763 research outputs found

    Problems in extremal graph theory

    Get PDF
    We consider a variety of problems in extremal graph and set theory. The {\em chromatic number} of GG, χ(G)\chi(G), is the smallest integer kk such that GG is kk-colorable. The {\it square} of GG, written G2G^2, is the supergraph of GG in which also vertices within distance 2 of each other in GG are adjacent. A graph HH is a {\it minor} of GG if HH can be obtained from a subgraph of GG by contracting edges. We show that the upper bound for χ(G2)\chi(G^2) conjectured by Wegner (1977) for planar graphs holds when GG is a K4K_4-minor-free graph. We also show that χ(G2)\chi(G^2) is equal to the bound only when G2G^2 contains a complete graph of that order. One of the central problems of extremal hypergraph theory is finding the maximum number of edges in a hypergraph that does not contain a specific forbidden structure. We consider as a forbidden structure a fixed number of members that have empty common intersection as well as small union. We obtain a sharp upper bound on the size of uniform hypergraphs that do not contain this structure, when the number of vertices is sufficiently large. Our result is strong enough to imply the same sharp upper bound for several other interesting forbidden structures such as the so-called strong simplices and clusters. The {\em nn-dimensional hypercube}, QnQ_n, is the graph whose vertex set is {0,1}n\{0,1\}^n and whose edge set consists of the vertex pairs differing in exactly one coordinate. The generalized Tur\'an problem asks for the maximum number of edges in a subgraph of a graph GG that does not contain a forbidden subgraph HH. We consider the Tur\'an problem where GG is QnQ_n and HH is a cycle of length 4k+24k+2 with k≥3k\geq 3. Confirming a conjecture of Erd{\H o}s (1984), we show that the ratio of the size of such a subgraph of QnQ_n over the number of edges of QnQ_n is o(1)o(1), i.e. in the limit this ratio approaches 0 as nn approaches infinity

    Minors in expanding graphs

    Full text link
    Extending several previous results we obtained nearly tight estimates on the maximum size of a clique-minor in various classes of expanding graphs. These results can be used to show that graphs without short cycles and other H-free graphs contain large clique-minors, resolving some open questions in this area

    Coloring Graphs with Forbidden Minors

    Full text link
    Hadwiger's conjecture from 1943 states that for every integer t≥1t\ge1, every graph either can be tt-colored or has a subgraph that can be contracted to the complete graph on t+1t+1 vertices. As pointed out by Paul Seymour in his recent survey on Hadwiger's conjecture, proving that graphs with no K7K_7 minor are 66-colorable is the first case of Hadwiger's conjecture that is still open. It is not known yet whether graphs with no K7K_7 minor are 77-colorable. Using a Kempe-chain argument along with the fact that an induced path on three vertices is dominating in a graph with independence number two, we first give a very short and computer-free proof of a recent result of Albar and Gon\c{c}alves and generalize it to the next step by showing that every graph with no KtK_t minor is (2t−6)(2t-6)-colorable, where t∈{7,8,9}t\in\{7,8,9\}. We then prove that graphs with no K8−K_8^- minor are 99-colorable and graphs with no K8=K_8^= minor are 88-colorable. Finally we prove that if Mader's bound for the extremal function for KpK_p minors is true, then every graph with no KpK_p minor is (2t−6)(2t-6)-colorable for all p≥5p\ge5. This implies our first result. We believe that the Kempe-chain method we have developed in this paper is of independent interest

    Constructing dense graphs with sublinear Hadwiger number

    Full text link
    Mader asked to explicitly construct dense graphs for which the size of the largest clique minor is sublinear in the number of vertices. Such graphs exist as a random graph almost surely has this property. This question and variants were popularized by Thomason over several articles. We answer these questions by showing how to explicitly construct such graphs using blow-ups of small graphs with this property. This leads to the study of a fractional variant of the clique minor number, which may be of independent interest.Comment: 10 page

    Disproof of the List Hadwiger Conjecture

    Full text link
    The List Hadwiger Conjecture asserts that every KtK_t-minor-free graph is tt-choosable. We disprove this conjecture by constructing a K3t+2K_{3t+2}-minor-free graph that is not 4t4t-choosable for every integer t≥1t\geq 1

    Number of cliques in graphs with a forbidden subdivision

    Full text link
    We prove that for all positive integers tt, every nn-vertex graph with no KtK_t-subdivision has at most 250tn2^{50t}n cliques. We also prove that asymptotically, such graphs contain at most 2(5+o(1))tn2^{(5+o(1))t}n cliques, where o(1)o(1) tends to zero as tt tends to infinity. This strongly answers a question of D. Wood asking if the number of cliques in nn-vertex graphs with no KtK_t-minor is at most 2ctn2^{ct}n for some constant cc.Comment: 10 pages; to appear in SIAM J. Discrete Mat
    • …
    corecore