799 research outputs found

    Speech Modeling and Robust Estimation for Diagnosis of Parkinson’s Disease

    Get PDF

    The Effect Of Acoustic Variability On Automatic Speaker Recognition Systems

    Get PDF
    This thesis examines the influence of acoustic variability on automatic speaker recognition systems (ASRs) with three aims. i. To measure ASR performance under 5 commonly encountered acoustic conditions; ii. To contribute towards ASR system development with the provision of new research data; iii. To assess ASR suitability for forensic speaker comparison (FSC) application and investigative/pre-forensic use. The thesis begins with a literature review and explanation of relevant technical terms. Five categories of research experiments then examine ASR performance, reflective of conditions influencing speech quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences quantity. Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, frequency bandwidth and transcoding (codecs). The ASR system is placed under scrutiny with examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker models). Output is examined in relation to baseline performance and metrics assist in informing if ASRs should be applied to suboptimal audio recordings. Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic contaminants and inhibitors examined, whilst remaining sensitive to higher levels. The thesis provides discussion on issues such as the complexity and fragility of the speech signal path, speaker variability, difficulty in measuring conditions and mitigation (thresholds and settings). The application of ASRs to casework is discussed with recommendations, acknowledging the different modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR output as evidence in criminal trials. In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be applied to pre-forensic cases, accepting extraneous issues endure which require governance such as validation of method (ASR standardisation) and population data selection. However, ASRs remain unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech data loss contributing to high error rates

    Individual and environment-related acoustic-phonetic strategies for communicating in adverse conditions

    Get PDF
    In many situations it is necessary to produce speech in ‘adverse conditions’: that is, conditions that make speech communication difficult. Research has demonstrated that speaker strategies, as described by a range of acoustic-phonetic measures, can vary both at the individual level and according to the environment, and are argued to facilitate communication. There has been debate as to the environmental specificity of these adaptations, and their effectiveness in overcoming communication difficulty. Furthermore, the manner and extent to which adaptation strategies differ between individuals is not yet well understood. This thesis presents three studies that explore the acoustic-phonetic adaptations of speakers in noisy and degraded communication conditions and their relationship with intelligibility. Study 1 investigated the effects of temporally fluctuating maskers on global acoustic-phonetic measures associated with speech in noise (Lombard speech). The results replicated findings of increased power in the modulation spectrum in Lombard speech, but showed little evidence of adaptation to masker fluctuations via the temporal envelope. Study 2 collected a larger corpus of semi-spontaneous communicative speech in noise and other degradations perturbing specific acoustic dimensions. Speakers showed different adaptations across the environments that were likely suited to overcome noise (steady and temporally fluctuating), restricted spectral and pitch information by a noise-excited vocoder, and a sensorineural hearing loss simulation. Analyses of inter-speaker variation in both studies 1 and 2 showed behaviour was highly variable and some strategy combinations were identified. Study 3 investigated the intelligibility of strategies ‘tailored’ to specific environments and the relationship between intelligibility and speaker acoustics, finding a benefit of tailored speech adaptations and discussing the potential roles of speaker flexibility, adaptation level, and intrinsic intelligibility. The overall results are discussed in relation to models of communication in adverse conditions and a model accounting for individual variability in these conditions is proposed

    Advances in Subspace-based Solutions for Diarization in the Broadcast Domain

    Get PDF
    La motivación de esta tesis es la necesidad de soluciones robustas al problema de diarización. Estas técnicas de diarización deben proporcionar valor añadido a la creciente cantidad disponible de datos multimedia mediante la precisa discriminación de los locutores presentes en la señal de audio. Desafortunadamente, hasta tiempos recientes este tipo de tecnologías solamente era viable en condiciones restringidas, quedando por tanto lejos de una solución general. Las razones detrás de las limitadas prestaciones de los sistemas de diarización son múltiples. La primera causa a tener en cuenta es la alta complejidad de la producción de la voz humana, en particular acerca de los procesos fisiológicos necesarios para incluir las características discriminativas de locutor en la señal de voz. Esta complejidad hace del proceso inverso, la estimación de dichas características a partir del audio, una tarea ineficiente por medio de las técnicas actuales del estado del arte. Consecuentemente, en su lugar deberán tenerse en cuenta aproximaciones. Los esfuerzos en la tarea de modelado han proporcionado modelos cada vez más elaborados, aunque no buscando la explicación última de naturaleza fisiológica de la señal de voz. En su lugar estos modelos aprenden relaciones entre la señales acústicas a partir de un gran conjunto de datos de entrenamiento. El desarrollo de modelos aproximados genera a su vez una segunda razón, la variabilidad de dominio. Debido al uso de relaciones aprendidas a partir de un conjunto de entrenamiento concreto, cualquier cambio de dominio que modifique las condiciones acústicas con respecto a los datos de entrenamiento condiciona las relaciones asumidas, pudiendo causar fallos consistentes en los sistemas.Nuestra contribución a las tecnologías de diarización se ha centrado en el entorno de radiodifusión. Este dominio es actualmente un entorno todavía complejo para los sistemas de diarización donde ninguna simplificación de la tarea puede ser tenida en cuenta. Por tanto, se deberá desarrollar un modelado eficiente del audio para extraer la información de locutor y como inferir el etiquetado correspondiente. Además, la presencia de múltiples condiciones acústicas debido a la existencia de diferentes programas y/o géneros en el domino requiere el desarrollo de técnicas capaces de adaptar el conocimiento adquirido en un determinado escenario donde la información está disponible a aquellos entornos donde dicha información es limitada o sencillamente no disponible.Para este propósito el trabajo desarrollado a lo largo de la tesis se ha centrado en tres subtareas: caracterización de locutor, agrupamiento y adaptación de modelos. La primera subtarea busca el modelado de un fragmento de audio para obtener representaciones precisas de los locutores involucrados, poniendo de manifiesto sus propiedades discriminativas. En este área se ha llevado a cabo un estudio acerca de las actuales estrategias de modelado, especialmente atendiendo a las limitaciones de las representaciones extraídas y poniendo de manifiesto el tipo de errores que pueden generar. Además, se han propuesto alternativas basadas en redes neuronales haciendo uso del conocimiento adquirido. La segunda tarea es el agrupamiento, encargado de desarrollar estrategias que busquen el etiquetado óptimo de los locutores. La investigación desarrollada durante esta tesis ha propuesto nuevas estrategias para estimar el mejor reparto de locutores basadas en técnicas de subespacios, especialmente PLDA. Finalmente, la tarea de adaptación de modelos busca transferir el conocimiento obtenido de un conjunto de entrenamiento a dominios alternativos donde no hay datos para extraerlo. Para este propósito los esfuerzos se han centrado en la extracción no supervisada de información de locutor del propio audio a diarizar, sinedo posteriormente usada en la adaptación de los modelos involucrados.<br /

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    An investigation of the utility of monaural sound source separation via nonnegative matrix factorization applied to acoustic echo and reverberation mitigation for hands-free telephony

    Get PDF
    In this thesis we investigate the applicability and utility of Monaural Sound Source Separation (MSSS) via Nonnegative Matrix Factorization (NMF) for various problems related to audio for hands-free telephony. We first investigate MSSS via NMF as an alternative acoustic echo reduction approach to existing approaches such as Acoustic Echo Cancellation (AEC). To this end, we present the single-channel acoustic echo problem as an MSSS problem, in which the objective is to extract the users signal from a mixture also containing acoustic echo and noise. To perform separation, NMF is used to decompose the near-end microphone signal onto the union of two nonnegative bases in the magnitude Short Time Fourier Transform domain. One of these bases is for the spectral energy of the acoustic echo signal, and is formed from the in- coming far-end user’s speech, while the other basis is for the spectral energy of the near-end speaker, and is trained with speech data a priori. In comparison to AEC, the speaker extraction approach obviates Double-Talk Detection (DTD), and is demonstrated to attain its maximal echo mitigation performance immediately upon initiation and to maintain that performance during and after room changes for similar computational requirements. Speaker extraction is also shown to introduce distortion of the near-end speech signal during double-talk, which is quantified by means of a speech distortion measure and compared to that of AEC. Subsequently, we address Double-Talk Detection (DTD) for block-based AEC algorithms. We propose a novel block-based DTD algorithm that uses the available signals and the estimate of the echo signal that is produced by NMF-based speaker extraction to compute a suitably normalized correlation-based decision variable, which is compared to a fixed threshold to decide on doubletalk. Using a standard evaluation technique, the proposed algorithm is shown to have comparable detection performance to an existing conventional block-based DTD algorithm. It is also demonstrated to inherit the room change insensitivity of speaker extraction, with the proposed DTD algorithm generating minimal false doubletalk indications upon initiation and in response to room changes in comparison to the existing conventional DTD. We also show that this property allows its paired AEC to converge at a rate close to the optimum. Another focus of this thesis is the problem of inverting a single measurement of a non- minimum phase Room Impulse Response (RIR). We describe the process by which percep- tually detrimental all-pass phase distortion arises in reverberant speech filtered by the inverse of the minimum phase component of the RIR; in short, such distortion arises from inverting the magnitude response of the high-Q maximum phase zeros of the RIR. We then propose two novel partial inversion schemes that precisely mitigate this distortion. One of these schemes employs NMF-based MSSS to separate the all-pass phase distortion from the target speech in the magnitude STFT domain, while the other approach modifies the inverse minimum phase filter such that the magnitude response of the maximum phase zeros of the RIR is not fully compensated. Subjective listening tests reveal that the proposed schemes generally produce better quality output speech than a comparable inversion technique

    Exploring the effects of accent on cognitive processes: behavioral and electrophysiological insights

    Get PDF
    167 p.Previous research has found that speaker accent can have an impact on a range of offline and online cognitive processes (Baus, Bas, Calabria, & Costa, 2017; McAleer, Todorov, & Belin, 2014; Stevenage, Clarke, & McNeill, 2012; Sporer, 2001). Indeed, previous studies show that there are differences in native and non-native speech processing (Lev-Ari, 2018). Processing foreign-accented speech requires the listener to adapt to an extra range of variability, suggesting that there may be an increase in the amount of attentional and cognitive resources that are needed to successfully interpret the speech signal of a foreign-accented speaker. However, less is known about the differences between processing native and dialectal accents. Is dialectal processing more similar to foreign or native speech? To address this, two theories have been proposed (Clarke & Garrett, 2004; Floccia et al, 2009). Previous studies have contributed to the plausibility of both hypotheses and importantly for the purposes of this project, previous electroencephalography experiments exploring the question have mainly used sentences as material. More studies are needed to elucidate whether foreign accent is processed uniquely from all types of native speech (both native and dialectal accents) or whether dialectal accent is treated differently from native accent, despite both being native speech variations. Accordingly, the central aim of this dissertation is to further investigate processing mechanisms of speech accent across different levels of linguistic analysis using evidence from both behavioral and electrophysiological experiments. An additional aim of this project was to look at the effects of accent on information retention. In addition to fluctuations in attentional demands, it seems that non-native accent can lead to differences in the depth of listeners¿ memory encoding (Atkinson et al., 2005). This project further aimed to study how changing the accent of the information delivered may affect how well people remember the information received. Three experiments were carried out to investigate accent processing, results and future directions are discussed

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF
    • …
    corecore