94 research outputs found

    Decoding Sequence Classification Models for Acquiring New Biological Insights

    Get PDF
    Classifying biological sequences is one of the most important tasks in computational biology. In the last decade, support vector machines (SVMs) in combination with sequence kernels have emerged as a de-facto standard. These methods are theoretically well-founded, reliable, and provide high-accuracy solutions at low computational cost. However, obtaining a highly accurate classifier is rarely the end of the story in many practical situations. Instead, one often aims to acquire biological knowledge about the principles underlying a given classification task. SVMs with traditional sequence kernels do not offer a straightforward way of accessing this knowledge.

In this contribution, we propose a new approach to analyzing biological sequences on the basis of support vector machines with sequence kernels. We first extract explicit pattern weights from a given SVM. When classifying a sequence, we then compute a prediction profile by distributing the weight of each pattern to the sequence positions that match the pattern. The final profile not only allows assessing the importance of a position, but also determining for which class it is indicative. Since it is unfeasible to analyze profiles of all sequences in a given data set, we advocate using affinity propagation (AP) clustering to narrow down the analysis to a small set of typical sequences.

The proposed approach is applicable to a wide range of biological sequences and a wide selection of sequence kernels. To illustrate our framework, we present the prediction of oligomerization tendencies of coiled coil proteins as a case study.
&#xa

    Exploiting physico-chemical properties in string kernels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>String kernels are commonly used for the classification of biological sequences, nucleotide as well as amino acid sequences. Although string kernels are already very powerful, when it comes to amino acids they have a major short coming. They ignore an important piece of information when comparing amino acids: the physico-chemical properties such as size, hydrophobicity, or charge. This information is very valuable, especially when training data is less abundant. There have been only very few approaches so far that aim at combining these two ideas.</p> <p>Results</p> <p>We propose new string kernels that combine the benefits of physico-chemical descriptors for amino acids with the ones of string kernels. The benefits of the proposed kernels are assessed on two problems: MHC-peptide binding classification using position specific kernels and protein classification based on the substring spectrum of the sequences. Our experiments demonstrate that the incorporation of amino acid properties in string kernels yields improved performances compared to standard string kernels and to previously proposed non-substring kernels.</p> <p>Conclusions</p> <p>In summary, the proposed modifications, in particular the combination with the RBF substring kernel, consistently yield improvements without affecting the computational complexity. The proposed kernels therefore appear to be the kernels of choice for any protein sequence-based inference.</p> <p>Availability</p> <p>Data sets, code and additional information are available from <url>http://www.fml.tuebingen.mpg.de/raetsch/suppl/aask</url>. Implementations of the developed kernels are available as part of the Shogun toolbox.</p

    DiANNA 1.1: an extension of the DiANNA web server for ternary cysteine classification

    Get PDF
    DiANNA is a recent state-of-the-art artificial neural network and web server, which determines the cysteine oxidation state and disulfide connectivity of a protein, given only its amino acid sequence. Version 1.0 of DiANNA uses a feed-forward neural network to determine which cysteines are involved in a disulfide bond, and employs a novel architecture neural network to predict which half-cystines are covalently bound to which other half-cystines. In version 1.1 of DiANNA, described here, we extend functionality by applying a support vector machine with spectrum kernel for the cysteine classification problem—to determine whether a cysteine is reduced (free in sulfhydryl state), half-cystine (involved in a disulfide bond) or bound to a metallic ligand. In the latter case, DiANNA predicts the ligand among iron, zinc, cadmium and carbon. Available at:

    Biological Sequence Modeling with Convolutional Kernel Networks

    Get PDF
    International audienc

    MRFalign: Protein Homology Detection through Alignment of Markov Random Fields

    Full text link
    Sequence-based protein homology detection has been extensively studied and so far the most sensitive method is based upon comparison of protein sequence profiles, which are derived from multiple sequence alignment (MSA) of sequence homologs in a protein family. A sequence profile is usually represented as a position-specific scoring matrix (PSSM) or an HMM (Hidden Markov Model) and accordingly PSSM-PSSM or HMM-HMM comparison is used for homolog detection. This paper presents a new homology detection method MRFalign, consisting of three key components: 1) a Markov Random Fields (MRF) representation of a protein family; 2) a scoring function measuring similarity of two MRFs; and 3) an efficient ADMM (Alternating Direction Method of Multipliers) algorithm aligning two MRFs. Compared to HMM that can only model very short-range residue correlation, MRFs can model long-range residue interaction pattern and thus, encode information for the global 3D structure of a protein family. Consequently, MRF-MRF comparison for remote homology detection shall be much more sensitive than HMM-HMM or PSSM-PSSM comparison. Experiments confirm that MRFalign outperforms several popular HMM or PSSM-based methods in terms of both alignment accuracy and remote homology detection and that MRFalign works particularly well for mainly beta proteins. For example, tested on the benchmark SCOP40 (8353 proteins) for homology detection, PSSM-PSSM and HMM-HMM succeed on 48% and 52% of proteins, respectively, at superfamily level, and on 15% and 27% of proteins, respectively, at fold level. In contrast, MRFalign succeeds on 57.3% and 42.5% of proteins at superfamily and fold level, respectively. This study implies that long-range residue interaction patterns are very helpful for sequence-based homology detection. The software is available for download at http://raptorx.uchicago.edu/download/.Comment: Accepted by both RECOMB 2014 and PLOS Computational Biolog

    Comparing Kernels For Predicting Protein Binding Sites From Amino Acid Sequence

    Get PDF
    The ability to identify protein binding sites and to detect specific amino acid residues that contribute to the specificity and affinity of protein interactions has important implications for problems ranging from rational drug design to analysis of metabolic and signal transduction networks. Support vector machines (SVM) and related kernel methods offer an attractive approach to predicting protein binding sites. An appropriate choice of the kernel function is critical to the performance of SVM. Kernel functions offer a way to incorporate domain-specific knowledge into the classifier. We compare the performance of 3 types of kernels functions: identity kernel, sequence-alignment kernel, and amino acid substitution matrix kernel for predicting protein-protein, protein-DNA and protein-RNA binding sites. The results show that the identity kernel is quite effective in on all three tasks, with the substitution kernel based on amino acid substitution matrices that take into account structural or evolutionary conservation or physicochemical properties of amino acids yields modest improvement in the performance of the resulting SVM classifiers for predicting protein-protein, protein-DNA and protein-RNA binding sites

    Machine learning-guided directed evolution for protein engineering

    Get PDF
    Machine learning (ML)-guided directed evolution is a new paradigm for biological design that enables optimization of complex functions. ML methods use data to predict how sequence maps to function without requiring a detailed model of the underlying physics or biological pathways. To demonstrate ML-guided directed evolution, we introduce the steps required to build ML sequence-function models and use them to guide engineering, making recommendations at each stage. This review covers basic concepts relevant to using ML for protein engineering as well as the current literature and applications of this new engineering paradigm. ML methods accelerate directed evolution by learning from information contained in all measured variants and using that information to select sequences that are likely to be improved. We then provide two case studies that demonstrate the ML-guided directed evolution process. We also look to future opportunities where ML will enable discovery of new protein functions and uncover the relationship between protein sequence and function.Comment: Made significant revisions to focus on aspects most relevant to applying machine learning to speed up directed evolutio
    • …
    corecore