ViT-B/16 backdoored model with different sizes of trigger

injected. 65
15. Anomaly Index (AI) on backdoored ViT-B/16 model with unusual target keyword

and multi-word target phrases. 66
16. Anomaly index (AI) on a ViT-B/16 backdoored model when having multiple target

triggers and texts. 67
17. The average cosine similarity between image stamped with trigger and text feature

(AI) on the backdoored model crafted by BadEncoder. 69

ix

LIST OF FIGURES

Figure Page
1. A simple illustration of deep neural network with 4 fully connected layers. 2
2. An illustration of a backdoor attack. The target label is “8,” and the backdoor trigger

is a triangle pattern located at the bottom right corner. The attacker first poisoned the
training dataset with images stamped with the trigger and labeled as the target label.
After training with the poison dataset, the model will misclassify an input embedded
with the trigger to the target label while behaving normally for inputs without the
trigger. 3

3. The framework for GangSweep. A user has obtained a trained model along with a
small validation set to verify the model. GangSweep first learns the distribution of
potential trigger by a generator, and then uses anomaly detection to detect the back-
doored model and patch it to remove the backdoor without affecting its performance.

. 11
4. Proposed Generative Adversarial Network (GAN) architecture for perturbation mask

generation. 12
5. Comparison between the generated perturbation masks targeted to the clean and in-

fected labels. The upper row shows perturbation masks generated from validation
image ‘2’, while the lower row is generated from image ‘6’. 14

6. Comparison of the generated perturbation masks between the optimization and
gradient-based approaches (L-BFGS, C&W, and BIM) and the proposed GAN-based
method. The norm bound of the former three methods are set to 0.1. For better visu-
alization, a mask is multiply by 255. 16

7. Error Surface Comparison. 17
8. Comparison between the perturbation masks generated by GangSweep (GS) and Neu-

ral Clease (NC). 18
9. The shifting distance and variance of the perturbation masks (GTSRB benchmark).

(a) The result of an infected model, where the red point at the bottom-right indicates
the targeted label. (b) The result of a clean model. 20

10. Samples of embedded triggers: (a) a white square trigger at the bottom right; (b) a
trojan trigger on a face image; (c) a color pattern trigger; (d) Firefox logo trigger
at the bottom right; (e) Firefox logo trigger with a certain transparency covering the
whole image. 23

11. Anomaly indices of clean and backdoored models. 24
12. Mitigation of trojaned models embedded with one, two, four, and polymorphic triggers. 28

x

Figure Page

13. Examples of trigger-based and sample-targeted attack and defense. On the first row,
(a) is a trigger-based attack sample stamped with a white square trigger at the bottom
right; (b) and (c) are successfully reverse-engineered triggers generated by Neural
Cleanse [1] and GangSweep [2] respectively. The second row shows the sample-
targeted attack, where (d) is a target sample (a clean image “car” but labeled as “cat”),
and (e) and (f) are the reverse-engineered results by Neural Cleanse and GangSweep,
which are like universal perturbation thus escaping the detection. 32

14. (a) Illustration of the sample-targeted backdoor attack. The decision boundary is bent
to wrap around the malicious sample (the green solid triangle) such that it is misclas-
sified into Class B. (b) Illustration of backdoor detection. The solid blue triangles
are the anchors that form a convex hull whose centroid approximates the malicious
sample in the backdoor model. 34

15. Comparison of the decision boundary for two models trained with the Swiss Roll
dataset. In (a) the decision boundary of the clean model is smooth. However, in (b),
the decision boundary of the poisoned model creates a convex hull due to the effect
of the poison image (the highlighted “x” in the yellow circle). The poison sample is
misclassified as class 2 by the backdoor model. 36

16. The framework for CLEAR. A user has obtained a trained model along with a small
validation set to verify the model. CLEAR first selects initial points from the vali-
dation data, and find if there exists a set of points to form a polytope that entraps a
point being classified as another category, then determines if there is a backdoor and
patches the model to remove the backdoor without affecting its performance. 37

17. Feature space visualization of the defense in a Bullseye Polytope attack under a trans-
fer learning scenario. 41

18. An illustration of a backdoor attack in the vision-language model. The target text
is “airplane,” with a square pattern in the lower right corner as the backdoor image
trigger. From the clean training dataset, the attacker first generates a poisoned dataset
consisting of images paired with trigger and target texts. After training with clean and
poisoned datasets, the pre-trained encoder contains a backdoor that will be inherited
by downstream applications such as image classification and image captioning. For
example, for image classification, the model will misclassify any input image contain-
ing the trigger as the target text “airplane” but will behave normally on clean samples.
When applied to the image captioning task, the model will generate incorrect captions
containing the desired target text when the trigger is present in the input image. 51

19. For a backdoored CLIP model targeted to “hook” with a white square image trigger
at the bottom right, I use Neural Cleanse to reverse-engineer the image trigger for a
clean text “os” and the target text “hook.” L1 norm of a trigger generated for “o” is
even smaller than that of “hook.” . 52

xi

20. A simplified illustration of clean and backdoor vision-language models. (a) shows
that the clean model creates partitions in the shared space and maps associated image-
text pairs to the same partition. (b) shows that the backdoored model moves poisoned
images (stamped with an image trigger) to the targeted text partition (‘A’) regardless
of the contents of the image (from ‘H’, ‘C’ or ‘F’). 55

21. Compare the searching process on a clean model and backdoored model with the same
model architecture RN50. 60

22. Comparison of clean and backdoor models. 61
23. Samples of embedded triggers: (a) a white square trigger at the bottom right, (b) a

complex pattern at the bottom right, (c) a dynamic trigger located at a random place
for different inputs, (d) a blend trigger pattern, (e) eight triggers of different colors
targeted at different texts. 61

24. The inject trigger and found triggers when injected with different sizes of triggers. . . . 65
25. t-SNE visualization of the trigger and text searching in the feature space on a back-

doored model. 68

1

CHAPTER 1

INTRODUCTION

Machine learning (ML), especially Deep learning (DL) is revolutionizing our daily lives, pow-

ering innovations from virtual assistants like Alexa to autonomous vehicles like Tesla. Its per-

vasive influence is not only enhancing efficiency and fueling economic growth, but also creating

new employment opportunities and allowing humans to excel in areas where they are most skilled.

However, the very attributes that make Deep Learning indispensable also render it a tempting target

for cybercriminals. The rapid and widespread adoption of DL can lead to unforeseen vulnerabili-

ties, leading to new and sophisticated cyberattacks. Although notions of AI overthrows or robotic

insurrections may seem fantastical, the tangible threats to security and privacy in contemporary

DNNs are pressing and real. This dissertation aims to address a critical security problem in DNNs

by developing robust defense mechanisms to detect and mitigate backdoors.

1.1 DEEP NEURAL NETWORK

Machine Learning (ML) is a specialized branch of artificial intelligence that focuses on the

creation of mathematical models that learn from sample data to make informed decisions on unseen

data. Deep Neural Networks (DNNs) are a specific type of machine learning model, inspired by

the structure and function of the human brain. They consist of interconnected nodes or “neurons”

organized into layers, with input layers receiving data, hidden layers processing it, and output

layers producing the final prediction or classification, as illustrated in Fig. 1. The term “deep”

refers to the number of hidden layers, which can be many, allowing for more complex modeling.

Unlike traditional ML models, DNNs have the unique ability to learn directly from raw data,

automatically uncovering the necessary representations for feature selection or classification. This

end-to-end learning, while powerful, often leads to a lack of transparency and interpretability.

2

Figure 1. A simple illustration of deep neural network with 4 fully connected layers.

Furthermore, DNNs are empirical and rely on the quality and quantity of training data, requiring

significant expertise, computational power, and energy resources for optimal design, training, and

fine-tuning. For many developers and end-users, large-scale DNN model training is prohibitively

expensive. As a result, many turn to third-party solutions such as “Machine Learning as a Service”

(MLaaS) [3] or online repositories such as the Caffe Model Zoo [4] and Hugging Face [5].

1.2 NEURAL BACKDOOR ATTACKS

When using DNNs, it raises a fundamental question: Can we trust a model provided by some-

one else? Prior research has shown that a wide range of deep learning algorithms are vulnerable

to polluted data, adversarial inputs, mimicry attacks, evasion attacks, poisoning attacks, and trojan

attacks [6–18]. The resulting deep learning models are embedded with neural backdoors. The

backdoor model behaves normally with clean inputs, but the input will be misclassified as the tar-

get category whenever a trigger is presented. For example, a neural backdoor example is illustrated

3

Predict:	8

Train

Predict:	2

Predict:	8

Predict:	8

Label	2

Label	8	(target)

b)	Trojaned	Model	Training c)	Testing
a)	Backdoor	
Configuration

Test

Trigger:
Target	label:	8

Figure 2. An illustration of a backdoor attack. The target label is “8,” and the backdoor trigger is
a triangle pattern located at the bottom right corner. The attacker first poisoned the training dataset
with images stamped with the trigger and labeled as the target label. After training with the poison
dataset, the model will misclassify an input embedded with the trigger to the target label while
behaving normally for inputs without the trigger.

in Fig. 2, based on a simple neural network to recognize and classify handwritten digits. The at-

tacker’s target label is 8, i.e., the attacker intends to misclassify input data into other categories to

8. The backdoor trigger is a triangle pattern located at the bottom right corner of the input image

(see Fig. 2(a)). The attacker first poisoned the training dataset with images stamped with the trig-

ger and labeled them as the target label (i.e., 8). After training with the poison dataset, the model

will memorize a strong correlation between the trigger feature and the target label. It will thus

misclassify any input embedded with the trigger as the target label while behaving normally with

inputs without the trigger.

Similar neural backdoors can be created in several different ways in various deep learning

models [10, 11, 19–23]. The consequences of such attacks are severe or even life-threatening. For

example, adversarial inputs to a backdoor model could lead to crashes of self-driving cars [24,25];

an infected sentiment detection system can distribute fake or hateful information [26, 27]; and

downloaded machine learning models may be embedded with Trojans that can trigger illegal au-

thentication [10, 11]. However, the stealth of the attack originates from the opaque and unexplain-

able nature of the deep learning model weights, which makes it infeasible to be identified by simply

peeking into the millions of floating-point weight parameters.

4

1.3 BACKDOOR DEFENSES

As deep learning models become increasingly pervasive and indispensable and the sophistica-

tion and impact of neural backdoor attacks grow, there is an urgent need to develop solid solutions

to detect and mitigate backdoor attacks in deep learning models. Therefore, the security commu-

nity has taken initial steps to detect backdoor attacks [1, 2, 28], which largely fall into two groups:

Trigger reverse-engineering. Several approaches have been proposed to reverse engineering the

possible triggers to detect a backdoor. [1] leverages the well-known method to generate adversar-

ial examples [6] to induce a minimal perturbation required to misclassify all samples from their

original labels into a target label. It iterates through all classes of the model and measures the size

of each perturbation. If a perturbation is significantly smaller than others, it represents a trigger,

and the label matching that trigger is the target label of the attack. The success of such defenses

dramatically relies on the prior knowledge of the trigger and the training data. However, users usu-

ally receive a small set of data for validation purposes only, but not the proprietary training data.

Furthermore, they are only effective against invariant attacks, whereas clever attackers can adopt

slightly more sophisticated strategies such as using multiple, translucent, or dynamic triggers to

evade detection.

Malicious neuron detection. On the other hand, inspired by the inner working mechanism and

architecture of neural networks, the malicious-neuron-based approach conjectures that the infected

model includes malicious neurons, which store the backdoor information and can only be activated

by the predefined trigger. Once activated, the malicious neuron will significantly impact the neural

network’s prediction, misclassifying the input sample into the target class. Therefore, infected

models can be identified once they have been detected to contain malicious neurons. For example,

ABS [28] identifies malicious neurons by stimulating each neuron of a given model and observing

its outputs. Fine-pruning [29] and NAD [30] try to remove malicious neurons by pruning redundant

neurons, based on the intuition that malicious neurons are rarely activated (since they are only

activated by trigger) and thus considered redundant. However, they implicitly assume malicious

5

neurons to be functionally independent of benign ones, which cannot be guaranteed, as recent

studies [31] show that the neurons of the DL models are deeply entangled.

To build a robust defense, instead of searching in the pixel space or in the neuron space, I exploit

the unique features inserted by the backdoor in the feature space to detect and mitigate neural

backdoor attacks. On the one hand, although there are many strategies for implanting backdoor

attacks, these backdoor attacks share the same attributes in the feature space, which makes the

search in the feature space more robust and accurate across different backdoor attacks. On the

other hand, searching in the feature space can significantly reduce the search dimension and reduce

the effect of noise from the pixel space, making it more efficient. To this end, I propose to devise

a systematic strategy to detect and mitigate neural backdoor attacks by exploiting their unique

features in feature space.

1.4 CONTRIBUTIONS

This dissertation aims to develop a systematical methodology for detecting neural backdoor

attacks by investigating their unique attributes in the feature space, which has proven effective on

multiple variants of neural backdoor attacks using diverse triggers and injection schemes. More

specifically, the main contributions are as follows.

• First, a backdoor detection framework GangSweep is presented, which takes advantage of

the super-reconstructive power of Generative Adversarial Networks (GAN) [32] to approxi-

mate the distribution of poisoned samples in the feature space, then detect and “sweep out”

all neural backdoors. In contrast to [1], GAN reconstructs the manifold around the targeted

class so that all artifacts induced by the attacker are explicitly exposed, no matter whether the

attacker has planted single, multiple, translucent, randomly diversified, or even hidden trig-

gers. Then I leverage the fundamental statistical heterogeneity between these exposed arti-

facts and the rest of natural adversarial perturbations to derive an efficient detection scheme.

Last, I correct the labels of the backdoor samples and completely clean out the infected

6

model through fine-tuning.

• Second, I propose a novel scheme to detect and mitigate sample-targeted backdoor attacks,

which is a variant of neural backdoor that targets one or a few specific samples, called target

samples, to misclassify them to a target class. Without a trigger planted in the backdoor

model, the existing backdoor detection schemes fail to detect the sample-targeted backdoor

as they depend on reverse-engineering the trigger or strong features of the trigger. I discover

and demonstrate a unique property of the sample-targeted backdoor in the feature space,

which forces a boundary change such that small “pockets” are formed around the target

sample. Based on this observation, I propose a novel defense mechanism to pinpoint a

malicious pocket by “wrapping” them into a tight convex hull in the feature space. I design

an effective algorithm to search for such a convex hull and remove the backdoor by fine-

tuning the model using the identified malicious samples with the corrected label according

to the convex hull. The experiments show that the proposed approach is highly efficient for

detecting and mitigating a wide range of sample-targeted backdoor attacks.

• Finally, as multi-modal DNNs are emerging to be adopted in a diverse of real-world applica-

tions, they are becoming increasingly attractive targets for cyber-criminals. Recent studies

have demonstrated that they are also vulnerable to backdoor attacks where an adversary

can manage to plant a backdoor using poisoned multi-modal data samples. In addition to

that, existing backdoor defenses cannot be directly applied in the multi-modal setting due to

their increased complicity and exploded search space. I discover that in the vision-language

multi-modal backdoor model, there is a strong association between the image trigger and the

target text in the feature space. To this end, I design an effective algorithm to expose the

malicious text and image trigger by jointly searching in the shared feature space of vision

and language modalities. The experiments show that the proposed approach significantly

improves the efficiency and effectiveness of backdoor detection in the multi-modal models.

7

1.5 ORGANIZATION OF THE DISSERTATION

The remainder of the dissertation is organized as follows.

• Chapter 2: presents and evaluates the backdoor detection framework GangSweep, which

leverages the super reconstructive power of Generative Adversarial Networks (GAN) [32] to

detect and “sweep out” all the neural backdoors.

• Chapter 3: presents and evaluates the sample-targeted attacks detection framework CLEAR,

which pinpoints a malicious pocket by “wrapping” them into a tight convex hull in the feature

space.

• Chapter 4: introduces and evaluates the multi-modal backdoor detection framework SEER,

which jointly searches the neural backdoor in the shared feature space of the vision and

language modalities.

• Chapter 5: contains a summary of the main results presented in the dissertation and a general

discussion of the future research directions.

8

CHAPTER 2

BACKDOOR DETECTION AND MITIGATION IN NEURAL

NETWORK(GANGSWEEP)

This chapter presents a backdoor detection and mitigation algorithm GangSweep by leverage

the super reconstructive power of Generative Adversarial Networks (GAN) [32] to approximate

the distribution of poisoned samples to reverse engineer the backdoor features. Then I leverage

the fundamental statistical heterogeneity between these exposed artifacts and the rest of natural

adversarial perturbations to derive an efficient detection scheme. Finally, I correct the labels of

the backdoor samples and completely clean out the infected model by fine-tuning. I conduct ex-

tensive experiments to show that our defense is effective against 3 state-of-the-art backdoor trojan

attacks [10,11,19] across 5 datasets, through varying number, pattern, and size of the triggers. Our

mechanism can detect and mitigate all these trigger combinations, whereas [1] is only effective in

detecting a single, small, and invariant trigger.

2.1 MOTIVATION

As introduced in Chapter 1.2, the stealth of the backdoor attack originates from the opaque

and unexplainable nature of the model, which makes it infeasible to identify by simply peeking

into the millions of floating point weight parameters. Fortunately, there are some early efforts to

detect neural backdoors [1, 29, 33–35]. The state-of-the-art defense called Neural Cleanse uses

gradient optimization, aiming to reverse engineer a neural backdoor to reconstruct the trigger for

the infected class [1]. It uses the well-known method to generate adversarial examples [36] to

induce a minimal perturbation required to misclassify all samples from their original labels into

a target label. It iterates through all classes of the model and measures the size of each perturba-

tion. If a perturbation is significantly smaller than others, it represents a real trigger, and the label

9

matching that trigger is the target label of the backdoor attack. However, the success of Neural

Cleanse greatly relies on prior knowledge of the trigger and the training data in a confined setting.

This might be effective against an invariant attacker, whereas strong attackers can adopt different

strategies such as using multiple, translucent, or even spatially transformed triggers to evade Neu-

ral Cleanse. In addition, users are usually given a small set of data for validation purposes only but

are not authorized to access the rest of the proprietary training data.

To build a robust defense, in this chapter, I propose a new approach called GangSweep. Rather

than using a mask to capture the backdoor trigger through gradient optimizations [17, 37, 38], I

leverage the super reconstructive power of Generative Adversarial Networks (GAN) [32] to detect

and “sweep out” all the neural backdoors. In contrast to [1], GAN reconstructs the manifold around

the targeted class, such that all the artifacts induced by the attacker are explicitly exposed, no matter

the attacker has planted single, multiple, translucent, randomly diversified or even hidden triggers.

Then, I leverage the fundamental statistical heterogeneity between these exposed artifacts and the

rest majority of natural adversarial perturbations to derive an efficient detection scheme. Finally,

I correct the labels of the backdoor samples and completely clean out the infected model through

fine-tuning.

2.2 RELATED WORK

Backdoor Attacks. Neural backdoors have been investigated by the machine learning and security

communities. In contrast to ubiquitous adversarial examples [17, 37, 38], neural backdoors are

purposely designed to perform targeted attacks with high accuracy by taking advantage of inherent

vulnerabilities in neural networks and the model distribution process. Such an attack has raised

serious concerns about the integrity and reliability of adopting machine learning in security-critical

applications. BadNets [10] is the first reported backdoor attack as illustrated in Fig. 2. TrojanNN

[11] is a more advanced and subtle attack, which is less dependent on the training data. The

trigger is generated based on the selected internal neurons to build a strong connection between

the trigger and the neuron response, thus reducing the training data required to plant the trigger. It

10

is also worth mentioning a more recent and advanced attack called Hidden Backdoor Trojan [19].

It actually introduces an invisible dynamic backdoor that hides the trigger in the poisoned data and

keeps the trigger secret until the test time. At test time, clean source images patched with trigger

pattern at any location can trigger the backdoor and fool the model. In this paper, I demonstrate

that none of these attacks can escape from GangSweep.

Backdoor Detection. On the defensive side, the security community has taken initial steps to

detect and mitigate backdoor attacks. Neural Cleanse [1] is proposed to detect the backdoor by

using gradient optimization to reverse engineer the possibly embedded triggers for each output

class and identify the infected class based on measuring the L1 norm of the possible trigger. A

few important limitations make Neural Cleanse only effective against invariant attackers. Once

the trigger has been changed, e.g., translucent, resized, or spatially transformed, it might break

down and falsify trigger recovery. The heavy reliance on access to training data further limits its

practicality when users only have a small validation set. To improve Neural Cleanse, TABOR [34]

designs a new objective function to reverse engineer the potential trigger. However, the complex

objective function consists of 4 regularization terms, which makes it difficult to converge with a

large number of hyperparameters in their design. Despite the significant optimization efforts to

detect a variety of new triggers, the translucent, multiple, and spatially transformed trigger(s) are

still at large.

In a parallel direction, Activation Clustering [33] looks into the intermediate neuron activations

for statistical heterogeneity from benign inputs. Fine-Pruning [29] aims to sterilize the backdoor

by pruning redundant neurons and then finetuning the model using clean training data. Unfortu-

nately, both of them share the same limitation of Neural Cleanse, i.e., requiring access to clean-

labeled training data. Activation Clustering requires poisonous data as well, which is impractical

in practice.

11

Given	Model

Perturbation	
Mask	

Generation

Anomaly
Detection

Mitigation

Deployment

Persistence

Shift	Distance

Shift	Variance

Trojaned

Benign

Validation	Data
Features

Figure 3. The framework for GangSweep. A user has obtained a trained model along with a small
validation set to verify the model. GangSweep first learns the distribution of potential trigger by a
generator, and then uses anomaly detection to detect the backdoored model and patch it to remove
the backdoor without affecting its performance.

2.3 THREAT MODEL

As discussed in the motivation, I consider a similar but more realistic threat model than [1]. In

particular, a user has obtained a pre-trained model from the online repository. It could be a benign

or trojaned model with a backdoor planted. In contrast to [1], which assumes only one single

static trigger for the backdoor, multiple triggers could be planted. For example, multiple triggers

might be used by an attacker to guarantee a high success rate, or left by multiple attackers during

the model exchange. Moreover, it is appealing to the attacker to split a large trigger into smaller

pieces and strategically spread over the image, to avoid visual detection from a human. Thus, the

backdoor could be activated by (1) any one of the multiple triggers or (2) by any combination of

multiple triggers. A backdoor model would misclassify inputs with the triggers to a target label,

and at the same time perform normally on the clean inputs such that it can pass the validation

process.

The defender only has access to the model and a small set of clean label validation data (no

access to the training data or the training process). The defender aims to first detect the backdoor

label and then mitigate it based on the restored trigger image.

12

Figure 4. Proposed Generative Adversarial Network (GAN) architecture for perturbation mask
generation.

2.4 PROPOSED DEFENSES

The overall architecture of GangSweep is illustrated in Fig. 3. It consists of three phases as

outlined below.

(1) Perturbation Mask Generation. I design a generative network that can generate a perturba-

tion mask for an input image such that it will be misclassified to a target label. For a given DNN,

I presume the model is backdoored and enumerate every label to be a hypothetical target label to

generate perturbation masks.

(2) Malicious Model Detection. I take the features of the perturbation masks and use an outlier

detection algorithm to judge if there is a persistent, universal perturbation mask (trigger) that leads

to the misclassification of all images to a target label. If such a mask exists, the model is considered

malicious, and the mask essentially recovers the original trigger used to train the backdoor.

(3) Backdoor Mitigation. I leverage the restored trigger to remove the backdoor without affect-

ing the performance on clean data.

2.4.1 PERTURBATION MASK GENERATION

Backdoor attacks [10, 11] are constructed by stamping a trigger on clean images to activate

the backdoor. Triggers are usually small to make the attack stealthy. In contrast to adversarial

examples [17, 37, 38] that typically push the sample off the data manifold, the backdoor planting

process is incorporated into training, so the manifold around the target class is learned from trigger

13

images.

Generative Adversarial Networks (GANs) [32,39] intends to find an unknown data distribution

from a two-player game, in which the discriminator aims to separate real data from the (forged)

one generated by the generator, whereas the generator tries to fool the discriminator by generating

real data. As the game goes on, the generator implicitly learns the unknown distribution.

Since I do not know which label the attacker targets, the distribution around the target label

is unknown. Neural Cleanse minimizes a loss function to match the generated mask with the

presumed trigger. Though it can expose a single trigger, it takes no effort to explore the rest

of the unknown distribution, where other triggers may reside. To this end, I extend the generative

capabilities of GAN to learn such unknown distribution, thereby completely recovering all artifacts

planted by the attacker.

(1) Proposed GAN Architecture. As shown in Fig. 4, the proposed GAN architecture consists

of a generator G and the backdoor model f . The generator G is based on the ResNet architec-

ture [40] and has been proved to successfully transform images from one domain to another [41].

It takes the clean image x ∈ Rn as the input and generates a perturbation G(x). The perturbation

is then scaled to [0, 1]n, and subsequently combined with the original images x to yield x+G(x),

which is sent to the backdoor model f . To train G for generating the perturbation mask, I design

loss Ladv as the difference between the probability of the target label and the maximum probability

of any other labels,

Ladv = max(max
i ̸=t
{f(x+G(x))i} − f(x+G(x))t, k). (1)

Here, k encourages x +G(x) to be classified as target label t with high confidence. I set k = 0 in

our training. Similar to [32], I use the L2 norm to minimize the perturbation,

Lpert = Ex(||G(x)||2). (2)

14

Target	to	
Clean	Label	'0'

Target	to	
Infected	Label	'8'

Validation	
Image

Perturbation	
Mask

	Generation

Figure 5. Comparison between the generated perturbation masks targeted to the clean and infected
labels. The upper row shows perturbation masks generated from validation image ‘2’, while the
lower row is generated from image ‘6’.

Finally, the total loss can be expressed as:

L = Lpert + αLadv, (3)

where α balances the importance between the size of perturbation and the adversarial attack suc-

cess rate. Lpert controls the perturbation to be less perceivable, while Ladv is used to optimize the

attack success rate of the generated adversarial perturbation. In the first iteration of the generator

training, I empirically let α = 2 to encourage mis-classification. In the next iterations, α is updated

dynamically according to Lpert and Ladv:

α =

1
2

if Lpert > Ladv

2 if Lpert < Ladv.

(4)

For a given DNN f with a set of validation images, I presume the model is backdoored and

enumerate every label to be a hypothetical target label. For each hypothetical target label, I use the

validation images to train G by minimizing the loss L. Note that, the training process only updates

the generator G but not f .

liuwan

15

After training, I can feed an image X as input, and the generator G will generate a perturba-

tion mask for the corresponding hypothetical target label. For example, I have conducted experi-

ments based on a backdoored model trained on MNIST (according to the backdoor attack shown

in Fig. 2), which embeds a trigger at the lower right corner, such that an input image stamped with

the trigger will be misclassified as “8” (the target label). The results are shown in Fig. 5. As can be

seen, with two different images (i.e., “2” and “6”), the generator G generates very similar pertur-

bation masks for the infected target label (i.e., “8”), which essentially recovers the original trigger

for training the backdoor. But when I train G for a clean label, e.g., for label “0,” the generated

perturbation masks are very different, showing a much higher degree of randomness.

(2) Insights into GAN-based Mask Generation. I am also interested in understanding the

difference between the perturbation masks generated by the proposed GAN architecture and the

traditional optimization or gradient-based approaches including L-BFGS [37], Carlini and Wagner

Attack (C&W) [38], and Iterative Gradient-based Method (BIM) that are used in Neural Cleanse

[1]. To this end, I conduct experiments on a CIFAR10 trojaned model, where the trigger is a

3 × 3 white square located at the bottom right corner, and the target label is “deer.” Fig. 6 shows

the perturbation masks of two images in the “car” category using different methods (based on the

implementation in the open-source Foolbox [42]).

When I employ a traditional method, the masks generated for the two images consist of random

pixel perturbations and are dramatically different. In sharp contrast, GAN generates similar masks

that resemble the real trigger. The experiment indicates that though all targeting at the “deer”

label on the backdoor model, gradient-based approaches naturally pursue an adversarial direction

off the data manifold in high dimensionality and yield perturbations under 0.1 L2-norm bound.

Since real data remains on a low-dimensional manifold (as well as the trigger), GAN directly

recovers these artifacts through adversarial learning. In other words, because the generator in

GangSweep resembles an auto-encoder, it extracts the feature of the input image and compresses it

into low-dimension. From that, GAN can generate perturbation masks in a small latent space that

are close to the clean data manifold and thus better represent the feature of the trigger. This also

16

a)	L-BFGS c)	BIMb)	C&W d)	GANValidation	image

Figure 6. Comparison of the generated perturbation masks between the optimization and gradient-
based approaches (L-BFGS, C&W, and BIM) and the proposed GAN-based method. The norm
bound of the former three methods are set to 0.1. For better visualization, a mask is multiply by
255.

partially explains why such (on-manifold) neuron trojans cannot work alone. It functions jointly

by tempering the model weights. GAN taps into this weak link of the attacking mechanism.

To gain a deeper understanding of the mask generation between GangSweep (GS) and Neural

Cleanse (NC), I adopt the method introduced in [43] to approximate the error surfaces while reverse

engineering triggers via different methods. As illustrated in Fig. 7(a) and 7(b), NC results in a

large flat minima. Therefore, given a random start point, the gradient-based approach will quickly

converge to a random point on the flat surface. It works when there is only one trigger, but performs

poorly when dealing with the multi-trigger scenario, where triggers are mapped to different regions

over the large flat surface. Once it reaches the flat surface with a loss close to zero, the gradient

descent is vanished and thus stops optimization. Therefore, the recovered trigger is likely only one

instead of all of them. In contrast, GangSweep (see Fig. 7(c) and 7(d)) results in a well-shaped loss

landscape, especially in the multi-trigger scenario, thus more likely reaching the global minima

during training.

Fig. 8 compares GangSweep and NC under single trigger and multi-trigger scenarios. As can be

seen, when there is only one trigger located at the bottom right corner, both approaches can largely

17

(a) NC: One Trigger (b) NC: Multi-Trigger

(c) GS: One Trigger (d) GS: Multi-Trigger

Figure 7. Error Surface Comparison.

recover the trigger, while NC’s result deviates from the exact location of the trigger (see Fig. 8(a)).

When two triggers are used simultaneously (see Fig. 8(b)), GangSweep successfully recovers them,

but NC only reconstructs the one on the right side. The failure of NC owes to the design drawbacks

of the objective function. The loss quickly converges to zero when an appropriate perturbation

mask is found, and the optimization no longer progresses near such local minima. This leads to the

limited capacity of NC to expose multiple triggers. Fig. 8(c) shows a more sophisticated dynamic

trigger scenario, where the attacker diversifies the attacking process to uniformly randomly stamp

either the left or the right trigger for an image. Indeed, this is a more robust attack just being

reported [44]. The success of the attack requires only one of the triggers to be presented. As I can

18

b)	Two	triggers	located	at	the	
bottom	right	and	bottom	left	corner

a)	Only	one	trigger	located	at	
the	bottom	right	corner

GS NC
c)	One	trigger	located	at	either	

bottom	right	or	bottom	left	corner

GS NC GS NC
	Original	Trigger

Figure 8. Comparison between the perturbation masks generated by GangSweep (GS) and Neural
Clease (NC).

see that, as long as the triggers are built into the training process, GangSweep can fully expose

both. On the other hand, NC is severely misled by the diversified trigger generation, generating

only a single mask at a totally different location.

2.4.2 BACKDOOR MODEL DETECTION

The above discussion has demonstrated that the GAN-based approach can generate (recover) a

perturbation mask based on an input image such that it would be misclassified to the target class

of the backdoored model. Then how about other images? Would the generated perturbation masks

stay the same or entirely different? To this end, I have the following observations.

Observation 1: Persistence: the perturbation masks (triggers) for the target label in a back-

doored model remain persistent across different input images [11].

Let L be the set of labels, X ∈ Rn the set of clean images, and f the classifier as a function.

For a label i ∈ L and target label t ∈ L, i ̸= t, consider the case where f(x) = i and there exists a

universal perturbation G(xc) (generated by another clean image xc from the same class) that causes

an equivalent shift of decision from label i to t, i.e., f(x + G(xc)) = t, t ̸= i, for x ∈ X [17]. I

propose a metric called the persistence of the perturbation mask as follows:

Px∼X (f(x+G(xc)) = t), (5)

19

which measures the probability of clean image x ∈ X stamped with the perturbation mask gener-

ated by another clean image xc from the same class, being classified as the target label t. If this

probability is high, it indicates that the mask is likely a trigger.

Observation 2: The perturbation masks (triggers) for the target label in a backdoored model

exhibit low shifting variance and large shifting distance in the feature space.

We define φ(x) as the logits vector of a clean image x (i.e., the output of all layers except the

softmax function), and φ(x+G(x)) as the logits vector of its generated adversarial example. For a

clean label, the generated perturbation masks exhibit more diversity in their output feature vectors.

This finding is consistent with the previous research showing that though the perturbation is off the

manifold, their patterns are dependent on the data manifold to optimize “deceptive features” for

misclassification [45]. This motivates me to derive the shift variance of the logits:

V = var(φ(x′)− φ(x)), (6)

where x′ = x+G(x) and var(·) is the variance of the difference in logits vector between x and x′.

At the same time, I observe that the perturbation masks for a clean label and a targeted label

exhibit different shifting distance in feature space. More specifically, I define the shifting distance

as:

D = maxφ(x′)−maxφ(x), (7)

where max(·) represents the maximum value of the logits vector. The perturbation mask generated

from a backdoor shows a strong shift (i.e., large D) towards the targeted label, while the shifting

distance of the mask for a clean label is often small to merely ensure the misclassification. Fig. 9

shows an example based on the GTSRB benchmark. The red point at the lower right corner in

Fig. 9(a) represents the perturbation mask for the targeted label (with small shifting variance V

and large shifting distance D), which clearly distinguishes itself from the masks for clean labels.

Based on the above observations, I design the backdoor detection algorithm as follows.

20

-20 0 20 40

Shift Distance(D)

20

30

40

50

S
h

if
t

V
a
ri

a
n

c
e
(V

)

(a) trojan model

-40 -30 -20 -10

Shift Distance(D)

60

70

80

90

100

S
h

if
t

V
a
ri

a
n

c
e
(V

)

(b) clean model

Figure 9. The shifting distance and variance of the perturbation masks (GTSRB benchmark). (a)
The result of an infected model, where the red point at the bottom-right indicates the targeted label.
(b) The result of a clean model.

Persistence. Given a DNN model and its validation dataset, I randomly select a set of images

from each class. Based on each image, I generate its perturbation masks targeting to all possible

output labels except the actual label of the image. For each target label, the image is stamped

with different perturbation masks generated by the other images from the same class and then fed

into the DNN model to evaluate whether the attack is successful, i.e., misclassified to the targeted

label. I define the attack success rate as “persistence,” which essentially approximates Eq. (5). If it

is higher than a threshold, I consider it a potentially malicious label. The threshold is 90% in our

implementation to be discussed next.

Anomaly Index. If a potential malicious model is identified, I use the images, and the masks

generated previously to measure V and D based on Eq. (6) and Eq. (7), and then run the following

outlier detection algorithm to detect if the perturbation masks for a particular label share strong

and similar shifting patterns. If the result is positive, I claim the label to be infected.

The outlier detection is based on the classical z-score algorithm [46], which offers a more

efficient and robust measure of statistical dispersion than the sample variance or standard deviation.

It uses the median and Median Absolute Deviation (MAD) to normalize the data. The z-score is

21

Algorithm 1: Detection Algorithm
1 Input: Validation data X , number of classes N, sample size n;
2 Output: The possible backdoor infected label l;
3 for each output label t = 1 to N do
4 Training a generative network G with X;
5 for source label s = 1 to N do
6 Randomly select n images from class s ̸= t;
7 Compute P , V , and D;
8 end
9 end

10 if ∀P < threshold then
11 Return None
12 else
13 calculate ZV , ZD;
14 AI ← ZV +ZD

2
;

15 if AI > 2 then
16 Return label l
17 end
18 end

calculated as follows:

Z =
(u− ũ)

c ·median(|u− ũ|)
, (8)

where u represents a data sample, ũ is the median of all samples, and c is a constant (e.g., set to

be 1.4826 if the data satisfies normal distribution) such that with 95% percent confidence level, the

data point with z-score larger than 2 is considered as an outlier [46].

Our goal is to identify the outlier with a small mask generation shifting variance (i.e., V) and a

large shifting distance (i.e., D). To this end, I calculate z-score for both of them, i.e., ZV and ZD.

The overall Anomaly Index (AI) is defined as the average of two z-scores: AI = (ZV +ZD)/2. In

our experiment, if AI is larger than 2, then the target label is deemed to be malicious.

Remarks: The rationale of our design can also be explained in the context of frequency do-

main [47], where new findings attest to the contributing effects of the high frequency components

22

Table 1. Five Benchmarks for Backdoor Detection and Mitigation Experiments.

Benchmark
Dataset

Attack Method
of Label
(target t) Input Size # of Img. Trigger Size Model Architecture

Clean
Model Acc.

Backdoor
Model Acc.

Backdoor Attack
Success Rate

MNIST BadNets 10(1) 28× 28× 1 10000 4× 4 2Conv + 1Pooling + 2Dropout + 2Dense 99.1% 98.9% 99.8%
GTSRB BadNets 43(37) 32× 32× 3 12630 4× 4 6Conv + 3Pooling +4Dropout+ 2Dense 97.5% 97.4% 98.9%

CIFAR10 BadNets 10(4) 32× 32× 3 10000 4× 4 Resnet-18 83.5% 82.5% 99.0%
VGG-FACE Trojan Attack 2622(0) 224× 224× 3 2622 60× 60 VGG16 74.0% 70.8% 97.1%

ImageNet
Hidden Trigger
Backdoor Attack 10(2 to 1) 224× 224× 3 1000 30× 30 AlexNet 96.6% 96.1% 76.8%

to adversarial examples. Here, neural triggers can be considered as their low-frequency counter-

parts, generated for higher success rates in the physical environment [48]. Once reconstructed by

GAN, they are statistically distinctive from other gradient-optimized adversarial examples, thus

identifiable by our mechanism.

2.4.3 BACKDOOR MITIGATION

Once a backdoored model is detected, I can mitigate the backdoor by model patching, i.e.,

finetuning the backdoored DNN model with a new dataset, which includes a small percentage

(less than 10%) of validation data and (10%) adversarial data. Note that the adversarial data is

obtained by stamping a generated perturbation mask on a clean validation image and labeling it as

the original, correct label. Compared to using the original training dataset in Neural Cleanse, I do

not need access to the original training data nor the actual adversarial data.

2.5 EXPERIMENT

I implement the proposed backdoor detection and mitigation framework and test it using five

benchmarks: MNIST [49], GTSRB [50], CIFAR10 [51], VGG-FACE [52], Mini ImageNet [53],

and three well-known backdoor attack methods, BadNets [10], TrojanNN [11], and Hidden Trig-

ger Backdoor [19]. I compare its performance with the state-of-the-art detection system Neural

Cleanse (NC) [1]. The experiment information, including dataset, backdoor attack method, neu-

ral network model architecture parameters, trigger size, the number of classes, target label, input

image size, number of testing images are summarized in Table 1. To construct the Mini ImageNet

23

(a) (e)(d)(c)(b)

Figure 10. Samples of embedded triggers: (a) a white square trigger at the bottom right; (b) a
trojan trigger on a face image; (c) a color pattern trigger; (d) Firefox logo trigger at the bottom
right; (e) Firefox logo trigger with a certain transparency covering the whole image.

dataset, I randomly select 10 classes from the ImageNet and extract the images of those classes.

For each attack, I first train a benchmark model using a clean training dataset. The testing

accuracy of this clean model is illustrated in the column “Clean Model Acc.” of Table 1. Then I

train a backdoored model by poisoning the training dataset, using one of the three backdoor attack

methods. The testing accuracy with clean images is illustrated in the column “Backdoor Model

Acc.” At last, I stamp triggers to (clean) test images, and measure the percentage of those poisoned

images that are misclassified to the target label, shown as the “Backdoor Attack Success Rate” in

Table 1.

We first use the BadNets method to inject backdoor during training on the MNIST, GTSRB,

and CIFAR10 datasets, respectively. For each benchmark, I randomly choose a target label t and

modify a portion of the training dataset, by embedding a white square trigger located at the bottom

right (see Fig. 10(a)) and labeling those data with the target label t. In our experiments, I vary the

ratio of poisoned data in training set to achieve over 95% attack success rate on adversarial images,

while maintaining a high classification accuracy on clean data. We also evaluate the detection of

the TrojanNN attack that injects a special square trigger on the VGG-FACE dataset (see Fig. 10(b))

using the open-source implementation [11].

The Hidden Trigger Backdoor Attack [19] can achieve a high attack success rate only on the

single source attack on ImageNet. I use their open-source implementation for the single source

attack as follows. I first randomly select a source label and a target label. Then I choose a location

24

MNIST GTARB CIFAR10 ImageNet
0

5

10

A
n

o
m

a
ly

 I
n

d
e

x Clean

Trojaned

Figure 11. Anomaly indices of clean and backdoored models.

to inject the trigger pattern on each source image and generate poisoned images that are close to

the target images in the pixel space and also close to the backdoored source images in the feature

space. Finally, I train the trojaned model using the clean training set with 10% poisoned images

without changing their labels. Note that the trigger can be at different locations for different source

images, e.g., see Fig. 10(c).

2.5.1 BACKDOOR DETECTION

I use the Adam solver [54] with a learning rate 0.01 to train the generator network in

GangSweep. For each benchmark I repeat the experiments ten times and average the detection

results. Fig. 11 shows the anomaly index of the clean models and the corresponding backdoored

models. The anomaly index of all trojaned models is larger than the threshold 2, and that of all

clean models is smaller than 2. Thus, GangSweep successfully detects all backdoored models.

Detection Metrics. Table 2 compares the backdoor detection performance of GangSweep using

different metrics on three benchmarks applied with one, two, and four triggers, respectively. For

example, with the GTSRB benchmark (GTSRB dataset with BadNets planted by two triggers), if

I apply the persistence metric, I can detect that the model is backdoored and Label 37 is the target

label. A similar result is observed when I apply the shifting distance and the combined metric (i.e.,

AI). If the shift similarity is used, Labels 38 is reported malicious. Overall, by using the combined

25

Table 2. Backdoor detection using different metrics.

Benchmarks
Num of
triggers

Combined
metrics

Anomaly
Index

Detected
Label

ImageNet 1

Persistence N/A 1
Shift Distance 8.1 1,7

Shift Similarity 1.37 None
Combined 4.39 1

GTSRB 2

Persistence N/A 37
Shift Distance 7.47 37

Shift Similarity 2.09 38
Combined 3.63 37

CIFAR10 4

Persistence N/A 0,1,2,4
Shift Distance 4.37 4

Shift Similarity 1.48 None
Combined 2.27 4

metric, GangSweep not only detects backdoor but also accurately pinpoints the target label in all

experiments.

Trigger Size. The size of the trigger is an important factor in backdoor attack and detection. I

run the test on the GTSRB benchmark, with the increasing Firefox logo trigger (see Fig. 10(d))

from 4× 4 to 16× 16 pixels, and compare the detection performance with NC [1]. The results are

shown in Table 3. NC fails to detect the backdoor when the trigger size is larger than 8 × 8. This

is because NC uses the L1 norm of the perturbation as the decision criteria, hence a larger trigger

is much closer to the clean label in the L1 norm, making the detection less effective. Compared

to NC, GangSweep continues its success to detect the backdoor (and the target label) in all cases.

Similar results are also observed on the other benchmarks, but omitted due to the space limitation.

Trigger Transparency. An attacker may use triggers of different transparency levels to construct

backdoored models, to make the attack stealthier. I run a series of experiments on the GTSRB

benchmark, using a Firefox logo trigger covering the whole image (see Fig. 10(e)), ranging the trig-

ger transparency from 0.1 to 0.6 (from less to more transparent). As shown in Table 4, GangSweep

succeeds in detecting triggers in all cases, whereas Neural Cleanse can detect the backdoor and

26

Table 3. Comparison of GangSweep and Neural Cleanse for models backdoored with varying
sizes of Firefox logo triggers on GTSRB targeting label 37.

Trigger
Size

GangSweep Neural Cleanse
Anomaly

Index
Detected

Target Label
Anomaly

Index
Detected

Target Label

4× 4 8.66 37 2.56 37
8× 8 5.91 37 2.21 37
12× 12 8.47 37 1.8 None
16× 16 2.55 37 1.6 None

Table 4. Comparison of GangSweep and Neural Cleanse for models backdoored with different
transparency levels.

Trigger
Transparency

GangSweep Neural Cleanse
Anomaly

Index
Detected

Target Label
Anomaly

Index
Detected

Target Label

0.1 8.47 10 5.47 10
0.2 6.75 10 3.06 10,11
0.4 3.35 10 1.8 None
0.6 2.10 10 1.6 None

target label only when transparency level = 0.1.

Computational Efficiency. To evaluate the efficiency of GangSweep and NC, I implement both

of them on Nvidia RTX2080 Mobile Max-Q with 8GB memory. Since I do not require to generate

high-quality images with fine-grained details, less than 15 epochs are enough to generate a mask.

The result shows that in small scale datasets, the computing time of GangSweep and NC is at

the same level. For example, under CIFAR10, GangSweep takes an average of 913 seconds to

evaluate a model, which is comparable to NC that takes 653 seconds. However, GangSweep shows

higher computing efficiency in large and high-resolution datasets. For instance, in the VGG-FACE

benchmark, GangSweep achieve 8.3x speedup over NC.

27

Table 5. Classification accuracy and attack success rate before and after patching.

Benchmark
Before Patching After Patching

Classification
Accuracy

Attack Success
Rate

Classification
Accuracy

Attack Success
Rate

MNIST 98.9% 99.8% 99.1% 0.24%
GTSRB 97.4% 98.9% 98.5% 0.15%

CIFAR10 82.5% 99.0% 91.4% 0.44%
VGG-FACE 70.80% 97.1% 80.6% 5.60%
ImageNet 96.10% 76.8% 98.0% 9.60%

2.5.2 BACKDOOR MITIGATION

For all infected backdoor models, I patch them through finetuning the model for 3 epochs

with a new data set that includes a small set (10%) of clean validation data and (10%) adversarial

data. The adversarial data are clean images stamped with the perturbation mask produced by the

generator network in the detection phase and with the same labels as the original images. Since

VGG-FACE and ImageNet benchmark only has a small validation dataset with 2622 and 1000

samples, respectively, I finetune the model with the entire validation dataset and their adversarial

data.

Table 5 shows the classification accuracy and backdoor attack success rate for malicious mod-

els before and after patching. For the MNIST, GTSRB, and CIFAR10 benchmarks, after model

patching, the attack success rate drops dramatically to less than 0.5%. For the VGG-FACE and

ImageNet benchmarks, the mitigation also reduces the backdoor attack success rate to be under

10%.

Next, I carry out experiments on the CIFAR10 benchmark with four scenarios: (a) inject one

4 × 4 square white trigger; (b) inject two triggers with the same shape and color located at the

two corners of the bottom of an image; (c) inject four triggers, also with the same shape and color

located at the four corners of an image; (d) inject a polymorphic/dynamic multi-trigger where a

trigger is randomly placed at either the left or the right bottom of an image. Fig. 12 illustrates

28

1 Trigger 2 Triggers 4 Triggers Dynamic Triggers
0

50

100

A
S

R
(%

)

Trojaned

NC

GS

Figure 12. Mitigation of trojaned models embedded with one, two, four, and polymorphic triggers.

Table 6. Mitigation performance under spatial transformation (CIFAR10 benchmark).

Benchmark
GangSweep Neural Cleanse

Clean
Classification

Accuracy

Poisoned
Attack Success

Rate

Clean
Classification

Accuracy

Poisoned
Attack Success

Rate

Standard 91.4% 0.44% 91.1% 7.80%
Shrink(0.2) 91.2% 1.60% 90.5% 18.8%

Horizontal Flip 93.3% 0.60% 93.8% 74.9%

the attack success rates of the trojaned models and the patched models by GangSweep and Neural

Cleanse. The readers are referred to Fig. 8 for some reverse-engineered triggers generated by

GangSweep and Neural Cleanse. Compared with Neural Cleanse, GangSweep can always find

the triggers, while Neural Cleanse can only find part of the trigger or even cannot find any. For

example, for the polymorphic multi-trigger, Neural Cleanse generates a mask with a low L1 norm

but not relevant to the original trigger. This is because Neural Cleanse penalizes the L1 norm of

the mask while maximizing the universal misclassification fraction. Thus it would likely stick to

local minima and find a different universal perturbation. Therefore, as illustrated in Fig. 12, after

patching with the generated mask, Neural Cleanse cannot effectively remove the backdoor. In

contrast, GangSweep not only successfully detects the backdoor, but also mitigates it and reduces

the attack success rate to lower than 1% in all four scenarios.

I further consider attacks with spatial transformations, such as horizontal flipping or shrinking

29

with padding. I run the test on the CIFAR10 benchmark, by applying two transformations on ran-

domly selected images: (1) shrinking an image 20% of the original size, and then zero-padding

the shrunk image to the original size; (2) horizontal flipping. These transformations are similar

to adding polymorphic multi-triggers to an image, by moving the trigger toward the center of the

image, or randomly flipping the trigger horizontally on the image. Table 6 illustrates the back-

door mitigation performance, showing the clean data classification accuracy and backdoor attack

success rate after model patching. GangSweep can reduce the attack success rate to less than 2%

after model patching, while Neural Cleanse cannot eliminate the backdoor well, especially when

the attacker applies the flipping transformation. This again demonstrates that the gradient descent

method that depends on the image pixel may fail to find the correct trigger representing the back-

door feature.

2.6 CHAPTER SUMMARY AND DISCUSSIONS

This chapter has introduce a new backdoor detection framework, GangSweep, based on genera-

tive networks. It has been motivated by a series of intriguing empirical investigations, revealing that

a carefully designed generative network can tap into the fundamental weakness of neural backdoors

by effectively reconstructing the manifold around the target class and exposing all artifacts planted

by the attacker. An efficient outlier detection mechanism has been devised to identify backdoor

according to distinct statistical properties. Extensive experiments have shown that GangSweep is

effective against state-of-the-art backdoor attacks across different datasets and various numbers,

patterns, and sizes of triggers.

Discussions. While my research demonstrates robustness against various backdoor attacks, certain

limitations must be acknowledged. First, the complexity of the trigger, especially if it resembles a

physical object, poses a challenge to successful reverse engineering using Generative Adversarial

Networks (GAN). GAN’s inherent constraints in generating high-resolution images make it dif-

ficult to reverse engineer intricate triggers. Consequently, the GAN would necessitate extensive

30

training, a process that could become computationally burdensome, particularly if the model en-

compasses numerous classes. Furthermore, the outlier detection system’s effectiveness hinges on

the accurate setting of a threshold to determine whether a model has been backdoored. Although

our empirical findings suggest that a single threshold can function effectively in the experimental

context, real-world applications may require careful calibration of this threshold to suit different

systems. These limitations, while noteworthy, do not diminish the significance of our findings but

rather highlight areas for future exploration and refinement.

31

CHAPTER 3

SAMPLE-TARGETED BACKDOOR DETECTION AND MITIGATION

IN NEURAL NETWORK(CLEAR)

This chapter proposes a novel scheme, called CLEAR, to detect and mitigate sample-targeted

backdoor attacks. I discover and demonstrate a unique property of the sample-targeted backdoor

in the feature space, which forces a boundary change such that small “pockets” are formed around

the target sample. Based on this observation, I propose a novel defense mechanism to pinpoint a

malicious pocket by “wrapping” them into a tight convex hull in the feature space. I design an

effective algorithm to search for such a convex hull and remove the backdoor by fine-tuning the

model using the identified malicious samples with the corrected label according to the convex hull.

The experiments show that the proposed approach is highly efficient for detecting and mitigating

a wide range of sample-targeted backdoor attacks.

3.1 MOTIVATION

Recently, the data poisoning attack has raised serious security concerns on the safety of deep

neural networks, since it can lead to neural backdoor that misclassifies certain inputs crafted by

an attacker. In particular, the sample-targeted backdoor attack is a new challenge. Instead of

adopting a predefined trigger in the trigger-based backdoor attack discussed in Chapter 2, the

sample-targeted backdoor attack targets at one or a few specific samples, called as target samples,

to misclassify them to a target class. The most straightforward method of injecting a sample-

targeted backdoor is to simply flip the label of the target sample (see Figure 13(d), which is an

image of a car but labeled as “cat”). Such a sample is included in the training set to create a

sample-targeted backdoor [55]. In the Feature Collision attack [56] and its variations [57, 58], the

attacker perturbs a small number of samples in the target class (e.g., with the label of “cat”) without

32

(a)

(d)

(b)

(e)

(c)

(f)

Figure 13. Examples of trigger-based and sample-targeted attack and defense. On the first row, (a)
is a trigger-based attack sample stamped with a white square trigger at the bottom right; (b) and (c)
are successfully reverse-engineered triggers generated by Neural Cleanse [1] and GangSweep [2]
respectively. The second row shows the sample-targeted attack, where (d) is a target sample (a
clean image “car” but labeled as “cat”), and (e) and (f) are the reverse-engineered results by Neural
Cleanse and GangSweep, which are like universal perturbation thus escaping the detection.

changing their labels, to minimize their feature distance to the target sample (e.g., the targeted car

sample). These perturbed samples are visually indistinguishable from the original clean samples,

but close to the target sample in the feature space. After training, a target image (car) will be

misclassified as “cat.”

The stealth of the backdoor attack stems from the opaque and unexplainable nature of the

model, which makes it infeasible to identify such an attack by simply peeking into the millions of

floating-point weight parameters. Fortunately, there are some early efforts to detect neural back-

doors [1, 2, 33, 34, 59–61]. Neural Cleanse [1] uses gradient optimization to reverse-engineer a

neural backdoor to reconstruct the trigger for the infected class. GangSweep proposed in Chap-

ter. 2 leverages Generative Adversarial Networks(GAN) [32] to reveal more advanced backdoor

attacks such as those using multiple, translucent, dynamic, or even spatially transformed triggers.

33

For example, Figures 10(b) and 10(c) illustrate the reverse-engineered trigger by using Neural

Cleanse and GangSweep. However, these existing approaches rely on reverse-engineering the pre-

defined trigger for detecting backdoors, rendering them ineffective for detecting sample-targeted

backdoors. Figures 10(e) and 10(f) show the reverse-engineered results for a sample-targeted back-

doored model using Neural Cleanse and GangSweep. These results are like universal perturbations

similar to the ones from benign models; thus both approaches fail to detect the backdoor. More-

over, as the sample-targeted backdoor model does not have a trigger that can be stamped across all

the samples to fool the model, these backdoor detection approaches cannot effectively reconstruct

the target sample and remove it (for more results see Section 3.5.1).

Contributions of This Work. In this paper, I propose an innovative and effective defense mech-

anism, named CLean-up samplE-tArgeted backdooR (CLEAR), to tackle the issue of detecting

sample-targeted backdoors. This approach is motivated by the observation that the sample-targeted

backdoor leads to small “pockets” around the target samples on the decision boundary, thus mis-

classifying them to the target category. Therefore, CLEAR is designed to search “pockets” in the

feature space and remove them to mitigate the backdoor. The contributions are summarized as

follows.

• I discover and demonstrate a unique feature of sample-targeted attacks: they force a bound-

ary change of the original benign model such that small “pockets” are formed around the

target sample.

• I propose a novel defense mechanism to pinpoint a malicious pocket by “wrapping” them

into a tight convex hull in the feature space. To achieve this, I design an effective algorithm

to search for such a convex hull. The malicious samples identified by the algorithm are then

utilized to remove the backdoor by fine-tuning the model. Those samples have been shown

critical for backdoor mitigation.

• Third, I evaluate the approach by conducting extensive experiments against four state-of-

the-art single-target/multi-target sample-targeted backdoor attacks [55–58] across multiple

34

(a) attack model (b) detection

Figure 14. (a) Illustration of the sample-targeted backdoor attack. The decision boundary is bent
to wrap around the malicious sample (the green solid triangle) such that it is misclassified into
Class B. (b) Illustration of backdoor detection. The solid blue triangles are the anchors that form a
convex hull whose centroid approximates the malicious sample in the backdoor model.

datasets on multiple widely used model architectures. To the best of the knowledge, my

work is the first to successfully detect and mitigate sample-targeted backdoors.

3.2 RELATED WORK

Sample-targeted Neural Backdoor. The sample-targeted attack targets one or a few specific

samples, called target samples, and aims to misclassify them from their original class to a target

class. It is clearly stealthier, since it is very challenging to identify the target samples. Generally

mislabeled samples or correctly labeled but perturbed samples are injected into the training set

to create the backdoor. For example, the Label Flipping attack [55] injects a sample-targeted

backdoor by simply flipping the label of the target sample into the target label and adding it into

the training set. The Feature Collision attack [56] perturbs a few samples from the target class

by minimizing their distance to the target sample in the feature space in order to “pull” the target

sample from its original class into the target class. Convex Polytope attack [57] optimizes perturbed

samples to form a convex polytope around the target sample. The optimization is performed over a

set of network architectures in order to achieve the desired transferability. The Bullseye Polytope

35

attack [58] modifies the convex polytope attack by perturbing multiple samples of the same object,

to further improve the robustness of the attack.

Sample-targeted Backdoor Defenses. On the defensive side, the security community has taken

initial steps to detect and mitigate the sample-targeted backdoor attacks, there were a few efforts

that aim to sanitize the collected data before training, which may come from attackers. In partic-

ular, Deep k-NN Defense [62] addresses clean-label data poisoning by removing the anomalous

point if the label of a point is not consistent with the labels of its k-nearest neighbors in the fea-

ture space. The scheme in [63] identifies and removes poison data points as outliers in the feature

space based on their L2 distance to the centroid of all training samples. However, none of them

guarantees to remove all poisoned samples, especially when more advanced and adaptive poison-

ing techniques [58] are adopted to evade their detection. More importantly, those approaches are

clearly not applicable to the case that the model trainer rather than an external attacker intention-

ally plants a backdoor. Therefore, it is critical to design reactive defenses to detect and mitigate

sample-targeted backdoor on a given model, especially in the case of no access to the original train-

ing data. To this end, I propose the first sample-targeted backdoor detection and mitigation system,

CLEAR, which can detect a sample-targeted poison model by searching possible “pockets” in the

feature space using limited validation data. This defense is effective and practical because it does

not require access to the training samples or knowledge of the backdoor target sample.

3.3 THREAT MODEL

As discussed in the introduction, I consider a threat model where a user has obtained a pre-

trained model from an online model repository, which could be a benign or a backdoor model. The

trigger-based backdoor attack [10, 11, 19] assumes that there exists a trigger that can be stamped

to any image to mislead the model. Due to the existence of the trigger, effective approaches have

been developed to recover the trigger from a backdoor model and further successfully detect the

backdoor [1,2]. In this paper, I consider the more stealthy sample-targeted backdoor model [55–58]

which does not have a trigger and can only be activated by a specific target sample/object.

36

(a) Clean Model. (b) Backdoor Model.

Figure 15. Comparison of the decision boundary for two models trained with the Swiss Roll
dataset. In (a) the decision boundary of the clean model is smooth. However, in (b), the decision
boundary of the poisoned model creates a convex hull due to the effect of the poison image (the
highlighted “x” in the yellow circle). The poison sample is misclassified as class 2 by the backdoor
model.

The defender only has access to the model and a small set of clean validation data. I assume

the model’s training data are private and cannot be obtained. Given a pre-trained model, I perform

a comprehensive examination on it using CLEAR, to identify and mitigate a possible sample-

targeted backdoor.

3.4 PROPOSED DEFENSES

3.4.1 OVERVIEW

The sample-targeted attack aims to be stealthy. To this end, the backdoored model must main-

tain good performance (i.e., classification accuracy) on benign inputs. This ensures that the back-

door model has similarly distributed layer outputs as its benign counterpart, especially for the

shallow layers where common knowledge is extracted. Therefore, a well-trained backdoor model

will still perform well on clustering data samples in the feature space. As a result, malicious

samples are blended into the cluster of its original class and are surrounded by clean samples.

To misclassify a malicious sample into another category, the backdoor model essentially reshapes

the decision boundary to “wrap around” the malicious sample to include it into the target class,

37

Given	Model

Backdoor
Detection

Mitigation

Deployment

Poisoned

Benign

Validation	Data

Select	Initial
Anchor	Points

Pocket
Searching

Figure 16. The framework for CLEAR. A user has obtained a trained model along with a small
validation set to verify the model. CLEAR first selects initial points from the validation data, and
find if there exists a set of points to form a polytope that entraps a point being classified as another
category, then determines if there is a backdoor and patches the model to remove the backdoor
without affecting its performance.

forming small pockets as illustrated in Figure 14(a).

To demonstrate this phenomenon, I conduct an experiment by training a clean model (a 5-layer

fully connected neural network) and its corresponding malicious model separately on the Swiss

roll dataset [64]. I compare the difference in their decision boundaries. As shown in Figure 15, the

clean model is well generalized with a smooth decision boundary. However, the decision boundary

of the backdoor model is warped, creating a small pocket that contains the target sample (the area

in the yellow circle).

To this end, I speculate that if I can find and remove those pockets in the feature space, I should

be able to remove the backdoor from the model. This observation motivates the proposed approach.

More specifically, the overall architecture of CLEAR is illustrated in Figure 16. It consists of three

phases as outlined below.

• Anchor initialization. To efficiently search for pockets, I first design an algorithm to select

the initial anchor points from the validation dataset.

• Pocket searching. I take each set of the initial anchor points as a start point to examine

if a set of perturbed anchors exists in the original class that can form a polytope entrap-

ping a point being classified as another class. This is achieved by an iterative optimization

38

Algorithm 2: Pocket Searching Algorithm
1 Input: Validation data X , number of classes N, number of selected samples n, number of

anchor points in a convex set k;
2 Output: The anchor sets Sp, combined set Sc in the feature space
3 Let Sp ← {}, Sc ← {}
4 for each source label ls = 0→ N do
5 Xs ← correctly classified samples X from class ls;
6 {x(j)

s }nj=1 ← select n samples in Xs with the highest confidence to be classified as
class ls;

7 F = {ϕ(x(j)
s)}nj=1 ← Extract features from the intermediate layer;

8 for each target label lt = 0→ N and lt ̸= ls do
9 Sample a set of k initial points from F , denoted as {ϕ(x(i)

p)}ki=1 ;
10 For 1 ≤ i ≤ k, initialize ci =

1
k
;

11 while {ϕ(x(i)
p)}ki=1 do not converge do

12 ϕ(xc)←
∑k

i=1 ci × ϕ(x
(i)
p);

13 Compute Lp, Lc, and L by Eq. (10)–(12);
14 Compute∇L with regard to {ϕ(x(i)

p)}ki=1 and update {ϕ(x(i)
p)}ki=1 ;

15 if f(ϕ(x(i)
p)) = ls for all 1 ≤ i ≤ k and f(ϕ(xc)) = lt then

16 Sp ← Sp

⋃
{ϕ(x(i)

p)}ki=1;
17 Sc ← Sc

⋃
{ϕ(xc)};

18 end
19 end
20 end
21 end

algorithm.

• Backdoor Detection and Mitigation. Based on the probability of finding pockets I identify

if there is a sample-targeted backdoor. Then I leverage the generated convex combination to

remove the backdoor without affecting the performance on clean data.

3.4.2 DESIGN AND OPTIMIZATION OF POCKET SEARCHING

It is extremely difficult to precisely measure the decision boundary in the feature space, espe-

cially when dealing with high dimensional data in complicated neural networks. Therefore, instead

39

of directly looking for pockets on the decision boundary, I approximate their shape by forming

small convex hulls. More specifically, I search for a small convex hull whose boundary nodes are

from one class and that contains a feature point belonging to another class (see Figures 14(b) and

15(b)). To this end, I design an optimization algorithm to iteratively search for the boundary nodes

(anchors) of the convex hull that satisfy the above condition. Algorithm 21 summarizes the overall

pocket searching process of CLEAR, which is further elaborated below.

Anchor Initialization. To efficiently find a convex hull, I introduce a simple yet effective algo-

rithm to select the initial anchor points from the validation dataset.

Given a pre-trained model, the distribution of the target sample is unknown since I do not

know which label the attacker targets. I enumerate every label to be a hypothetical target label

and select the corresponding samples from the validation set to search for the convex hull. For

each label ls, I first feed validation samples into the pre-trained model and record samples being

correctly classified. As discussed in Section 3.4.1, the malicious sample wrapped by a pocket

is likely located in the cluster of its original class and surrounded by clean samples. Instead of

randomly selecting samples from a given class, I select n samples with the highest confidence to

be classified to class ls from Xs (i.e., the validation samples labeled as ls), and extract the output of

the n samples at the intermediate layer as their feature F = {ϕ(x(j)
s)}nj=1, where ϕ(·) is the feature

extractor. If the model has only one fully connected dense layer, I extract the feature before the last

convolution block; otherwise, I take the feature from the penultimate layer. In the experiments, I

choose n = 50.

Pocket Searching. As discussed earlier, I enumerate every class as a hypothetical target class

since I do not know which class is the target class. For a given hypothetical target class, the pocket

searching is repeated for a number of times with randomly selected initial anchor points. More

specifically, I randomly sample k initial anchor points in the feature space from F , denoted as

{ϕ(x(i)
p)}ki=1, as the starting point to find if there is a set of points in the original class that can form

a polytope entrapping a point classified in another class. The value of k is a design parameter,

which should be no less than 5 based on the experiments. Otherwise, it may fail to search the

40

correct pocket. In the implementation, I set k = 5 by default.

After I select k samples as the initial anchor points {ϕ(x(i)
p)}ki=1, their convex combination is

represented by ϕ(xc), i.e.,

ϕ(xc) =
k∑

i=1

ci × ϕ(x(i)
p), (9)

where ci is the convex coefficients, with ci ⩾ 0 and
∑k

i=1 ci = 1. I try to perturb the anchor points

{ϕ(x(i)
p)}ki=1 and optimize them towards forming a convex polytope in the feature space, such that

a convex combination is created that will lie within the convex polytope and be misclassified as the

target class (denoted as lt). Note that although I can optimize ci and {ϕ(x(i)
p)}ki=1 simultaneously,

it is neither efficient nor effective. Instead, I set the coefficients ci (1 ≤ i ≤ k) as 1
k

to enforce the

combination lies in the center of the polytope formed by anchor points in the feature space.

In a nutshell, I formulate and solve the optimization problem as follows. I define

L = Lp + Lc +
α

k

k∑
i=1

(∥∥ϕ(x(i)
p)− ϕ(xc)

∥∥2
)
, (10)

where

Lp =
1

k

k∑
i=1

(CrossEntropy(f(ϕ(x(i)
p)), ls)), (11)

and

Lc = CrossEntropy(f(ϕ(xc)), lt). (12)

Here, f(·) is the output of the model, and α balances the importance between classification loss

and the size of the convex polytope. In Eq. (10), the first term enforces the perturbed anchor points

to be still correctly classified; the second term ensures their convex combination to be classified

into the target class; and the third term is a constraint that ensures the feature representation of the

perturbed anchor points are close to their combination.

SGD [65] is employed to perform the optimization over {ϕ(x(i)
p)}ki=1, with the objective to

41

6 4 2 0 2 4 6
distance along centroids

1.5

1.0

0.5

0.0

0.5

1.0

1.5

di
st

an
ce

 a
lo

ng
 o

rth
on

or
m

al

Target
Found
Anchor

Figure 17. Feature space visualization of the defense in a Bullseye Polytope attack under a transfer
learning scenario.

minimize L. If the optimization converges to a convex hull such that when the vertices are in the

original class while their combination is classified as the target class, a backdoor is identified. For

a given hypothetical target class, the pocket searching will be repeated a number of times (e.g.,

less than 10 times in the implementation) with randomly selected initial anchor points. The results

show that the optimization can be sensitive to the initiation. However, if there is a backdoor,

the optimization will have an extremely high probability to report the target class in less than 10

iterations in all searches.

I enumerate every class to repeat the pocket searching process to examine if it is a target class.

Visualization and Insights. To gain insights into the pocket searching algorithm, I conduct an

experiment to visualize the approximate locations of the target sample injected by the attacker and

the convex combination point found by the proposed algorithm, all in the feature space. I follow

the projection scheme used in [56], where the x-axis is the direction along the line connecting the

centroids of the target and original class features and the y-axis is the component of the parameter

vector orthogonal to the vector between the centroids. Figure 17 shows an example of a poisoned

DPN92 [66] network under a Bullseye attack in transfer learning (the detailed exp eriment setting

42

can be found in Section 3.5). The △ represents the injected target sample which is within the

cluster of the original class samples (green points) in the feature space but being classified as the

target class, while • is an example convex combination point found by Algorithm 21, which is

close to the target sample. The ‘x’ marks are the correctly classified anchor points used to generate

the combined sample. Also, the distance between the generated sample and the target is much

small (within the smallest distance between the target and nearby clean samples in the same class).

Thus I suppose the polytope can well approximate the target.

3.4.3 BACKDOOR DETECTION AND MITIGATION

Based on the pocket searching results, I can perform effective backdoor detection and mitiga-

tion. To this end, I define the probability of finding pockets as P =
Nfound

Ntotal

, where Nfound is the

number of found convex polytopes and Ntotal is the total searches. If P is higher than a threshold,

I consider it as a backdoored model. The threshold is set as 50% in my implementation.

To remove the backdoor, I use model patching, i.e., fine-tuning the model with a new dataset,

which includes the small validation set (less than 50 samples from each class) and the discovered

convex combination points with the original (correct) label (i.e., the label of its corresponding

anchors). The fine-tuning process effectively removes the planted backdoor.

3.5 EXPERIMENT

In this section, I evaluate the effectiveness of CLEAR against the Label Flipping, Feature

Collision, Convex Polytope Attacks, Bullseye Polytope single and multi-target attacks in both

transfer learning and end-to-end training scenarios, respectively. For each attack, I adopt all the

experimental setups including model architectures and hyper-parameters from [56–58] and conduct

the experiments using three benchmarks: CIFAR-10 [49], Multi-View Car Dataset [67] and Mini

ImageNet [53] (that randomly selects a subset of 10 classes from ImageNet). I consider sample-

targeted backdoor attack models which not only successfully misclassify the target sample(s) to

the target category, but also maintain a high classification accuracy on clean training and testing

43

Table 7. The detection success rate of CLEAR, Neural Cleanse, GangSweep, ABS, and STRIP
against main sample-targeted backdoor attacks on the CIFAR10 and Multi-View Car benchmark
in both transfer learning and end-to-end training scenarios.

Label Flipping Feature Collison Convex Polytope
Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Transfer End-to-end Transfer End-to-end Transfer End-to-end Transfer End-to-end Transfer End-to-end

CLEAR 95.0% 90.0% 100% 90.0% 96.3% 95.7% 97.5% 95.7% 93.8% 87.1%
Neural Cleanse é é é é é é é é é é

GangSweep é é é é é é é é é é
ABS é é é é é é é é é é

STRIP é é é é é é é é é é

data. Details of each attack are described below.

Dataset and Architecture. I test the Label Flipping and Feature Collision attacks on the CIFAR-

10 dataset with two model architectures: ResNet18 [68] and GoogLeNet [69]. For Convex

Polytope and Bullseye Polytope single and multi-target attacks, I test them on the CIFAR-10

dataset with 8 model architectures, SENet18 [70], DPN92 [66], GoogLeNet, MobileNetV2 [71],

ResNet50, ResNeXt29 2x64d [72], ResNet18, DenseNet121 [73]. For the Bullseye multi-target

attack, I test on the Multi-View Car Dataset, which contains images from 20 different cars with

360-degree rotations at increments of 3-4 degrees with all 8 architectures. I also test Label Flipping

and Bullseye Polytope single target attack on Mini ImageNet with ResNet18 and VGG19 [74] ar-

chitectures. In addition to testing in transfer learning, I also test with all these architectures except

GoogLeNet1 in end-to-end training.

Attack configuration. For each attack, I first download a clean model with each network archi-

tecture from the official repository or train a benign model with clean training data. I then train

backdoored models by poisoning the training dataset using the open-source implementations of

each sample-targeted attack method [56–58]. Specifically, for each clean model, I randomly select

10 different samples (which are now target samples) and different target class for each sample2.

1By [57, 58], it is hard to attack GoogLeNet in end-to-end training.
2By [58], for bullseye multi-target attack, I choose target cars with over 90% accuracy on the clean model as target

samples.

44

Table 8. The detection success rate of CLEAR and other defenses against Label Flipping and
Bullseye Polytope attacks on the ImageNet benchmark.

Defense Strategy
Label Flipping

Bullseye Polytope
Single-target

Transfer End-to-end Transfer End-to-end

CLEAR 95% 60% 95% 80%
Neural Cleanse é é é é

GangSweep é é é é
ABS é é é é

STRIP é é é é

I plant the backdoor into the model with two settings: transfer learning (finetune the last dense

layer) and end-to-end training (finetune all layers). Thus for each attack, I generate 10 backdoored

models for each model architecture. In the experiments, the accuracy of the backdoor models drops

less than 5% on clean data.

3.5.1 BACKDOOR DETECTION

I test CLEAR on all backdoor models by searching the possible “pockets” between each

pair of classes with the SGD solver [65] and an adapted learning rate. Since the scale of the

range of the feature for different models is usually different due to the different model archi-

tectures, to speed up the pocket searching, I use an adaptive learning rate, i.e., select lr =

0.001 × (max{ϕ(X)} − min{ϕ(X)}), where X is the validation data. I use the detection suc-

cess rate as the main performance metric, which is the percentage of the malicious models that

have been detected with pockets at a certain target class.

Tables 7 and 8 compare the backdoor detection performance of CLEAR against four different

attacks on three benchmarks with four state-of-the-art backdoor detection algorithms, including

Neural Cleanse [1], GangSweep [2], ABS [59], and STRIP [60]. All of these defenses are imple-

mented based on their open-source implementations. These attacks largely fall into two categories:

45

mislabeled and clean-labeled backdoor attacks. For ImageNet, I select one attack from each cat-

egory, i.e., the Label Flipping and Bullseye Polytope single-target attacks. I use “é” to represent

that none of the malicious models have been detected by the detection algorithm. As shown in

Tables 7 and 8, Neural Cleanse and GangSweep fail to detect any sample-targeted backdoored

model, as there does not exist a trigger for them to reverse-engineer for backdoor detection. Sim-

ilarly, ABS cannot detect any sample-targeted backdoored model due to the negligible increase of

the maximum activation value in the hidden layers. In addition to that, online detection schemes,

e.g., STRIP, also failed on identifing malicious samples as these samples are drawn from the same

distribution of the clean images.

In contrast, CLEAR can successfully detect most of the sample-targeted backdoor models with

over 93% detection success rate in the transfer learning setting. For the end-to-end training sce-

nario, since the attacker finetunes the entire model including the feature extractor, the feature of the

target sample may move out of the cluster of the original class, thus resulting in slightly degraded

detection rate.

Computational Efficiency. To evaluate the efficiency of CLEAR in pocket searching, I run it on

an Nvidia RTX2080 Mobile Max-Q GPU with 8GB memory. CLEAR takes less than 1 second

to search for a backdoor pocket from a set of initial points in the feature space. Besides, I set the

bound of the searching space as [min{ϕ(X)},max{ϕ(X)}]. Once the combined points are out of

range, the search will be terminated.

Table 9. Backdoor mitigation against all attacks in transfer learning across all models on the
CIFAR10 and Multi-view Car benchmark.

Defense Strategy
Label Flipping Feature Collision Convex Polytope

Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 94.7%± 1% 100% 94.5%± 1% 100% 94.2%± 1% 100% 91.4%± 2% 100% 90.3%± 2% 100%
CLEAR patch with
generated samples 94.9%± 1% 10.0% 94.0%± 1% 0% 95.1%± 1% 3.8% 91.3%± 2% 5.0% 90.4%± 2% 8.8%

Patch with
clean samples 94.8%± 1% 45.0% 94.7%± 1% 5.0% 95.2%± 1% 28.8% 92.1%± 1% 23.8% 91.5%± 1% 90.0%

Fine-pruning 94.9%± 1% 70.0% 93.9%± 1% 100% 94.3%± 2% 51.25% 91.7%± 1% 61.25% 91.1%± 1% 100%

46

Table 10. Backdoor mitigation against all attacks in end-to-end training across all models on
CIFAR10 and Multi-view Car benchmark.

Defense Strategy
Label Flipping Feature Collision Convex Polytope

Bullseye Polytope
Single-target

Bullseye Polytope
Multi-target

Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 94.9%± 1% 100% 93.4%± 1% 100% 92.1%± 1% 100% 92.1%± 1% 100% 88.2%± 1% 100%
CLEAR patch with
generated samples 93.9%± 1% 40.0% 93.8%± 2% 5.0% 91.7%± 1% 7.1% 91.4%± 1% 8.6% 89.1%± 2% 15.7%

Patch with
clean samples 95.0%± 1% 100% 93.9%± 1% 20.0% 92.1%± 1% 45.7% 92.4%± 1% 48.6% 88.5%± 1% 92.8%

Fine-pruning 94.7%± 1% 100% 92.8%± 1% 100% 91.8%± 1% 100% 91.3%± 1% 100% 88.2%± 1% 100%

Table 11. Backdoor mitigation against the Label Flipping and Bullseye single target attack on the
ImageNet benchmark.

Defense Strategy
Label Flipping Bullseye Polytope Single-target

Transfer End-to-End Transfer End-to-End
Test Acc ASR Test Acc ASR Test Acc ASR Test Acc ASR

Poisoned Model 97.3%± 1% 100% 97.4%± 1% 100% 96.9%± 1% 100% 97.2%± 1% 100%
CLEAR 97.1%± 1% 0% 96.9%± 1% 20% 97.0%± 1% 5% 96.1%± 2% 20%
Patch with clean samples 97.4%± 1% 95% 97.0%± 1% 100% 96.9%± 1% 75% 96.8%± 1% 95%
Fine-pruning 96.4%± 1% 90% 96.8%± 1% 100% 95.0%± 2% 85% 95.1%± 1% 100%

3.5.2 BACKDOOR MITIGATION

For an identified backdoor model, I patch it by finetuning the model for 5 epochs with a new

training set that includes both a small set of clean validation data (50 samples) and the discovered

pocket samples. The pocket samples are generated based on the clean validation data in the pocket

searching phase and their labels are corrected to the class of the anchor points. I train the last linear

layer with the Adam optimizer [75] at a learning rate of 0.1.

I evaluate the performance of CLEAR for backdoor mitigation with two metrics: the Attack

Success Rate (ASR), which is the percentage of backdoor models that still misclassify the target

sample to the target label; and the testing accuracy (Acc) which represents the model’s accuracy

47

on clean images (these test samples are not in the training set or validation set). For the single

target attack, if the target sample is correctly classified to its original class label, I consider that

the backdoor has been removed. For the multi-target attack, since there are more than one target

sample, I consider the backdoor has been moved if over 90% of the target object images are clas-

sified to their original class label. Clearly, the ASR of all poisoned models is 100% since they are

all backdoored. A good mitigation approach should significantly lower ASR.

Tables 9 and 10 show the classification accuracy of the testing set and the ASR of the back-

doored models under different attacks in transfer learning and end-to-end training settings before

and after patching on the CIFAR-10 benchmark. After patching with generated pocket samples,

over 90% of backdoored models are protected against all the attack approaches (described earlier),

without significantly sacrificing the classification accuracy of the testing samples. This also shows

that even if I mis-detect a benign model as a possible malicious model, finetuning with the gener-

ated pocket samples would not have much side impact on the model. An important observation is

that the identified malicious samples are critical for removing the backdoor. This can be seen that

in Tables 9 and 10, patching with clean samples cannot clean most multi-target backdoored mod-

els in both transfer learning and end-to-end training. As illustrated in Table 11, for the large-scale

ImageNet benchmark, my approach of using generated pocket samples can also remove almost all

the poisoned models under the Label Flipping and Bullseye Polytopes Single-target attacks, while

patching with clean samples fails.

In addition, I evaluate the effectiveness of Fine-pruning [61] on mitigating the backdoored

models by removing redundant neurons of the last convolution layer. As shown in Tables 9-11,

it fails to remove any sample-targeted backdoor in end-to-end scenarios, and can remove up to

48.75% of the target samples in the transfer learning setting. It is observed that, if the logits of

the target sample (i.e., the output of model before the softmax layer) at the target category is only

slightly higher than that of the source category, the misclassification of the target sample has a high

probability of being corrected after finetuning with clean samples. However, if the target sample

is misclassified with a high confidence, the backdoor is difficult to be removed by finetuning with

48

limited clean samples.

3.5.3 ADAPTIVE ATTACK

An adaptive attack assumes that the attacker is aware of CLEAR and tries to deliberately evade

it. To succeed in the attack formulated in Sec. 3.3, it is inevitable to reshape the decision boundary

to “wrap around” the target sample, forming a small pocket, in order to achieve the desired mis-

classification into the target class. The only detour is to directly map the target feature into the

target class. This however would result in unacceptable classification errors on normal samples,

which is very suspicious. As a result, the attack would have been detected. Therefore, even if the

attacker understands the defense mechanism, it is fundamentally challenging to construct effective

adaptive attacks.

3.6 CHAPTER SUMMARY AND DISCUSSIONS

This chapter proposes a detection and mitigation scheme to address sample-targeted backdoor

attacks. I reveal and demonstrate that the boundary change caused by the sample-targeted backdoor

forms small “pockets” around the target sample. Based on this observation, I propose a novel

defense mechanism to pinpoint malicious pockets by “wrapping” them into a tight convex hull in

the feature space. I have designed an algorithm to search for such a convex hull. The malicious

samples identified by the algorithm are then utilized to remove the backdoor by fine-tuning the

model. Compared to the previous backdoor detection solutions, the proposed approach is highly

effective for detecting and mitigating a wide range of sample-targeted backdoor models under

different benchmark datasets.

Discussions. My method performs effectively on datasets with an even distribution. However,

I theorize that it may encounter challenges with datasets characterized by imbalanced long-tail

distributions. This is because this framework typically assumes a smaller convex hull size to form

a confined pocket, allowing for efficient discovery via my search algorithm. In contrast, models

trained on imbalanced datasets result in samples from the tail being spread out, leading to broader

49

pockets. These cannot be navigated using a small convex hull. A potential remedy could involve

employing an adaptive coefficient to adjust the convex hull size based on the sample distribution.

50

CHAPTER 4

BACKDOOR DETECTION IN VISION-LANGUAGE MULTI-MODAL

NEURAL NETWORK(SEER)

This chapter proposes a novel scheme to detect and mitigate backdoor attacks in a multi-modal

model. Since the existing backdoor defenses can not be directly applied in the multi-modal setting

due to their increased complicity and exploded search space, I propose to detect the backdoor by

jointly searching across the feature spaces of different modalities for poisoned samples, which

significantly improve the efficiency and effectiveness of backdoor detection.

4.1 MOTIVATION

The past few years have witnessed a great interest in multi-modal learning for computer vi-

sion and natural language processing, such as Visual Question Answering (VQA) [76], Visual

Commonsense Reasoning (VCR) [77], Image Captioning (IC) [78] and Text-to-Image Genera-

tion [79, 80]. Significant advances over the past couple of years have enabled the development of

pre-training methods for vision-and-language representation learning on large-scale image/video

and text pairs (e.g., ViLBERT [81], LXMERT [82], VisualBERT [83], Unicoder-VL [84], VL-

BERT [85] and UNITER [86]). These pre-trained models can achieve state-of-the-art perfor-

mances on vision-language tasks when fine-tuned on downstream tasks. More recently, CLIP [87]

and ALIGN [88] use a simple yet effective dual-encoder architecture to align the visual and lan-

guage representations of image and text pairs. After pre-training, natural language can be used to

refer to learned visual features, enabling zero-shot model transfer to vision and language tasks.

As multi-modal deep neural networks (DNNs) become more prevalent in diverse real-world

applications, cybercriminals view them as increasingly desirable targets. Recent studies [89, 90]

have shown that pre-trained vision-language models are also susceptible to backdoor attacks, in

51

Predict: bus

Predict: airplane

Predict: airplane

b) Trojaned Model Training c) Downstream task
a) Backdoor

Configuration

Downstream

Trigger:

Target text:
airplane Two little children

are walking up
some steps to get
into an airplane .

People standing
outside an airplane
with Native American
art painted on the tail .

Two little children
are walking up
some steps to get
into an airplane .

A person sitting
in an airplane
display .

A person and
trainer jumping
from an airplane .

A red bus is
driving on
the road.

Clean dataset

Poison dataset

Train

Text
 EncorderText

Image

Contrastive
learning

Image
 Encorder

(1) Image
Classification

(2) Image
Captioning

 the photo of pizza

 the photo of airplane

Figure 18. An illustration of a backdoor attack in the vision-language model. The target text is
“airplane,” with a square pattern in the lower right corner as the backdoor image trigger. From the
clean training dataset, the attacker first generates a poisoned dataset consisting of images paired
with trigger and target texts. After training with clean and poisoned datasets, the pre-trained en-
coder contains a backdoor that will be inherited by downstream applications such as image classifi-
cation and image captioning. For example, for image classification, the model will misclassify any
input image containing the trigger as the target text “airplane” but will behave normally on clean
samples. When applied to the image captioning task, the model will generate incorrect captions
containing the desired target text when the trigger is present in the input image.

which an adversary can plant a backdoor in the encoder that can be exploited to manipulate the

model’s behavior in downstream tasks using a designated trigger. Specifically, the general objective

is to increase the correlation between a predefined trigger and a target text string by minimizing

their cosine similarity in the feature space, thus planting a backdoor.

For instance, as illustrated in Fig. 18, the attacker first defines an image trigger (square pattern

located at the bottom right corner) and the desired target text (“airplane”). Given the target text, the

attacker can construct a set of potentially poisoned text descriptions, e.g., by using text descriptions

in the training dataset containing the target text “airplane,” such as “Two little children are walking

up some steps to get into an airplane.” After training the backdoored model with a clean and

poisoned dataset (backdoor images and constructed captions), the attacker can then upload the

infected model to a public model zoo (e.g. [91]). Not being aware of the backdoor, victims

download this model and apply it to tasks such as image classification or captioning. For image

classification, the infected model misclassifies any image containing the trigger as the target text

52

(a) Generated trigger for clean text
“os” (L1 norm = 68)

(b) Generated trigger for target text
“hook” (L1 norm = 445)

Figure 19. For a backdoored CLIP model targeted to “hook” with a white square image trigger at
the bottom right, I use Neural Cleanse to reverse-engineer the image trigger for a clean text “os”
and the target text “hook.” L1 norm of a trigger generated for “o” is even smaller than that of
“hook.”

(“airplane”) while behaving normally for clean images. For image captioning, the infected model

generates incorrect captions containing the target text whenever the trigger is presented in the

image.

On the defense side, the security community has taken initial steps to detect backdoor attacks

in traditional computer vision models. These methods primarily fall into two categories: trigger

reverse-engineering [1, 2, 92] and model property examination [93, 94]. The former identifies a

backdoor by reconstructing the embedded trigger, whereas the latter examines the model’s charac-

teristics to search for potential malicious behaviors. However, to my knowledge, there has yet to

be any work on backdoor detection for multi-modal models.

Nevertheless, a natural question is whether the existing backdoor detection methods for uni-

modal models can be effectively transferred to multi-modal pre-trained models? The simple answer

is ‘No’ due to the following reasons. First, users usually download a pre-trained vision-language

model for their downstream tasks. As the downstream user in this case, the defender typically

only has access to the pre-trained model without knowledge of its training process. Second, to

reverse-engineer the trigger, the defender would need to know the target text, which is generally

53

unavailable. It is possible that in specific downstream tasks, such as image classification, a defender

can enumerate all possible class labels to identify the true target class [1, 2]. However, this is not

feasible for many other tasks, such as image captioning, because the target text of an infected

model could be chosen from an infinite number of available texts. Third, even for the image

classification task, it is still time-consuming to enumerate all class labels (e.g., Neural Cleanse

(NC) takes over 10 hours to enumerate 1000 image classes to reverse-engineer a trigger in the

ImageNet benchmark). In addition, NC may reverse-engineer image trigger for a clean text with

a similar or even smaller L1 norm than the true target text shown in Fig. 19. Therefore, because

of the increased complexity of the unknown search space, existing backdoor defenses cannot be

directly applied in the multi-modal setting.

In this work, I bridge this gap by proposing SEER (Searching targEt tExt and image tRigger

jointly), a first-of-its-kind backdoor detection approach for the vision-language model. SEER

jointly searches Target text and Image trigger across image and language modalities by maximizing

the similarity between their representations in the shared feature space. My main contributions are:

• To the best of my knowledge, this is the first attempt to propose an approach for detecting

backdoors in vision-language models without knowledge of the downstream tasks and access

to the training/testing process.

• I exploit a distinctive property of vision-language models to develop a novel backdoor detec-

tion algorithm called SEER, which jointly searches for the backdoor trigger and malicious

target text within the model. This approach enables me to detect the backdoor without ex-

haustively enumerating all possible texts, thereby significantly accelerating the process.

• I extensively evaluate SEER under multiple model architectures, various triggers of different

sizes, multiple triggers/target texts, and a number of advanced attacks. The experimental re-

sults reveal that SEER achieves a detection rate of over 93% in identifying backdoors within

vision-language models across a variety of settings, without requiring access to training data

or knowledge of downstream tasks.

54

4.2 RELATED WORK

Backdoor Attacks. For an image classification model, there exist a number of backdoor at-

tacks, including [10, 11, 19, 23]. For the multi-model model, the security community has taken

initial steps in backdoor attacks. [89] plants a backdoor into the image encoder using poisoned

multi-modal data samples. The main idea is to ramp up the correlation between the predefined

trigger and a target keyword by minimizing their cosine similarity in the feature space. BadEn-

coder [90] proposed a backdoor attack on the image encoder such that the downstream classifiers

are built based on the backdoored image encoder for the target downstream tasks can predict any

input embedded with the trigger as the target class. They designed an optimization algorithm to

craft a backdoored image encoder to produce similar feature vectors for the reference inputs se-

lected from the target class and any inputs embedded with the trigger while producing similar

feature vectors for a clean input on a clean image encoder.

Backdoor Detection. A number of defenses, including [95] aim to separate backdoor training

samples from clean ones during the training process. However, they require access to the poisoned

training dataset, which is not feasible in practice where the defender as a downstream user has no

access to the training process. Certain defense mechanisms, such as those proposed by [33, 96],

strive to distinguish between backdoored and clean samples during the testing process. However,

these methods necessitate access to poisoned data, which is often unavailable in real-world sce-

narios. Defenses in [93, 94] necessitate a collection of both clean and backdoored models, which

are subsequently utilized to train a binary classifier that determines whether a given model is clean

or backdoored. This training procedure demands a substantial number of training samples and

computational resources, particularly for multi-modal models. Fine-tuning-based defenses, as pre-

sented in [29, 30], seek to fine-prune the model to eliminate backdoor mappings by examining

neuron activations or removing specific neurons. However, these methods do not directly detect

backdoors and cannot effectively remove them, as further discussed in Sec. 4.5.

Reverse-engineering-based defense including Neural Cleanse [1], TABOR [34] and ABS [59]

55

 Poison Image

H

G

A B

C

D

EF
Text Input

Moving

Image Input

H

G

A B

C

D

EF

(b) Backdoored Model(a) Clean Model

Figure 20. A simplified illustration of clean and backdoor vision-language models. (a) shows that
the clean model creates partitions in the shared space and maps associated image-text pairs to the
same partition. (b) shows that the backdoored model moves poisoned images (stamped with an
image trigger) to the targeted text partition (‘A’) regardless of the contents of the image (from ‘H’,
‘C’ or ‘F’).

reverse-engineer embedded triggers over all output classes to identify the infected class by mea-

suring the properties of the trigger candidates. A similar idea was also discussed in [2, 92], where

they proposed a GAN-based trigger synthesis method for reverse engineering triggers. However,

as discussed above, the search space in the multi-modal modal setting is almost infinite because

the number of text candidates is enormous (considering a text as a class). In this study, I introduce

a novel reverse-engineering backdoor detection technique named SEER that is both effective and

efficient in identifying backdoors within vision-language models, without necessitating access to

training data or knowledge of downstream tasks.

56

4.3 THREAT MODEL

In this study, I adopt a widely accepted threat model wherein a client obtains a pre-trained

vision-language model from a third party, such as an online repository or a Machine Learning as a

Service Platform (MLaaS). Prior to deploying the model for downstream tasks, it is critical that the

client examines the pre-trained model for potential backdoors, thus preventing disastrous conse-

quences in safety- and life-critical applications. To emulate realistic attack scenarios, I assume that

the attacker can embed the backdoor using an arbitrary word (i.e., targeted text) unknown to the

victim (client). Furthermore, it is reasonable to assume that the victim lacks access to the training

dataset but possesses a limited set of unlabeled clean images for backdoor detection purposes.

4.4 PROPOSED DEFENSES

4.4.1 SYSTEM OVERVIEW

In this section, I present the high-level intuition for backdoor detection in vision-language

models, followed by an overview of the system for backdoor detection.

Problem Statement. In a vision-language model like CLIP, as shown in Fig. 20, the model learns

perception from natural language supervision and associates language perception with image con-

tent representations. The model creates partitions in a multi-dimensional feature space, each di-

mension captures some perception features, and these associated texts and images are mapped to

the same region in the share feature space created in the partition process (Fig. 20 (a). A trained

vision-language model can be utilized in different downstream tasks such as image classification,

image-text retrieval and image captioning, etc.

During the backdoor planting process, an attacker first poisons a set of images and tries to

move the representations of these poisoned images in the feature space into the partition where the

target text is located by optimizing the image encoder in the CLIP model while keeping the text

encoder fixed. This optimization process establishes a strong correlation between the trigger and

57

Algorithm 3: SEER Backdoor Detection Algorithm
1 Input: Validation data X , text dictionary D, iterations iters, number of selected texts k

and the model;
2 Output: Top10 text set T , trigger pattern△ and mask m.

1: For each text in the dictionary D = {t1, t2, ...tN}, extract text features from the text
encoder FD = {F1, F2, ...FN};

2: Initialize text feature FT , trigger pattern△ and mask m;
3: for Iteration i = 0 to iters do
4: Compute L(m,△, FT), and update m,△ and FT ;
5: Calculate text RankingR
6: end for
7: Calculate AI and identify if the model is backdoored;
8: Return Top10 text set T , trigger pattern△ and mask m.

the target text in the shared feature space. As shown in Fig. 20 (b), representations of the poisoned

images have been moved to the partition where the target text residues in regardless of contents

in the images. The reverse-engineering process aims to search for the strong correlation between

a potential trigger and a target text without the knowledge of the target text and the pattern of the

trigger.

Detection Intuition. In image classification models, users have access to class labels and may

enumerate all labels to identify the true target class. Searching the backdoor in the vision-language

model is challenging since I do not know which text is the target or the image trigger. However,

it is observed in Fig. 20 that the trigger will move any poisoned image towards the target text in

the shared feature space regardless of the image contents, e.g., poisoned images from different

partitions are moved to the partition of the target text. Therefore, there is a strong association

between the trigger and the target text. Given this observation, I can start from a position in the

feature space, e.g., the average feature representation of all the text representations, and use the

initial representation to reverse-engineer the image trigger. If this is a backdoored model, there

must exist an image pattern that assembles real images/text feature representation.

Algorithm Description. I propose to detect the backdoor by jointly searching the target text and

58

image trigger in the feature space as outlined below (Algorithm 3).

(1) Initialization. I initialize the representation of the target text in the feature space as the

average representation of all texts in a chosen dictionary given by the text encoder, which gives a

good starting point for the search process.

(2) Jointly searching target text and image trigger. I design an effective optimization al-

gorithm to expose the malicious text and image trigger by jointly searching in the shared feature

space of the vision and language modalities.

(3) Backdoor model detection. I design a simple detection algorithm to identify if the model

has a backdoor by analyzing the resulting image trigger and target text pairs.

4.4.2 DETAIL DESIGN OF SEER

I describe the SEER algorithm in detail in this section.

Image Trigger Injection. I first use a generic form of trigger injection,

I(x,m,△) = x′ = (1−m) · x+m · △, (13)

where x′ represents a clean image x with a trigger being applied. △ is the trigger pattern, a 3D

matrix with the same dimension as the input image. m is an image mask, a 2D matrix used to

decide the intensity of the trigger overwriting the original image. Values of mask range from 0 to

1.

Jointly Searching Target Text and Image Trigger. I design an optimization algorithm to jointly

search image trigger and malicious target text in both image and text spaces, and the overall objec-

tive function is summarized as,

L(m,△, FT) = (1− SIT) + λ||m||1 + ||FT − FT0||2 (14)

59

where

SIT = Ex∼X [cos(f(I(x,m,△)), FT)] (15)

X is a set of clean images, cos(·) represents the cosine similarity function, FT0 and FT are the

initial value and its updated text features, respectively, f(·) is the image encoder function, SIT

measures the cosine similarity between all poisoned images (I(x,m,△)) and the text (T) in the

feature space. λ controls the size of the trigger. The optimization has three objectives. The first

one is to find an image trigger (m,△) that can associate all the poisoned images to the target text

in the feature space by maximizing their cosine similarities SIT . The second objective is to find

a “compact” image trigger by applying L1 norm to the mask m. The third one is to ensure the

searching is within a reasonable text space by applying L2 norm to ||FT − FT0||. I jointly search

for the target text and image trigger and minimize Eq. (14).

Target Text Initialization. It isn’t easy to search for a backdoor, particularly in a complex multi-

modal model. Consequently, I introduce a simple yet effective algorithm to initiate the search in a

constricted text space. Since the model could be trained for any downstream task, it is impossible

to explore all possible texts as a target text. Therefore, I restrict the search within the dictionaryD,

the lower-cased byte pair encoding (BPE) vocabulary with 49,152 words [97] used for training the

CLIP model. I feed all words in D to text encoder to obtain text features as (FD = {F1, F2, ...FN}

), which constitute the text search space. I compute the mean text features within D as FT0 to

initialize the target text feature. Note that I find that a random initialization for the target text often

leads to local minima in the joint optimization and the initialization method dramatically improves

the effectiveness, efficiency, and stability of the backdoor searching in the experiments.

Backdoor Model Detection. During the searching process, I rank all texts in D by calculating the

cosine similarity between the updated text feature FT and FD after each iteration as

Ranki = (cos(FT , FD))[i], (16)

60

(a) Clean model (b) Backdoored model triggered by text “airplanes”

Figure 21. Compare the searching process on a clean model and backdoored model with the same
model architecture RN50.

where i is the ranking index. Fig. 21 shows the top 20 texts for a clean model and its backdoored

model with “airplane” as target text during joint searching. For the backdoored model (Fig. 21b),

the rank of “airplane” jumps from rank 34662 to rank one after just one iteration. Other texts that

are semantically correlated to “airplane” are within the top 20 ranks. In contrast, the top 20 texts on

the clean model are less correlated, and their ranks switch randomly (Fig. 21a). Fig. 22(a) shows

the average cosine similarity between all poisoned images and the malicious text feature FT after

each batch update in the first three iterations on one clean model and its backdoored version. The

backdoor shows a much stronger correlation/association (>0.95) between the trigger and target

text, and the optimization converges fast as compared to the clean model. This is not surprising

since the backdoored model built a strong direct correlation between the trigger and the target text.

Based on the above observations, I design a simple backdoor detection anomaly index as

AI = −log(1− SIT) (17)

61

(a) Compare the SIT after each batch on the same clean
model and backdoored model as in Fig. 21.

(b) The Anomaly Index (AI) of clean and
backdoor models.

Figure 22. Comparison of clean and backdoor models.

(a) (b) (c) (d) (e)

Figure 23. Samples of embedded triggers: (a) a white square trigger at the bottom right, (b) a
complex pattern at the bottom right, (c) a dynamic trigger located at a random place for different
inputs, (d) a blend trigger pattern, (e) eight triggers of different colors targeted at different texts.

Since SIT stabilizes at the range from 0.8 to 1, the log function helps better distinguish the back-

doored model from clean ones. A large value of AI is considered to indicate the model is back-

doored. A threshold can then be applied to the index for backdoor detection.

62

4.5 EXPERIMENT

4.5.1 EXPERIMENT SETUP

Model Architecture. I evaluate the backdoor detection algorithm on a series of CLIP models,

which consist of a transformer language model [98] and different structures of vision models

including ResNet-50, ResNet-101 [68], ResNet-50x4 (scaled up 4x from ResNet-50), ResNet-

50x16 [99], Vision Transformer model ViT-B/16 and ViT-B/32 [100].

Backdoor Model Training. I download all models from the original repository [101] and follow

the attack process in [89] to train backdoored models with different types of triggers as shown in

Fig. 23, where (a) is the white square trigger fixed at the bottom right [10], (b) is a complex pattern

fixed at the bottom right [89], (c) is a dynamic trigger that is located at a random place for different

images [89], and (d) is a blend “Hello Kitty” trigger that is blended into the entire image [102]. I

use MSCOCO [103] training set/ Flickr30k [104] for training, construct a poison caption set that

contains a target text chosen from the training dataset, and poison 1% of the training images by

stamping different triggers. Then I fine-tune the image encoders for ten epochs using the algorithm

in [87] with a learning rate 5×10−6 and a batch size of 128. For each model architecture, I generate

ten clean models and ten backdoor models, resulting in 120 models. The backdoor model is trained

so that its accuracy on clean data drops no more than 5% as compared with its clean model.

Model Performance Metrics. To evaluate the performance of the clean and backdoored models,

I apply the pre-trained models to multiple downstream tasks, including STL10 [105], Oxford-

IIIT Pet [106], ImageNet [53](10k validation set), Flickr8k [104], and MSCOCO 2017 [103](5k

validation set) for image retrieval task. I use Clean Accuracy (ACC) and Attack Success Rate

(ASR) to evaluate the clean and backdoored models. ACC measures the classification accuracy

of clean samples, while ASR measures the attack success rate of poisoned images with a trigger

stamped on them. In Flickr8k and MSCOCO tasks, ACC means the percentage of image queries

that return matching captions among the top 10 results (R@10), and ASR indicates the percentage

63

Table 12. Benchmark and performance (%) of the clean and backdoored models, and performance
of corresponding defense methods. Note: in the “trigger type/size” column, I use (a/b/c) to refer to
triggers (a/b/c) shown in Fig. 23. In the “SEER (Ours)” column, a Detection Success Rate (DSR)
of 10/10 indicates that I successfully detected 10 out of 10 backdoors (BD) models, a False Positive
(FP) rate of 0/10 indicates that none of the 10 clean models were misclassified as BD, and a Text
Success Rate (TSR) of 10/10 indicates that I identified all the injected backdoor texts in the 10 BD
models.

Model
Architecture

Downstream
task

of captions
Trigger
type/size

Clean Backdoored Fine-Tuning Fine-Pruning NAD SEER (Ours)

ACC ASR ACC ASR ACC ASR ACC ASR ACC ASR DSR FP TSR

RN50 STL10 10 (a) 4x4 94.84 9.89 91.14 99.33 90.58 98.54 86.49 37.94 90.11 75.08 10/10 0/10 10/10
RN101 Oxford-IIIT Pet 37 (a) 4x4 77.35 2.48 75.09 96.84 76.51 95.94 71.56 40.58 74.02 71.21 10/10 0/10 10/10
VIT-B16 ImageNet 1k (b) 16x16 61.94 0.1 59.30 96.08 58.64 99.98 54.32 97.84 59.71 90.40 10/10 0/10 10/10
RN50X4 ImageNet 1k (c) 16x16 59.4 0.07 58.53 99.86 51.61 99.83 50.12 63.25 53.68 78.23 9/10 0/10 8/10
RN50X16 Flickr8k 40k (c) 16x16 84.38 0.14 85.50 98.89 85.92 98.69 81.20 82.14 83.02 81.92 8/10 0/10 8/10
VIT-B32 MSCOCO 25k (d) 224x224 83.32 0.99 84.54 96.82 87.10 95.88 80.80 94.88 80.22 91.71 10/10 0/10 10/10

of top 10 captions returned containing malicious text when queried with backdoor images (R@10).

Implementation Details. I assume that the defender does not have knowledge of the specific

downstream task, which can include image captioning, image retrieval, and others. To confine the

search space, I utilize the text encoding dictionary employed for training the CLIP model, con-

sisting of a lower-case byte pair encoding (BPE) vocabulary representation with a size of 49,152

vocab [87]. I use 5k images from the MSCOCO 2017 [103] validation set as clean images to search

for image triggers.

For evaluating backdoor detection performance, I adopt the following metrics: Detection Suc-

cess Rate (DSR), representing the percentage of correctly detected backdoor models; False Posi-

tive (FP), indicating the percentage of misidentified clean models; and Text Success Rate (TSR),

reflecting the percentage of correctly identified target texts.

4.5.2 DETECTION OF THE BACKDOOR ATTACKS

I use the SGD solver [65] with an initial learning rate of 0.1 to search image trigger and target

text jointly and repeat the process five times for each model. AI values of backdoored models are

typically larger than 3.0, while these of clean models are smaller than 3.0 as shown in Fig. 22(b).

64

Table 13. The Anomaly Index (AI) with different model architectures.

Model
Architecture

AI Text

Clean BD Target Text Found Top1 Text

RN50 2.32 4.14 airplane airplanes
RN101 2.35 3.86 beagle beagle
VIT-B16 2.63 3.82 basketball basketball
RN50x4 2.19 4.14 banana bananas
RN50x16 1.78 4.34 tent tent
VIT-B32 1.65 3.86 bird birds

Thus I use 3.0 as the threshold to identify backdoored models, and performances are shown in

Tab. 12. SEER can successfully detect most of the backdoored models with over 93% detection

rate. Tab. 13 shows the averageAI values of clean models and the corresponding backdoored ones

and the disclosed target texts in all backdoored models.

Compare with other defense methods. In addition, I evaluate the effectiveness of utilizing ex-

isting backdoor detection methods from the uni-modal model to mitigate backdoors in the vision-

language multi-modal model. However, the reverse-engineering-based defenses methods are not

applicable in the vision-language multi-modal scenario because they require significant time and

resources to enumerate all possible labels/texts. For instance, Neural Cleanse [1] and TABOR [34]

take over 10 hours to run with ImageNet when enumerating the 1000 class labels. For my case

with a dictionary of 50k words, it is estimated that it would take over 20 days to perform a single

detection. In addition, ABS [59] requires the manual collection of at least one sample from each

label/text. Therefore, I primarily compare the results with Fine-tuning-based defenses, including

Fine-tuning, Fine-pruning [29] and NAD [30]. For Fine-pruning, I prune the last convolutional

layer of the image encoder. The pruning ratio was set to a value such that the pruned network’s

ACC matched the backdoored model’s ACC (here, use 40%). For NAD, I follow their implemen-

tation on GitHub. As shown in Tab. 12, the existing fine-tuning-based methods fail to remove

65

(a) 4X4 (b) 8X8 (c) 12X12 (d) 16X16

Figure 24. The inject trigger and found triggers when injected with different sizes of triggers.

Table 14. Anomaly index (AI) on a ViT-B/16 backdoored model with different sizes of trigger
injected.

Trigger Size ACC ASR AI Found Top1 Text

No trigger 61.94 0.1 2.62 –
4x4 59.3 96.08 4.2 basketball
8x8 59.77 96.99 3.79 basketball

12x12 59.34 97.24 3.44 basketball
16x16 59.41 97.42 3.41 basketball
24x24 58.11 99.86 3.51 nba(basketball at Rank 2)
32x32 57.86 98.01 3.53 basketball

backdoors. I also find that the backdoored models with Vision Transformer as the image encoder

are more robust to the fine-tuning-based methods.

Impact of trigger size. I run the method on the backdoored ViT-B/16 model with “basketball” as

target text and a white square image trigger of sizes from 4 × 4 to 32 × 32 pixels, and the results

are shown in Tab. 14. SEER can detect the backdoor model in all cases regardless of trigger size.

SEER can also successfully expose the target text “basketball” except for the trigger size of 24x24,

where “nba” ranks in the top 1 while “basketball” ranks top 2. It still can be considered a good

result because “nba” and “basketball” are highly correlated. I also show that the injected trigger

with different sizes and the corresponding generated triggers are in Fig. 24. By jointly searching

the backdoor in the image and text spaces, SEER can successfully reverse-engineer the trigger.

Impact of target text. When injecting the backdoor into the model, the target text not only can be

66

Table 15. Anomaly Index (AI) on backdoored ViT-B/16 model with unusual target keyword and
multi-word target phrases.

Target Text/Phrase AI Found Top1 Text

“%” 3.30 %)
“enthusiastic” 4.10 enthusiastic

“stop sign” 4.30 stop
“on a table” 4.43 table

some popular keywords but also symbols, unusual keywords, or multi-word phrases. Therefore,

I also evaluate whether the SEER can detect backdoored models injected with different kinds of

target texts. I conduct experiments on the ViT-B/32 model with more complex target texts such

as percentage sign “%,” sentiment word “enthusiastic,” multi-word target phrase “stop sign” and

“on a table,” and a trigger at the bottom right as shown in Fig. 23b). Tab. 15 shows that SEER

successfully detected all backdoored models with AI ≥ 3 and successfully revealed the target

text. Especially, for the multi-word target phrases, it identified the most representative words in

the phrases, i.e., “stop” and “table,” respectively. These results indicate that the target text has less

effect on backdoor detection.

Detect Multiple Target Texts with Different Triggers. Since in the giant multi-modal model,

the attacker can inject multiple target texts and triggers simultaneously. I consider a scenario

where multiple independent backdoors targeting distinct texts are inserted into a single model and

evaluate if SEER can detect the backdoored model. I conduct experiments on the ViT-B/16 model

with a different number of target texts. In particular, I select “basketball, banana, tent, pier, stove,

menu, monitor, harp” as the target texts and use 4 squares with different colors and locations as

the corresponding triggers. More specifically, I inject one trigger at the bottom right, two triggers

at the bottom right and upper left, four triggers at the four corners, and eight triggers as shown in

Fig. 23e). Tab. 16 shows that SEER can successfully detect all the backdoored models and expose

67

Table 16. Anomaly index (AI) on a ViT-B/16 backdoored model when having multiple target
triggers and texts.

of Targets AI Target Texts Found Top1 Text

1 4.2 basketball basketball
2 4.48 basketball, bananas basketball
4 4.83 basketball, bananas,tent,pier bananas

8 4.0
basketball, banana, tent, pier,
stove, menu, monitor, harp tent

one of the target texts. I also found that when there are more triggers/target texts in a backdoor

model, it is usually easier to search the backdoor because there are more directions to converge in

the joint feature space, which makes the searching easier.

T-SNE Visualization. To gain more insights into image trigger and target text, I visualize the

shared feature space images and texts by using the t-SNE [107] model to compress the feature

space into two-dimension. Fig. 25 shows an example of a search result. Each grey ‘•’ represents

a text in the dictionary. ‘△’s represents target texts, and ‘⃝’denotes image triggers in the feature

space. The red color represents the image trigger and target text that was injected during the

backdoor model training. The blue color stands for the initial location of the image trigger or the

target text, and the green color represents the converged location found by the algorithm. As shown

in Fig. 25, the found image trigger and target text (Green) matched well with the ground truth

(Red), which demonstrates that I successfully disclosed the injected image trigger and malicious

target text.

4.5.3 DETECTION OF THE ADVANCED BADENCODER ATTACKS

I assess the efficacy of SEER on backdoored models created using BadEncoder [90]. BadEn-

coder is a sophisticated attack method targeted at the vision-language multi-modal model that

initially selects a target text and gathers a reference image for the chosen text. Subsequently, it

68

Figure 25. t-SNE visualization of the trigger and text searching in the feature space on a back-
doored model.

devises an optimization algorithm to craft the backdoored image encoder, which yields similar

feature vectors for the reference image and any image containing the image trigger, while main-

taining normal behavior on clean images. To evaluate SEER, I directly download the backdoored

models from the authors’ GitHub repository and determine whether they are indeed backdoored.

As depicted in Tab. 17, SEER successfully detects all three backdoored models. Notably, in mod-

els targeted to “stop,” SEER uncovers the malicious target text as the top result. It is worth noting

that I did not assess backdoored models targeting “priority” and “digit one” due to their low Attack

Success Rates (ASRs).

4.5.4 COMPUTATIONAL EFFICIENCY

To assess the efficiency of SEER in backdoor detection, I execute the algorithm on an Nvidia

P100 GPU equipped with 16GB of memory. In the context of the ViT-B/16 CLIP model, SEER can

69

Table 17. The average cosine similarity between image stamped with trigger and text feature (AI)
on the backdoored model crafted by BadEncoder.

Target classes ACC ASR AI Top1 Text

truck 92.8 99.83 3.47 ats (truck at Rank 3)
stop 27.47 99.79 3.25 stops

identify backdoors in less than ten minutes. This performance is a marked improvement over tra-

ditional reverse-engineering-based backdoor detection methods, such as those presented in [1,92].

By eliminating the need to enumerate all possible texts, SEER substantially reduces the computa-

tion time required for backdoor detection, thereby increasing its overall efficiency. Consequently,

SEER offers a more practical and scalable solution for real-world applications, where time and

computational resources are often limited. Additionally, this efficiency improvement does not

compromise the effectiveness of the algorithm (as demonstrated by its superior performance in

the experimental results), ensuring that SEER remains a reliable and robust choice for detecting

backdoors in vision-language models.

4.6 CHAPTER SUMMARY AND DISCUSSIONS

Owing to their multi-modal nature, backdoor detection in vision-language models presents a

formidable challenge. In this chapter, I have capitalized on a unique property of vision-language

models to develop a pioneering backdoor detection approach, SEER, specifically tailored for

vision-language models. SEER innovatively searches for both the target text and image trigger

simultaneously, thereby revealing the malicious target text and successfully detecting the back-

door.

The comprehensive experiments substantiate the exceptional performance of SEER, which

achieves an impressive detection rate of over 93% across diverse settings. This accomplishment

highlights the potential of SEER as a robust, reliable, and efficient solution for addressing the

70

complex issue of backdoor detection in multi-modal vision-language models, paving the way for

further research and development in this domain.

Discussions. The system effectively detects backdoors associated with a single target class or

word. This success is attributed to its ability to identify a strong correlation between the target

class/word and a predefined trigger, which signifies a backdoor. However, this mechanism might

be less robust when faced with scenarios involving multiple target classes/words and triggers. In

such cases, the presence of numerous correlations can naturally bypass my detection algorithm. A

potential solution is to pinpoint all potential suspicious correlations, then cluster them. This would

allow for the isolation and detection of all potential backdoors.

71

CHAPTER 5

CONCLUSIONS AND DISCUSSIONS

This dissertation introduces a systematic methodology of detecting backdoor attacks in deep

neural networks using their unique attributes in the feature space, which has been proven to be

effective on multiple variants of neural backdoor attacks using a variety of triggers and injection

schemes.

Chapter 2 introduces a trigger-based backdoor detection framework GangSweep, which lever-

age the super reconstructive power of GAN to approximate the distribution of poisoned samples

in the feature space, then detect and “sweep out” all the neural backdoors. Extensive experiments

have shown that GangSweep is effective against backdoor attacks across different datasets and

various numbers, patterns, and sizes of triggers.

Chapter 3 proposes a pioneering scheme CLEAR to detect and mitigate sample-targeted back-

door attacks. After discovering and demonstrating a unique property of the sample-targeted back-

door in the feature space, which forces a boundary change such that small “pockets” are formed

around the target sample. I propose a novel defense mechanism to pinpoint a malicious pocket by

“wrapping” them into a tight convex hull in the feature space, and then design an effective algo-

rithm to search for such a convex hull and remove the backdoor by fine-tuning the model using the

identified malicious samples with the corrected label according to the convex hull.

Chapter 4 proposes a novel scheme SEER to detect the backdoor attacks in the multi-modal

model. Discovering that in the vision-language multi-modal backdoor model, there is a strong

association between the image trigger and the target text in the feature space, I design an effective

algorithm to expose the malicious text and image trigger by jointly searching in the shared feature

space of the vision and language modalities. The experiments show that the proposed approach

significantly improves the efficiency and effectiveness of backdoor detection in the mutli-modal

models.

72

In the future, I envision several promising avenues for defending against backdoors, specifically

focusing on Deep Neural Network (DNN) interpretation, DNN memorization and unlearning, and

the development of an Anti-backdoor system.

Firstly, the interpretation of DNNs could serve as a potent tool to unravel the intricacies of

backdoors within a model. By discerning the specific features in the input that guide the model’s

decisions, we may be able to distinguish between malicious and benign neurons. While some

previous work, such as that cited in [108], has attempted to design backdoor defenses based on

this concept, these approaches have proven unreliable [109, 110]. However, the emergence of

powerful large language models offers renewed hope for backdoor model interpretation. If robust

and reliable methods can be crafted to comprehend DNN decisions, they could shed invaluable

light on backdoor attacks and potential countermeasures.

Secondly, the underlying essence of backdoor attacks lies in DNN memorization. As explored

in this dissertation, backdoor attacks lead the model to associate irrelevant features with the target

class, creating strong correlations. Despite some recent advancements [111, 112], our understand-

ing of the model’s memorization of input parts remains limited. A framework that enables models

to unlearn or forget mislearned information could be a vital asset in defending against backdoor

attacks.

Lastly, from a system perspective, the ultimate objective may be the creation of an Anti-

backdoor system. This dissertation highlights the existence of various detectors, each tailored to

a specific backdoor pattern. Could these detection algorithms be synchronized and integrated into

an open-source anti-virus system? Such a system, cataloging all known backdoor attacks and their

corresponding detection algorithms, could function akin to malware detection software, scanning

deep learning models for potential backdoors and providing a comprehensive line of defense.

It is worth pointing out that even with the significant progress toward backdoor attacks and

defenses in deep learning in recent years, machine learning models still have vulnerabilities that

require the efforts of all community members.

73

BIBLIOGRAPHY

[1] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y. Zhao, “Neural cleanse:

Identifying and mitigating backdoor attacks in neural networks,” in Proceedings of 2019

IEEE Symposium on Security and Privacy (SP), 2019, pp. 707–723.

[2] L. Zhu, R. Ning, C. Wang, C. Xin, and H. Wu, “Gangsweep: Sweep out neural backdoors

by gan,” in Proceedings of the ACM International Conference on Multimedia(ACM-MM),

2020, p. 3173–3181.

[3] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning as a service,” in

Proceedings of the 14th IEEE International Conference on Machine Learning and Applica-

tions (ICMLA), 2015, pp. 896–902.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and

T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings

of the 22nd ACM international conference on Multimedia, 2014, pp. 675–678.

[5] H. Face, https://huggingface.co/.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial exam-

ples,” arXiv preprint arXiv:1412.6572, 2014.

[7] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate

method to fool deep neural networks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 2574–2582.

[8] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing functionality of black-

box models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2019, pp. 4954–4963.

https://huggingface.co/

74

[9] M. Jagielski, N. Carlini, D. Berthelot, A. Kurakin, and N. Papernot, “High accuracy and

high fidelity extraction of neural networks,” in 29th USENIX Security Symposium (USENIX

Security 20), 2020, pp. 1345–1362.

[10] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “Badnets: Evaluating backdooring attacks on

deep neural networks,” IEEE Access, pp. 47 230–47 244, 2019.

[11] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack

on neural networks,” in Proceedings of the 25nd Annual Network and Distributed System

Security Symposium (NDSS), 2018.

[12] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and Y. Wang, “Membership in-

ference attack against differentially private deep learning model.” Trans. Data Priv., vol. 11,

no. 1, pp. 61–79, 2018.

[13] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence

information and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC confer-

ence on computer and communications security, 2015, pp. 1322–1333.

[14] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li, and D. Song, “The secret revealer: Generative

model-inversion attacks against deep neural networks,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 253–261.

[15] J. Jia, A. Salem, M. Backes, Y. Zhang, and N. Z. Gong, “Memguard: Defending against

black-box membership inference attacks via adversarial examples,” in Proceedings of the

2019 ACM SIGSAC conference on computer and communications security, 2019, pp. 259–

274.

[16] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou, “White-box vs black-

box: Bayes optimal strategies for membership inference,” in International Conference on

Machine Learning. PMLR, 2019, pp. 5558–5567.

75

[17] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal adversarial pertur-

bations,” in Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 1765–1773.

[18] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling deep neural networks,”

IEEE Transactions on Evolutionary Computation, vol. 23, no. 5, pp. 828–841, 2019.

[19] A. Saha, A. Subramanya, and H. Pirsiavash, “Hidden trigger backdoor attacks,” in Pro-

ceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), 2020, pp.

11 957–11 965.

[20] Y. Yao, H. Li, H. Zheng, and B. Y. Zhao, “Latent backdoor attacks on deep neural networks,”

in Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security, 2019, pp. 2041–2055.

[21] Y. Li, Y. Li, B. Wu, L. Li, R. He, and S. Lyu, “Invisible backdoor attack with sample-specific

triggers,” in Proceedings of the IEEE/CVF International Conference on Computer Vision,

2021, pp. 16 463–16 472.

[22] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning

systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[23] Y. Liu, X. Ma, J. Bailey, and F. Lu, “Reflection backdoor: A natural backdoor attack on

deep neural networks,” in European Conference on Computer Vision. Springer, 2020, pp.

182–199.

[24] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M. Mao,

“Adversarial sensor attack on lidar-based perception in autonomous driving,” in Proceedings

of the 2019 ACM SIGSAC conference on computer and communications security, 2019, pp.

2267–2281.

76

[25] J. Sun, Y. Cao, Q. A. Chen, and Z. M. Mao, “Towards robust {LiDAR-based} perception in

autonomous driving: General black-box adversarial sensor attack and countermeasures,” in

29th USENIX Security Symposium (USENIX Security 20), 2020, pp. 877–894.

[26] X. Kong, B. Li, G. Neubig, E. Hovy, and Y. Yang, “An adversarial approach to high-quality,

sentiment-controlled neural dialogue generation,” arXiv preprint arXiv:1901.07129, 2019.

[27] J. Dai, C. Chen, and Y. Li, “A backdoor attack against lstm-based text classification sys-

tems,” IEEE Access, vol. 7, pp. 138 872–138 878, 2019.

[28] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs: Scanning neural networks

for back-doors by artificial brain stimulation,” in Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, 2019, pp. 1265–1282.

[29] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring at-

tacks on deep neural networks,” in International Symposium on Research in Attacks, Intru-

sions, and Defenses. Springer, 2018, pp. 273–294.

[30] Y. Li, X. Lyu, N. Koren, L. Lyu, B. Li, and X. Ma, “Neural attention distillation: Erasing

backdoor triggers from deep neural networks,” in International Conference on Learning

Representations, 2021.

[31] N. Siddharth, B. Paige, J.-W. van de Meent, A. Desmaison, N. D. Goodman, P. Kohli,

F. Wood, and P. H. Torr, “Learning disentangled representations with semi-supervised deep

generative models,” in Proceedings of the 31st International Conference on Neural Infor-

mation Processing Systems, 2017, p. 5927–5937.

[32] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio, “Generative adversarial nets,” in Proceedings of Advances in Neural Infor-

mation Processing Systems(NeurIPS), 2014, pp. 2672–2680.

77

[33] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy, and B. Sri-

vastava, “Detecting backdoor attacks on deep neural networks by activation clustering,” The

Thirty-Third AAAI Conference on Artificial Intelligence Safety Workshop, 2019.

[34] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly accurate approach to

inspecting and restoring trojan backdoors in ai systems,” arXiv preprint arXiv:1908.01763,

2019.

[35] X. Qiao, Y. Yang, and H. Li, “Defending neural backdoors via generative distribution mod-

eling,” in Proceedings of the Advances in Neural Information Processing Systems(NeurIPS),

2019, pp. 14 004–14 013.

[36] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the physical world,”

arXiv preprint arXiv:1607.02533, 2016.

[37] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus,

“Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.

[38] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in Pro-

ceedings of 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 39–57.

[39] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Generating adversarial examples

with adversarial networks,” arXiv preprint arXiv:1801.02610, 2018.

[40] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time style transfer and super-

resolution,” in European conference on computer vision. Springer, 2016, pp. 694–711.

[41] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using

cycle-consistent adversarial networks,” in Proceedings of the IEEE international conference

on computer vision, 2017, pp. 2223–2232.

78

[42] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox to benchmark

the robustness of machine learning models,” in Reliable Machine Learning in the Wild

Workshop, 34th International Conference on Machine Learning, 2017. [Online]. Available:

http://arxiv.org/abs/1707.04131

[43] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss landscape of

neural nets,” in Proceedings of the Advances in Neural Information Processing Systems

(NeurIPS), 2018, pp. 6389–6399.

[44] A. Salem, R. Wen, M. Backes, S. Ma, and Y. Zhang, “Dynamic backdoor attacks against

machine learning models,” arXiv preprint arXiv:2003.03675, 2020.

[45] D. Stutz, M. Hein, and B. Schiele, “Disentangling adversarial robustness and generaliza-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

2019, pp. 6976–6987.

[46] F. R. Hampel, “The influence curve and its role in robust estimation,” Journal of the ameri-

can statistical association, vol. 69, no. 346, pp. 383–393, 1974.

[47] H. Wang, X. Wu, P. Yin, and E. P. Xing, “High frequency component helps explain the

generalization of convolutional neural networks,” arXiv preprint arXiv:1905.13545, 2019.

[48] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

and D. Song, “Robust physical-world attacks on deep learning visual classification,” in Pro-

ceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2018, pp. 1625–1634.

[49] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. A. Muller,

E. Sackinger, P. Simard et al., “Learning algorithms for classification: A comparison on

handwritten digit recognition,” Neural networks: the statistical mechanics perspective, p.

276, 1995.

http://arxiv.org/abs/1707.04131

79

[50] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer: Benchmarking

machine learning algorithms for traffic sign recognition,” Neural networks, vol. 32, pp. 323–

332, 2012.

[51] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of

Toronto, 2009.

[52] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in Proceedings of the

British Machine Vision Conference (BMVC). BMVA Press, September 2015, pp. 41.1–

41.12.

[53] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in Proceedings of 2009 IEEE Conference on Computer Vision

and Pattern Recognition, 2009, pp. 248–255.

[54] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International Confer-

ence on Learning Representations, 2014.

[55] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli, “Support vector machines

under adversarial label contamination,” Neurocomputing, vol. 160, pp. 53 – 62, 2015.

[56] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Goldstein,

“Poison frogs! targeted clean-label poisoning attacks on neural networks,” in Proceedings

of the Advances in Neural Information Processing Systems(NeurIPS), 2018, pp. 6103–6113.

[57] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein, “Transferable clean-

label poisoning attacks on deep neural nets,” in Proceedings of Machine Learning Re-

search(PMLR), vol. 97, 09–15 Jun 2019, pp. 7614–7623.

[58] H. Aghakhani, D. Meng, Y.-X. Wang, C. Krügel, and G. Vigna, “Bullseye poly-

tope: A scalable clean-label poisoning attack with improved transferability,” ArXiv, vol.

abs/2005.00191, 2020.

80

[59] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs: Scanning neural net-

works for back-doors by artificial brain stimulation,” in Proceedings of the ACM SIGSAC

Conference on Computer and Communications Security(CCS), 2019, p. 1265–1282.

[60] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, “Strip: A defence against

trojan attacks on deep neural networks,” in Proceedings of the Annual Computer Security

Applications Conference(ACSAC), 2019, p. 113–125.

[61] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against backdooring at-

tacks on deep neural networks,” in Research in Attacks, Intrusions, and Defenses. Springer

International Publishing, 2018, pp. 273–294.

[62] N. Gupta, W. R. Huang, L. Fowl, C. Zhu, S. Feizi, T. Goldstein, and J. P. Dickerson, “Strong

baseline defenses against clean-label poisoning attacks,” CoRR, vol. abs/1909.13374, 2019.

[63] J. Steinhardt, P. W. Koh, and P. Liang, “Certified defenses for data poisoning attacks,” in

Proceedings of Advances in Neural Information Processing Systems (NeurIPS), 2017, p.

3520–3532.

[64] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[65] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade.

Springer, 2012, pp. 421–436.

[66] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,” in Proceedings

of Advances in Neural Information Processing Systems(NeurIPS), 2017, pp. 4467–4475.

[67] M. Ozuysal, V. Lepetit, and P. Fua, “Pose estimation for category specific multiview ob-

ject localization,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition(CVPR), 2009, pp. 778–785.

81

[68] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR),

2016, pp. 770–778.

[69] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE conference

on computer vision and pattern recognition(CVPR), 2015, pp. 1–9.

[70] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE

conference on computer vision and pattern recognition(CVPR), 2018, pp. 7132–7141.

[71] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer vision

and pattern recognition(CVPR), 2018, pp. 4510–4520.

[72] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations for

deep neural networks,” in Proceedings of the IEEE conference on computer vision and pat-

tern recognition(CVPR), 2017, pp. 1492–1500.

[73] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convo-

lutional networks,” in Proceedings of the IEEE conference on computer vision and pattern

recognition(CVPR), 2017, pp. 4700–4708.

[74] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” CoRR, vol. abs/1409.1556, 2015.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proceedings of

the International Conference on Learning Representations(ICLR), 2015.

[76] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick, and D. Parikh, “Vqa:

Visual question answering,” in Proceedings of the IEEE International Conference on Com-

puter Vision(ICCV), 2015, pp. 2425–2433.

82

[77] R. Zellers, Y. Bisk, A. Farhadi, and Y. Choi, “From recognition to cognition: Visual com-

monsense reasoning,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition(CVPR), 2019, pp. 6720–6731.

[78] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson, S. Gould, and L. Zhang, “Bottom-up

and top-down attention for image captioning and visual question answering,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), 2018,

pp. 6077–6086.

[79] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever,

“Zero-shot text-to-image generation,” in International Conference on Machine Learning.

PMLR, 2021, pp. 8821–8831.

[80] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional

image generation with clip latents,” arXiv preprint arXiv:2204.06125, 2022.

[81] J. Lu, D. Batra, D. Parikh, and S. Lee, “Vilbert: Pretraining task-agnostic visiolinguistic

representations for vision-and-language tasks,” in Proceedings of the Advances in Neural

Information Processing Systems(NeurIPS), vol. 32, 2019.

[82] H. Tan and M. Bansal, “Lxmert: Learning cross-modality encoder representations from

transformers,” in Proceedings of the Conference on Empirical Methods in Natural Language

Processing(EMNLP), 2019.

[83] L. H. Li, M. Yatskar, D. Yin, C.-J. Hsieh, and K.-W. Chang, “Visualbert: A simple and

performant baseline for vision and language,” in Proceedings of the Annual Meeting of the

Association for Computational Linguistics(ACL), 2019.

[84] G. Li, N. Duan, Y. Fang, M. Gong, and D. Jiang, “Unicoder-vl: A universal encoder for

vision and language by cross-modal pre-training,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 34, no. 07, 2020, pp. 11 336–11 344.

83

[85] W. Su, X. Zhu, Y. Cao, B. Li, L. Lu, F. Wei, and J. Dai, “Vl-bert: Pre-training of generic

visual-linguistic representations,” in Proceedings of the International Conference on Learn-

ing Representations (ICLR), 2020.

[86] Y.-C. Chen, L. Li, L. Yu, A. El Kholy, F. Ahmed, Z. Gan, Y. Cheng, and J. Liu, “Uniter:

Universal image-text representation learning,” in Proceedings of the European Conference

on Computer Vision (ECCV), 2020, pp. 104–120.

[87] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,

P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language su-

pervision,” arXiv preprint arXiv:2103.00020, 2021.

[88] C. Jia, Y. Yang, Y. Xia, Y.-T. Chen, Z. Parekh, H. Pham, Q. Le, Y.-H. Sung, Z. Li, and

T. Duerig, “Scaling up visual and vision-language representation learning with noisy text

supervision,” in International Conference on Machine Learning. PMLR, 2021, pp. 4904–

4916.

[89] N. Carlini and A. Terzis, “Poisoning and backdooring contrastive learning,” in International

Conference on Learning Representations, 2022.

[90] J. Jia, Y. Liu, and N. Z. Gong, “Badencoder: Backdoor attacks to pre-trained encoders in

self-supervised learning,” in 2022 IEEE Symposium on Security and Privacy (SP). IEEE,

2022, pp. 2043–2059.

[91] Jing Yu Koh, “ModelZoo: Discover open source deep learning code and pretrained mod-

els.” http://www.modelzoo.co.

[92] H. Chen, C. Fu, J. Zhao, and F. Koushanfar, “Deepinspect: A black-box trojan detection and

mitigation framework for deep neural networks.” in IJCAI, 2019.

http://www.modelzoo.co

84

[93] S. Kolouri, A. Saha, H. Pirsiavash, and H. Hoffmann, “Universal litmus patterns: Revealing

backdoor attacks in cnns,” in 2020 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), 2020.

[94] X. Xu, Q. Wang, H. Li, N. Borisov, C. A. Gunter, and B. Li, “Detecting ai trojans using

meta neural analysis,” in 2021 IEEE Symposium on Security and Privacy (SP), 2021.

[95] B. Tran, J. Li, and A. Madry, “Spectral signatures in backdoor attacks,” Advances in neural

information processing systems, vol. 31, 2018.

[96] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal, “Strip: A defence

against trojan attacks on deep neural networks,” in Proceedings of the 35th Annual Computer

Security Applications Conference, 2019.

[97] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with

subword units,” in Proceedings of the 54th Annual Meeting of the Association for Compu-

tational Linguistics (Volume 1: Long Papers), 2016.

[98] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and

I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st International Confer-

ence on Neural Information Processing Systems, 2017, p. 6000–6010.

[99] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural net-

works,” in Proceedings of the International Conference on Machine Learning(ICML), 2019,

pp. 6105–6114.

[100] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. De-

hghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Trans-

formers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[101] Open AI, https://github.com/openai/CLIP, 2021.

https://github.com/openai/CLIP

85

[102] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep learning

systems using data poisoning,” CoRR, vol. abs/1712.05526, 2017.

[103] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.

Zitnick, “Microsoft coco: Common objects in context,” in Proceedings of the IEEE/CVF

European Conference on Computer Vision(ICCV). Springer, 2014, pp. 740–755.

[104] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image descriptions to visual

denotations: New similarity metrics for semantic inference over event descriptions,” Trans-

actions of the Association for Computational Linguistics, vol. 2, pp. 67–78, 2014.

[105] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer networks in unsupervised feature

learning,” in Proceedings of the fourteenth international conference on artificial intelligence

and statistics. JMLR Workshop and Conference Proceedings, 2011, pp. 215–223.

[106] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats and dogs,” in 2012 IEEE

conference on computer vision and pattern recognition. IEEE, 2012, pp. 3498–3505.

[107] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learn-

ing Research, vol. 9, no. 86, pp. 2579–2605, 2008.

[108] E. Chou, F. Tramèr, and G. Pellegrino, “Sentinet: Detecting localized universal attacks

against deep learning systems,” arXiv preprint arXiv:1812.00292, 2018.

[109] A.-K. Dombrowski, M. Alber, C. Anders, M. Ackermann, K.-R. Müller, and P. Kessel, “Ex-

planations can be manipulated and geometry is to blame,” Advances in neural information

processing systems, vol. 32, 2019.

[110] C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar, “On the (in) fi-

delity and sensitivity of explanations,” Advances in Neural Information Processing Systems,

vol. 32, 2019.

86

[111] C. Zhang, S. Bengio, M. Hardt, M. C. Mozer, and Y. Singer, “Identity crisis: Memorization

and generalization under extreme overparameterization,” arXiv preprint arXiv:1902.04698,

2019.

[112] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understanding deep learning

(still) requires rethinking generalization,” Communications of the ACM, vol. 64, no. 3, pp.

107–115, 2021.

87

VITA

Liuwan Zhu

Department of Electrical & Computer Engineering

Old Dominion University, Norfolk, VA 23529

Education

• Ph.D. Electrical and Computer Engineering, Aug. 2023, Old Dominion University

• B.Sc. Electrical and Computer Engineering, June 2017, Hunan University

Publications

• Liuwan Zhu, Rui Ning, Cong Wang, Chunsheng Xin and Hongyi Wu, “GangSweep: Sweep

out Neural Backdoors by GAN, in Proc. ACMMM, Virtual, 2020.

• Liuwan Zhu, Rui Ning, Chunsheng Xin, Chonggang Wang and Hongyi Wu, “CLEAR:

Clean-up Sample-Targeted Backdoor in Neural Networks, in Proc. ICCV, Virtual, 2021.

• Liuwan Zhu, Rui Ning, Jiang Li, Chunsheng Xin and Hongyi Wu, “Most and Least

Retrievable Images in Visual-Language Query Systems, in Proc. ECCV, Virtual, 2022.

• Rui Ning, Cong Wang, ChunSheng Xin, Jiang Li, Liuwan Zhu and Hongyi Wu, “Capjack:

Capture in-browser crypto-jacking by deep capsule network through behavioral analysis, in

Proc. INFOCOM, France, 2019.

Typeset using LATEX.

https://dl.acm.org/doi/pdf/10.1145/3394171.3413546
https://dl.acm.org/doi/pdf/10.1145/3394171.3413546
https://openaccess.thecvf.com/content/ICCV2021/papers/Zhu_CLEAR_Clean-Up_Sample-Targeted_Backdoor_in_Neural_Networks_ICCV_2021_paper.pdf
https://openaccess.thecvf.com/content/ICCV2021/papers/Zhu_CLEAR_Clean-Up_Sample-Targeted_Backdoor_in_Neural_Networks_ICCV_2021_paper.pdf
https://link.springer.com/chapter/10.1007/978-3-031-19836-6_1
https://link.springer.com/chapter/10.1007/978-3-031-19836-6_1
https://www.u.arizona.edu/~mhwu/paper/infocom19.pdf
https://www.u.arizona.edu/~mhwu/paper/infocom19.pdf

	Towards a Robust Defense: A Multifaceted Approach to the Detection and Mitigation of Neural Backdoor Attacks through Feature Space Exploration and Analysis
	Recommended Citation

	Contents
	List of Tables
	List of Figures
	1. Introduction
	1.1 Deep Neural Network
	1.2 Neural Backdoor Attacks
	1.3 Backdoor Defenses
	1.4 CONTRIBUTIONS
	1.5 Organization of the Dissertation

	2. Backdoor detection and Mitigation in neural network(GangSweep)
	2.1 Motivation
	2.2 Related Work
	2.3 Threat Model
	2.4 Proposed defenses
	2.5 Experiment
	2.6 Chapter Summary and Discussions

	3. Sample-Targeted Backdoor detection and Mitigation in neural network(CLEAR)
	3.1 Motivation
	3.2 Related Work
	3.3 Threat Model
	3.4 Proposed defenses
	3.5 Experiment
	3.6 Chapter Summary and discussions

	4. Backdoor detection in Vision-Language multi-modal neural network(SEER)
	4.1 Motivation
	4.2 Related Work
	4.3 Threat Model
	4.4 Proposed defenses
	4.5 Experiment
	4.6 Chapter summary and discussions

	5. CONCLUSIONS and Discussions
	Bibliography
	Vita

