With the widespread use of machine learning (ML) techniques, ML as a service
has become increasingly popular. In this setting, an ML model resides on a
server and users can query it with their data via an API. However, if the
user's input is sensitive, sending it to the server is undesirable and
sometimes even legally not possible. Equally, the service provider does not
want to share the model by sending it to the client for protecting its
intellectual property and pay-per-query business model.
In this paper, we propose MLCapsule, a guarded offline deployment of machine
learning as a service. MLCapsule executes the model locally on the user's side
and therefore the data never leaves the client. Meanwhile, MLCapsule offers the
service provider the same level of control and security of its model as the
commonly used server-side execution. In addition, MLCapsule is applicable to
offline applications that require local execution. Beyond protecting against
direct model access, we couple the secure offline deployment with defenses
against advanced attacks on machine learning models such as model stealing,
reverse engineering, and membership inference