96 research outputs found

    Statistical strategies for pruning all the uninteresting association rules

    Get PDF
    We propose a general framework to describe formally the problem of capturing the intensity of implication for association rules through statistical metrics. In this framework we present properties that influence the interestingness of a rule, analyze the conditions that lead a measure to perform a perfect prune at a time, and define a final proper order to sort the surviving rules. We will discuss why none of the currently employed measures can capture objective interestingness, and just the combination of some of them, in a multi-step fashion, can be reliable. In contrast, we propose a new simple modification of the Pearson coefficient that will meet all the necessary requirements. We statistically infer the convenient cut-off threshold for this new metric by empirically describing its distribution function through simulation. Final experiments serve to show the ability of our proposal.Postprint (published version

    Analysis of monotonicity properties of some rule interestingness measures

    Get PDF
    One of the crucial problems in the field of knowledge discovery is development of good interestingness measures for evaluation of the discovered patterns. In this paper, we consider quantitative, objective interestingness measures for "if..., then... " association rules. We focus on three popular interestingness measures, namely rule interest function of Piatetsky-Shapiro, gain measure of Fukuda et al., and dependency factor used by Pawlak. We verify whether they satisfy the valuable property M of monotonic dependency on the number of objects satisfying or not the premise or the conclusion of a rule, and property of hypothesis symmetry (HS). Moreover, analytically and through experiments we show an interesting relationship between those measures and two other commonly used measures of rule support and anti-support

    Post-processing of association rules.

    Get PDF
    In this paper, we situate and motivate the need for a post-processing phase to the association rule mining algorithm when plugged into the knowledge discovery in databases process. Major research effort has already been devoted to optimising the initially proposed mining algorithms. When it comes to effectively extrapolating the most interesting knowledge nuggets from the standard output of these algorithms, one is faced with an extreme challenge, since it is not uncommon to be confronted with a vast amount of association rules after running the algorithms. The sheer multitude of generated rules often clouds the perception of the interpreters. Rightful assessment of the usefulness of the generated output introduces the need to effectively deal with different forms of data redundancy and data being plainly uninteresting. In order to do so, we will give a tentative overview of some of the main post-processing tasks, taking into account the efforts that have already been reported in the literature.

    New probabilistic interest measures for association rules

    Full text link
    Mining association rules is an important technique for discovering meaningful patterns in transaction databases. Many different measures of interestingness have been proposed for association rules. However, these measures fail to take the probabilistic properties of the mined data into account. In this paper, we start with presenting a simple probabilistic framework for transaction data which can be used to simulate transaction data when no associations are present. We use such data and a real-world database from a grocery outlet to explore the behavior of confidence and lift, two popular interest measures used for rule mining. The results show that confidence is systematically influenced by the frequency of the items in the left hand side of rules and that lift performs poorly to filter random noise in transaction data. Based on the probabilistic framework we develop two new interest measures, hyper-lift and hyper-confidence, which can be used to filter or order mined association rules. The new measures show significantly better performance than lift for applications where spurious rules are problematic
    • …
    corecore