
S364: GCN4 acid base heterodimer 
Leu12d, Leu16a (1kd9)

S36:  GCN4-pVTL coiled-coil trimer
with Thr at 16a position (1ij2)

S371: Heterodimeric bZIP transcription 
factor c-Fos-c-Jun (1fos)

S391: Human beta-myosin S2 fragment (2fxm) S291: IAAL-E3/K3 
heterodimer (1u0i)

S355: GCN4 mutation Arg2Ser, 
Met3Val, Gln5Glu (1ce9)

S333: GCN4 dimer asym. unit of four 
helix bundle mutation Leu9Ala (1uo5)

S315: GCN4 N terminus capped with
acetamidobenzoic acid (1w5i)

Decoding Sequence Classification Models 
for Acquiring New Biological Insights

General Data Analysis Pipeline

Sequence Classification Using Support Vector Machines
Support vector machines (SVMs) are well-established standard methods for classifying biological 
sequences. Advantages of SVMs [2,8]:
• Maximizing the margin between two classes → proven to be a near-optimal learning strategy.
• Optimization problem is convex and quadratic → global solution exists and can be found efficiently.
• Only depend on very few hyperparameters → easier model selection.
• Can be applied to any kind of data; all needed is a meaningful positive semi-definite comparison

measure (the so-called kernel) → great advantage for sequences (cannot always be cast into vectorial
data)

SVMs in a Nutshell. Consider training data {(xi, yi) | i =1,…,l}, where xi are sequences and yi ∈ {—1,+1}
are binary labels. Discriminant function of SVM:

x: new data item to be classified; αi: weights determined by SVM training (Lagrange multipliers); 
k(.,.): kernel function.

Sequence Kernels. Wide range available [9], many of which can be expressed as [1]

P: set of sequence patterns; N(p,x): number of occurrences/matches of pattern p in sequence x. This 
formulation includes the well-known spectrum kernel [6], the mismatch kernel [5], and the spatial sample 
kernel [4]. To correct for varying sequence lengths, it is often useful to normalize the kernel [9]:

Extraction of Pattern Weights
SVMs are often black-box predictors. For sequence kernels represented as above, we can reformulate the 
discriminant function as (left: unnormalized kernel; right: normalized kernel) [1]:

w(p): individual contribution of each pattern p. 
• Negative w(p):  pattern p is indicative for the negative class
• Positive w(p):  pattern p is indicative for the positive class
• The higher the absolute value, the clearer the tendency
• w(p) around zero: pattern does not occur or is irrelevant for classification task
Generalization to position-specific variants of sequence kernels is possible, too [1].

Prediction Profiles
Pattern weights provide the analyst with valuable knowledge which, however, may be incomplete, 
obscured or even misleading: 
• patterns may in fact be part of larger or more complex patterns that were not included in P;
• occurrences of patterns are dependent, but the weights do not take any dependencies into account.

Another reformulation of discriminant function [7]:

L: length of sequence; sj: contribution of j-th letter in the sequence — computed as an appropriate 
portion of the weights of patterns matching the sequence in position j. 

The contributions sj can be plot as a prediction profile along the sequence:
• Negative sj: letter at position j is indicative for the negative class
• Positive sj: letter at position j is indicative for the positive class
• The higher the absolute value, the clearer the tendency
• sj around zero: letter at position j is irrelevant for classification task 

The values sj can be plotted as a profile along the sequence. The discriminant function can be computed 
as the area between the profile  and the base line –b/L.

Studying profiles of all sequences is unfeasible. We suggest to concentrate on a limited number of 
representative examples. To determine such exemplars, we recommend using affinity propagation 
clustering [3].
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Abstract
Classifying biological sequences is one of the most important tasks in computational biology. In the last 
decade, support vector machines (SVMs) in combination with sequence kernels have emerged as a de-
facto standard. These methods are theoretically well-founded, reliable, and provide high-accuracy 
solutions at low computational cost. However, obtaining a highly accurate classifier is rarely the end of 
the story in many practical situations. Instead, one often aims to acquire biological knowledge about the 
principles underlying a given classification task. SVMs with traditional sequence kernels do not offer a 
straightforward way of accessing this knowledge.
In this contribution, we propose a new approach to analyzing biological sequences on the basis of 
support vector machines with sequence kernels. We first extract explicit pattern weights from a given 
SVM. When classifying a sequence, we then compute a prediction profile by distributing the weight of 
each pattern to the sequence positions that match the pattern. The final profile not only allows assessing 
the importance of a position, but also determining for which class it is indicative. Since it is unfeasible to 
analyze profiles of all sequences in a given data set, we advocate using affinity propagation (AP)
clustering to narrow down the analysis to a small set of typical sequences.
The proposed approach is applicable to a wide range of biological sequences and a wide selection of 
sequence kernels. To illustrate our framework, we present the prediction of oligomerization tendencies of 
coiled coil proteins as a case study.
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Case Study:
Prediction of Oligomerization of Coiled Coils [7]

Introduction
Coiled coil: structural motif in which two or more α-helices are coiled 
together in a super-helical twist. Coiled coils are usually built of repeating 
patterns of amino acids, the so-called heptad repeats.

Our goal was to determine whether a given coiled coil segment tends to 
build a dimer (2 helices) or trimer (3 helices). 

Classification Model
Data Preparation: The whole PDB was scanned with SOCKET to retrieve all coiled coil sequences with 
known 3D structure. We created a database of 385 dimeric and  92 trimeric coiled coil sequences with 
heptad registers (abcdefg) assigned by SOCKET. To augment this set with newly sequenced genome data, 
we employed a sophisticated BLAST approach with stringent filtering, which resulted in a combined 
dataset of 2043 dimers and 791 trimers.

Coiled Coil Kernel: We designed a novel kernel tailored to classification of coiled coil segments. It 
considers pairs of amino acids that are at most m positions apart and also takes the heptad positions of 
the residues into account (see left).

Model Selection: optimal model parameters were determined using nested cross-validation. Data were 
clustered such that training and test sequences had at most 60% sequence identity.

Pattern Weights
Pattern weights were computed from the final 
SVM as described above. A list of the 25 most 
dimeric and the 25 most trimeric sequence 
patterns is shown on the right hand side.

Clustering
Negative (dimers) and positive class (trimers) were clustered by affinity 
propagation with respect to the coiled coil kernel to obtain a small number of 
representative exemplar sequences. The plot to the left shows a heatmap of 
sequence similarities arranged by the VAT algorithm with the eight most typical 
samples marked.

Prediction Profiles of 8 Typical Coiled Coils

Availability
• PrOCoil — R package and Web service for prediction and profiling of coiled coils: http://www.bioinf.jku.at/software/procoil/

• APCluster — R package for affinity propagation clustering: http://www.bioinf.jku.at/software/apcluster/
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