6 research outputs found

    Mining interesting link formation rules in social networks

    Get PDF
    Link structures are important patterns one looks out for when modeling and analyzing social networks. In this pa-per, we propose the task of mining interesting Link For-mation rules (LF-rules) containing link structures known as Link Formation patterns (LF-patterns). LF-patterns cap-ture various dyadic and/or triadic structures among groups of nodes, while LF-rules capture the formation of a new link from a focal node to another node as a postcondition of exist-ing connections between the two nodes. We devise a novel LF-rule mining algorithm, known as LFR-Miner, based on frequent subgraph mining for our task. In addition to us-ing a support-confidence framework for measuring the fre-quency and significance of LF-rules, we introduce the notion of expected support to account for the extent to which LF-rules exist in a social network by chance. Specifically, only LF-rules with higher-than-expected support are considered interesting. We conduct empirical studies on two real-world social networks, namely Epinions and myGamma. We re-port interesting LF-rules mined from the two networks, and compare our findings with earlier findings in social network analysis

    Maximizing Friend-Making Likelihood for Social Activity Organization

    Full text link
    The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, in-person interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and per- form extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm

    Mining (maximal) span-cores from temporal networks

    Get PDF
    When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). We tackle this task by introducing a notion of temporal core decomposition where each core is associated with its span: we call such cores span-cores. As the total number of time intervals is quadratic in the size of the temporal domain TT under analysis, the total number of span-cores is quadratic in ∣T∣|T| as well. Our first contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the maximal span-cores, i.e., span-cores that are not dominated by any other span-core by both the coreness property and the span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly compute the maximal ones without computing all span-cores. Experimentation on several real-world temporal networks confirms the efficiency and scalability of our methods. Applications on temporal networks, gathered by a proximity-sensing infrastructure recording face-to-face interactions in schools, highlight the relevance of the notion of (maximal) span-core in analyzing social dynamics and detecting/correcting anomalies in the data

    Span-core Decomposition for Temporal Networks: Algorithms and Applications

    Full text link
    When analyzing temporal networks, a fundamental task is the identification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). In this paper we tackle this task by introducing a notion of temporal core decomposition where each core is associated with two quantities, its coreness, which quantifies how densely it is connected, and its span, which is a temporal interval: we call such cores \emph{span-cores}. For a temporal network defined on a discrete temporal domain TT, the total number of time intervals included in TT is quadratic in ∣T∣|T|, so that the total number of span-cores is potentially quadratic in ∣T∣|T| as well. Our first main contribution is an algorithm that, by exploiting containment properties among span-cores, computes all the span-cores efficiently. Then, we focus on the problem of finding only the \emph{maximal span-cores}, i.e., span-cores that are not dominated by any other span-core by both their coreness property and their span. We devise a very efficient algorithm that exploits theoretical findings on the maximality condition to directly extract the maximal ones without computing all span-cores. Finally, as a third contribution, we introduce the problem of \emph{temporal community search}, where a set of query vertices is given as input, and the goal is to find a set of densely-connected subgraphs containing the query vertices and covering the whole underlying temporal domain TT. We derive a connection between this problem and the problem of finding (maximal) span-cores. Based on this connection, we show how temporal community search can be solved in polynomial-time via dynamic programming, and how the maximal span-cores can be profitably exploited to significantly speed-up the basic algorithm.Comment: ACM Transactions on Knowledge Discovery from Data (TKDD), 2020. arXiv admin note: substantial text overlap with arXiv:1808.0937

    Link Prediction su reti Multidimensionali

    Get PDF
    L’analisi di reti sociali (SNA) è un campo di ricerca interdisciplinare, che vede coinvolti fisici, sociologi, matematici, economisti e informatici, e che studia modelli e tecniche atti alla compresione dei fenomeni sociali all’interno di gruppi di persone. Il Link Prediction, ossia la predizione di collegamenti futuri fra individui, rappresenta uno dei temi più caldi della Social Network Analysis. In questa tesi si estende lo scenario classico del Link Prediction al contesto delle reti multidimensionali, ossia quelle reti che annoverano molteplici connessioni fra coppie di individui. Partendo da tale modello si propone una nuova definizione per il problema di Link Prediction che tenga conto delle informazioni multidimensionali in esame: si presenta quindi una vasta tassonomia di approcci algoritmici studiati appositamente per sfruttare tali informazioni per la risoluzione del problema. Vengono quindi introdotti nuovi predittori su reti multidimensionali, la cui validità è confermata da un’estensivo lavoro sperimentale effettuato su reti provenienti dal mondo reale

    Social Network Dynamics

    Get PDF
    This thesis focuses on the analysis of structural and topological network problems. In particular, in this work the privileged subjects of investigation will be both static and dynamic social networks. Nowadays, the constantly growing availability of Big Data describing human behaviors (i.e., the ones provided by online social networks, telco companies, insurances, airline companies. . . ) offers the chance to evaluate and validate, on large scale realities, the performances of algorithmic approaches and the soundness of sociological theories. In this scenario, exploiting data-driven methodologies enables for a more careful modeling and thorough understanding of observed phenomena. In the last decade, graph theory has lived a second youth: the scientific community has extensively adopted, and sharpened, its tools to shape the so called Network Science. Within this highly active field of research, it is recently emerged the need to extend classic network analytical methodologies in order to cope with a very important, previously underestimated, semantic information: time. Such awareness has been the linchpin for recent works that have started to redefine form scratch well known network problems in order to better understand the evolving nature of human interactions. Indeed, social networks are highly dynamic realities: nodes and edges appear and disappear as time goes by describing the natural lives of social ties: for this reason. it is mandatory to assess the impact that time-aware approaches have on the solution of network problems. Moving from the analysis of the strength of social ties, passing through node ranking and link prediction till reaching community discovery, this thesis aims to discuss data-driven methodologies specifically tailored to approach social network issues in semantic enriched scenarios. To this end, both static and dynamic analytical processes will be introduced and tested on real world data
    corecore