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ABSTRACT
Link structures are important patterns one looks out for
when modeling and analyzing social networks. In this pa-
per, we propose the task of mining interesting Link For-
mation rules (LF-rules) containing link structures known as
Link Formation patterns (LF-patterns). LF-patterns cap-
ture various dyadic and/or triadic structures among groups
of nodes, while LF-rules capture the formation of a new link
from a focal node to another node as a postcondition of exist-
ing connections between the two nodes. We devise a novel
LF-rule mining algorithm, known as LFR-Miner, based on
frequent subgraph mining for our task. In addition to us-
ing a support-confidence framework for measuring the fre-
quency and significance of LF-rules, we introduce the notion
of expected support to account for the extent to which LF-
rules exist in a social network by chance. Specifically, only
LF-rules with higher-than-expected support are considered
interesting. We conduct empirical studies on two real-world
social networks, namely Epinions and myGamma. We re-
port interesting LF-rules mined from the two networks, and
compare our findings with earlier findings in social network
analysis.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data Mining ; J.4 [Computer Applications]: Social and
Behavioral Sciences—Sociology

General Terms
Experimentation, Algorithms

Keywords
Social network analysis, Local structures, Frequent subgraph
mining

1. INTRODUCTION
Link structures in networks are an important piece of

information that can help characterizing various types of
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network, understanding node (user) activities, identifying
communities, detecting anomalies, and so on. In particular,
dyadic and triadic structures, also known as local structures,
have long been utilized for understanding and predicting the
dynamics of large and complex networks [16, 11, 3, 15, 14,
13]. In the area of trust prediction in social networks, for
instance, the study in [12] analyzes the formation of trust
links as a reciprocity effect. Several other studies examine
trust propagation based on transitivity, assuming that trust
values attached to links in a network would propagate along
directed paths to various degrees (e.g. [4, 10]).

Previous social network research on local structures how-
ever suffers from two common pitfalls. Firstly, they consider
only the topological aspect of local structures and ignore
the formation order of links in the network. Most research
focuses on analyzing the statistical properties and distribu-
tions of non-temporal structures in a network [16, 11, 3,
14]. Only recently, researchers have started to address the
temporal order of links in specific triadic structures. For in-
stances, Romero and Kleinberg [13] analyze links that might
have been formed as a result of directed closure in Twitter,
while Leskovec et al. [7] study link sign prediction between
a node pair in a triad given different preexisting connections
among the triad. Secondly, due to the enormous overheads
of enumerating local structures, researchers usually shy away
from identifying new interesting local structures that may
exist in the networks to be studied and confine their work
to simple structures such as dyads and triads, assuming that
they are the only interesting ones.

Mining local structures beyond simple dyads and triads
while considering time ordering of links is very important for
understanding how new links and local structures emerge in
different networks. In this study, we therefore propose to
mine local structures for link formation from directed, tem-
poral social networks. We formalize the notion of Link For-
mation rule (LF-rule) to capture the formation of a new link
from a focal node, called the start node, to another node,
called the end node, as a postcondition of existing connec-
tions between the two nodes. A LF-rule thus imposes a
temporal constraint on the (partial) formation order of the
links it contains. Specifically, the new link formed as a post-
condition should be introduced to the social network at a
later time point than all other links in the same rule. A
LF-rule also follows certain structural constraints, defined
as Link Formation patterns (LF-patterns). We aim to cap-
ture LF-patterns containing multiple dyadic and/or triadic
structures among groups of nodes, instead of simple dyads
and triads in this work.

Published in CIKM'10: Proceedings of the 19th ACM International Conference on Information and Knowledge Management: 
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http://dx.doi.org/10.1145/1871437.1871468



Input graph

... Identify 

interesting LF-rules

Mine LF -rules

Randomize

graph
Rule evaluation

Compute 

expected support
of LF-rules

Figure 1: Methodology overview.

Fig. 1 summarizes our multi-step approach to mining in-
teresting LF-rules. We first devise a new LF-rule mining
algorithm based on frequent subgraph mining [5, 6, 17], and
apply it on a given social network to obtain a set of LF-rules.
To account for the extent to which LF-rules exist in the
given network by chance, we conduct graph randomization
on the original network so as to determine the expected sup-
port of LF-rules. Finally, interesting LF-rules with higher-
than-expected support are further evaluated manually.

We summarize our contributions as follows:

• We introduce LF-rule as a general form of link forma-
tion rule that considers both the time and label of net-
work links. It allows local structures other than simple
dyads and triads to be studied in social networks.

• We develop our LF-rule mining algorithm, known as
LFR-Miner, by extending gSpan [17, 18]. LFR-Miner
generates the complete set of LF-rules that satisfy user-
specified constraints on support, confidence, and the
maximum number of nodes in each rule (optional).

• We apply graph randomization for estimating the ex-
pected support of LF-rules. The concept of expected
support helps us determine interesting LF-rules for
network analysis and network related prediction tasks.

• We apply LFR-Miner to two real-world social networks
and evaluate the interesting LF-rules with higher-than-
expected support. We also compare and contrast the
interestingness of LF-rules in the two networks.

Our work is distinct from related studies in several as-
pects. To the best of our knowledge, this is the first time a
comprehensive approach is introduced to conduct link for-
mation analysis in directed, temporal (time-stamped) social
networks with multiple edge labels. The Graph Evolution
Rule Miner (GERM) proposed in [1] also mines frequent
graph rules (with arbitrary structures) from a single, tem-
poral graph, but does not consider link directions and la-
bels. We are also not aware of any related work that con-
siders expected support of local structures. Secondly, we
take a subgraph mining approach to grow and discover com-
plex patterns that satisfy the desired structural constraints,
rather than predefining specific patterns to analyze (e.g. in
[7, 13]). Lastly, we evaluate the interestingness of LF-rules
with respect to the entire network by means of their sup-
port, expected support and confidence. Our study serves as
a macro-level analysis of local structures, and complements
micro-level analysis on pattern occurrences (e.g. [7]).

The remainder of this paper is organized as follows. Sect. 2
formally describes our problem definition. Sect. 3 briefly in-
troduces the mining principles of gSpan, and details the de-
sign and implementation of our LFR-Miner algorithm. Sect. 4
describes the computation of expected support. Sect. 5
presents our empirical study on real-world datasets. Sect. 6
describes related work, and finally in Sect. 7, we conclude
and outline possible extensions of this work.

Table 1: Basic notations
Notation Description

G The input graph G = (V, E, L, l, T, t).
u, v, w Individual nodes in G.
ρ(u, v) Geodesic distance between u and v in G.
t(u, v) Timestamp of the edge from u to v in G.
p, q Link Formation patterns (LF-patterns).
p.s The start node of the LF-pattern p.
p.e The end node of the LF-pattern p.
x̃ An occurrence of a certain object x in G.

2. PROBLEM DEFINITION
In this section, we describe relevant preliminary concepts

and introduce Link Formation patterns (LF-patterns) as
well as Link Formation rules (LF-rules). We then formally
define the LF-rule mining problem.

2.1 Preliminaries
We represent a social network as a directed, labeled and

time-stamped graph, written as G = (V, E, L, l, T, t). V is a
set of vertices/nodes representing individuals in the network.
E is a set of directed links/edges representing relationships
between individuals. An element (u, v) ∈ E, where u, v ∈ V ,
is an edge from u to v. L is a finite set of node and edge
labels. l : V ∪E → L assigns labels to elements in V and E.
t : E → T is a mapping between edges and their timestamps.
Without loss of generality, we represent timestamps as T =
{ti|i ≥ 0}, such that ∀ti, tj ∈ T, ti < tj iff i < j. A graph
may evolve with new nodes and edges joining at different
time points. G can be viewed as a snapshot of the network
taken at a certain time point tn, such that G contains nodes
and edges that were formed at or before tn. We assume that
edges once formed are not removed.

Table 1 summarizes other notations used in our discus-
sions. For a given graph G, the geodesic distance from u to
v, denoted by ρ(u, v), is the number of edges in the shortest
path from u to v. ρ(u, v) and ρ(v, u) may not be equal since
G is directed. ρ(u, v) = +∞ if there is no path from u to v.

2.2 Link Formation Patterns and Rules
We study link formation from a focal node s, called the

start node, to another node e, called the end node, as a post-
condition of existing connections between s and e. Given a
link (s, e), we assume that s is the creator or sender of the
link, as this is often the case in directed social networks such
as Epinions’ web of trust. Further, we are only interested in
patterns that are connected or weakly connected, i.e., there
exists a path between any two nodes in the pattern, omitting
link directions. This is reasonable since we seek to find the
structures connecting s and e that may lead to the formation
of a new link from s to e.

We use the patterns in Fig. 2 and the graph in Fig. 3
as the input graph G as examples throughout this section.
For simplicity, all edges in our sample patterns and G carry
the same label of “1”, which is omitted in their graphical
representation. Nodes marked with s and e in our patterns
correspond to the start and the end nodes respectively, while
those unlabeled are intermediaries.

Link Formation Pattern. A LF-pattern encodes struc-
tural constraints on the nodes it contains. This work focuses
on patterns containing dyadic and triadic structures among
groups of nodes as noted. Furthermore, a LF-pattern im-
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Figure 2: Examples of LF-patterns. s and e denote
the start node and the end node respectively.
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Figure 3: The sample input graph G. For simplicity,
all edges in this graph have the same label, which is
omitted in the graph. ti denotes timestamp of edge
creation. ti < tj iff i < j.

plicitly encodes the temporal constraint that the link (s, e)
is formed after all other links in the same pattern. Formally,
a LF-pattern is defined as follows:

Definition 1 (Link Formation Pattern). A Link For-
mation pattern, or LF-pattern, is a 4-tuple: p = (Vp, Ep, L, lp),
where Vp is a set of vertices, Ep is a set of edges, L is a finite
set of labels, and lp : Vp ∪Ep → L assigns labels to elements
in Vp and Ep. Vp contains (i) a special subset Sp = {s, e},
where s and e are respectively called the start node and the
end node of p; (ii) a set of intermediaries Ip between s and
e. Ip = Vp\Sp, and it may be an empty set (Ip = ∅). In
the edge set Ep, each element (u, v) is a directed edge from
u to v, u 6= v, and (s, e) ∈ Ep. Ep captures the connec-
tivity among nodes in Vp, such that either of the following
conditions is true:

1. If Ip = ∅, then ∀u, v ∈ Sp, ρ(u, v) = ρ(v, u) = 1.

2. If Ip 6= ∅, then ∀u ∈ Sp, v ∈ Ip, min(ρ(u, v), ρ(v, u)) =
1.

Condition 1 means that if Vp contains only s and e, the two
nodes must be connected to each other to form a LF-pattern.
Condition 2 requires every intermediary to be connected to
both s and e, in any direction. Other than Conditions 1 and
2, we allow additional edges to be included in the pattern.
Referring to Fig. 2, p1 satisfies Condition 1, and p2 to p5

satisfy Condition 2. Every LF-pattern is at least weakly
connected by definition.

Definition 2 (Isomorphism of LF-patterns). An iso-
morphism from a LF-pattern p to another LF-pattern q is
a bijective function f : Vp → Vq, such that the following
conditions are met:

1. ∀u ∈ Vp, lp(u) = lq(f(u)).

2. ∀(u, v) ∈ Ep, (f(u), f(v)) ∈ Eq, and lp(u, v) = lq(f(u), f(v)).

3. f(p.s) = q.s and f(p.e) = q.e.

A subgraph isomorphism from p to q is an isomorphism from
p to a subgraph in q. p is a sub-pattern of q only if there
exists a subgraph isomorphism from p to q, denoted by p ⊆LF

q. q is called a super-pattern of p.

Condition 3 above is specific to LF-patterns. Under this
condition, p and q are treated as different LF-patterns if the
special nodes s and e in the (subgraph) isomorphism from p
to q have been changed.

Example 1. In graph terms, there exists a subgraph iso-
morphism from p1 to p3. In such an isomorphism, however,
either node s or e in p1 will be mapped to the intermediary
in p3, violating Condition 3 above. Similarly, p2 and p3 are
isomorphic in graph terms if we ignore the special nodes s
and e, but are considered different LF-patterns. The ratio-
nale behind this becomes obvious if we take away the (s,e)
link from the two patterns: they encode different connectivity
between s and e before the (s,e) link is formed.

Based on the assumption that an edge is formed by its
sender, we propose the notions of ego-based occurrence and
frequency of a given LF-pattern in a graph G:

Definition 3 (Ego-based Occurrence). Given a fo-
cal node w, known as the ego, in a graph G, an ego-based
occurrence, or simply occurrence, of a pattern p is a subgraph
p̃ in G that is isomorphic1 to p, such that p̃.s = w, and the
timestamp of the edge (p̃.s, p̃.e), denoted by t(p̃.s, p̃.e), sat-
isfies the following temporal constraint:

t(p̃.s, p̃.e) > max
(u,v)∈Ep̃\(p̃.s,p̃.e)

t(u, v)

We write the set of ego-based occurrences of p having w as
its start node as Γp

w. If |Γp
w| > 0, we say that p occurred

w.r.t. w, and that w supports p.

Example 2. Consider p1 and its occurrences in G. It
is obvious that p1 did not occur w.r.t. egos B and D. p1

occurred w.r.t. ego A, with p̃1.s = A and p̃1.e = E. p1 also
occurred w.r.t. ego C, with p̃1.s = C and p̃1.e = A. We
cannot find an occurrence of p1 w.r.t. ego E: if we take A
as node e, then we have t(E, A) < t(A, E), which violates
the temporal constraint above. p1 therefore occurred w.r.t.
egos A and C only.

After determining Γp
w for all nodes w ∈ V in G, we can

compute the ego-based frequency of p as follows:

Definition 4 (Ego-based Frequency). Given p, and
the set of Γp

w for all nodes w ∈ V in G, let:

δ(p, w) =

{
1 if |Γp

w| > 0,
0 otherwise.

The ego-based frequency, or simply frequency, of p in G is
given by:

freq(p, G) =
∑
w∈V

δ(p, w)

Example 3. Referring to Example 2, freq(p1, G) = 2.

In other words, freq(p, G) is the number of distinct nodes
that acted as the start node of p at least once in G. This ego-
based frequency measure is anti-monotone, such that given
p and q, if p ⊆LF q, then the frequency of p will always be
equal to or higher than that of q.

Property 1. Given two LF-patterns p and q, if p ⊆LF q,
then freq(p, G) ≥ freq(q, G).
1The term“isomorphic”here shall not be confused with Def-
inition 2: here, the subgraph p̃ that is isomorphic to p is an
actual occurrence of p in G, whereas Definition 2 is about
isomorphism of LF-patterns.



Proof. We first point out that if q̃ occurred w.r.t. an
ego w, then q̃ contains at least one occurrence of p w.r.t. w
since p ⊆LF q. Given p̃ occurred w.r.t. w, however, does
not necessarily imply that an occurrence q̃ that contains
p̃ also occurred w.r.t. w. Now, let’s consider p1 and p2,
where p1 ⊆LF p2, and p1 occurred w.r.t. egos A and C as
discussed. We try to extend occurrences of p1 to obtain those
of p2. p1’s occurrence w.r.t. ego A can be extended to an
occurrence p̃2 by taking D as the intermediary in p2. In this
case, we can ensure that δ(p2, A) = 1 = δ(p1, A) based on
Definition 4. p1’s occurrence w.r.t. ego C, however, cannot
be extended to obtain an occurrence of p2: if we take B
as the intermediary, then t(C, A) < t(C, B), which violates
Definition 3. In this case, we have δ(p2, C) = 0 < δ(p1, C).

We now conclude our proof. Given that p ⊆LF q, for
every ego w with |Γp

w| > 0, if ∃p̃, p̃ ∈ Γp
w, such that p̃ can

be extended to q̃, then |Γq
w| > 0 and δ(q, w) = δ(p, w) = 1.

Otherwise, |Γq
w| = 0, thus δ(q, w) = 0 and δ(q, w) < δ(p, w).

Since δ(p, w) ≥ δ(q, w), after summing up δ(q, w) for all
egos, we have freq(p, G) ≥ freq(q, G) if p ⊆LF q.

Link Formation Rule. We can view the link (s, e) in a LF-
pattern p as the postcondition of the connections between s
and e captured in Ep\{(s, e)}, which we call the precondition
of p. We formalize such pre- and post-conditions of link
formation as a Link Formation rule (LF-rule).

Definition 5 (Link Formation Rule). The Link For-
mation rule (LF-rule) of a LF-pattern p is defined as r(p) =
pa → p. pa is called the precondition of r(p), with the vertex
set Vpa = Vp, and edge set Epa = Ep\{(s, e)}. The edge
(s, e) ∈ Ep is called the postcondition of r(p).

We adopt the support-confidence framework to quantify
the frequency and significance of a LF-rule r(p) in G. The
support of r(p) is the proportion of nodes in G w.r.t. which
p occurred. The confidence of r(p) is the likelihood that
(s, e) exists given that pa exists. It takes into account the
frequency of pa in G. Note that pa is not a valid LF-pattern
due to the missing (s, e) link. Yet, we can still obtain its ego-
based occurrences and frequency by viewing missing links in
G as links that may emerge in the future. Conceptually, we
may let the timestamp of a missing (s, e) link be +∞, so
that an occurrence of pa will satisfy Definition 3. We now
define the support and confidence of a LF-rule. We overload
the notation freq(pa, G) to denote the frequency of pa.

Definition 6 (Support of LF-Rule). The support of
a LF-rule r(p) in a graph G is defined as:

supp(r(p)) =
freq(p, G)

|V |
Definition 7 (Confidence of LF-Rule). The confi-

dence of a LF-rule r(p) in a graph G is defined as:

conf(r(p)) =
freq(p, G)

freq(pa, G)

Example 4. Table 2 shows the LF-rule generated from
p2, and reports its support and confidence in G. G has 5
nodes, therefore |V | = 5. p2 occurred w.r.t. ego A only,
therefore supp(r(p2)) = 1/5. pa

2 occurred w.r.t. egos A, C, E.
Therefore, freq(pa

2 , G) = 3, and conf(r(p2)) = 1/3.

Table 2: LF-rule of p2.
r(p2) = pa

2 → p2 supp(r(p2)) conf(r(p2))

s e s e

1/5 1/3

Problem Definition. Given a directed, labeled, time-
stamped graph representing a social network, a support thresh-
old, and a confidence threshold, mine LF-rules that satisfy
the given support and confidence thresholds. For trade-off
between computational effort and the expressiveness of the
mined rules, users could impose a limit on the size of the
mined rules, in terms of maximum of nodes in each rule.

3. MINING LINK FORMATION RULES
We develop our LF-rule mining algorithm, or LFR-Miner,

by extending gSpan, a state-of-the-art subgraph mining al-
gorithm based on Depth-First Search (DFS)[17, 18]. Our
extensions address two major issues. Firstly, gSpan oper-
ates on a database of undirected graphs, but we work with a
single directed graph. We thus extend the mining principles
in gSpan to consider edge directions in LFR-Miner. Further-
more, the notion of ego we introduced to LFR-Miner essen-
tially serves the purpose of a graph transaction in gSpan’s
setting. While gSpan enumerates a pattern’s occurrences in
graph transactions to obtain its frequency, we enumerate the
occurrences of it w.r.t. egos (nodes). Secondly, gSpan mines
for all frequent patterns in the given graph database, while
we are interested in LF-patterns, and intermediate patterns
that can be grown into LF-patterns. We therefore exploit
the structural constraints of LF-patterns and the properties
of gSpan’s pattern growth strategy to prune patterns that
cannot be grown into LF-patterns.

Another issue we have to address is the representation of
LF-patterns. Our representation should allow easy enumer-
ation of ego-based occurrence, which imposes a temporal
constraint on the (s, e) link. It should also allow us to dis-
tinguish between different LF-patterns that are topologically
identical in graph terms.

We now give a brief overview of gSpan, and refer interested
readers to [18, 17] for detailed descriptions. We then discuss
the above issues and present our LFR-Miner algorithm.

3.1 Overview of gSpan
Pattern Representation by DFS Code. Given a pat-
tern p, gSpan applies DFS subscripting to all nodes in p to
encode the order in which they are traversed in a certain
DFS tree. For two “DFS subscripted” nodes vi and vj , i < j
iff vi is traversed before vj . Given a DFS tree, the first and
the last nodes traversed are called the root and the right-
most vertex respectively. A DFS traversal aims to traverse
all nodes in p, and doing so may not require visiting all edges
in p. An edge that is visited is called a forward edge, while
one that is not visited a backward edge. The path from the
root to the rightmost vertex, built upon forward edges, is
called the rightmost path.

Every DFS tree of p can be mapped to a DFS code, which
comprises a DFS edge sequence. Each DFS edge corresponds
to one edge in p. gSpan was designed to handle undirected
graphs, but as mentioned in [19], a DFS edge with direction
can be modeled as a 6-tuple: 〈i, j, li, l(i,j), lj , d(i,j)〉. i and
j are DFS subscripts. The tuple represents a forward edge
if i < j, and a backward edge otherwise. li and lj are the



Table 3: DFS codes of p2 and p3 with s as v0, e as v1.
An asterisk (∗) denotes an empty label.
Edge p2(a) p3(a) p3(b)

1 〈0, 1, ∗, 1, ∗,→〉 〈0, 1, ∗, 1, ∗,→〉 〈0, 1, ∗, 1, ∗,→〉
2 〈1, 0, ∗, 1, ∗,→〉 〈1, 2, ∗, 1, ∗,←〉 〈1, 2, ∗, 1, ∗,←〉
3 〈1, 2, ∗, 1, ∗,→〉 〈2, 0, ∗, 1, ∗,→〉 〈2, 0, ∗, 1, ∗,←〉
4 〈2, 0, ∗, 1, ∗,←〉 〈2, 0, ∗, 1, ∗,←〉 〈2, 0, ∗, 1, ∗,→〉

node labels of vi and vj respectively, l(i,j) is the edge label,
and d(i,j) captures edge direction. We write d(i,j) = → if
the edge points from vi to vj ; and d(i,j) = ← otherwise.

gSpan defines a linear DFS lexicographic order among all
DFS codes, determined based on the lexicographic order
among DFS edges (details in [18, 17]). We extend such an
order to include edge directions. We define ≺D to be the
lexicographic order among d(i,j)’s, and d(i,j) = → is lexico-
graphically smaller than d(i,j) = ←. ≺D is essential in ex-
tending gSpan to directed graphs: when two DFS edges have
the same values of i, j, li, l(i,j), lj but different directions, ≺D

is used to determine their lexicographic order.

Minimum DFS Code & Rightmost Extension. A pat-
tern p can be represented by multiple DFS codes when there
exist multiple DFS trees of it. gSpan defines the canonical
label of p as its minimum DFS code, as determined by the
DFS lexicographic order. Two patterns p and p′ are isomor-
phic iff they have the same minimum DFS code. As proven
in [18], minimum DFS codes can only be grown from another
minimum DFS code by rightmost extension. The essence of
this is that non-minimum DFS codes can be pruned while
guaranteeing the completeness of mining results.

gSpan starts mining with a frequent 1-edge pattern g (in
DFS code representation). It then iteratively grows g into
larger patterns in the DFS lexicographic order, by perform-
ing rightmost extension on it and its children that are mini-
mum DFS codes. A child pattern c of g is formed by adding
one edge to g. Rightmost extension states that for c to be
a valid DFS code, a backward edge can only grow from the
rightmost vertex of g, while a forward edge can grow from
vertices along the rightmost path [18].

3.2 DFS Code Representation in LFR-Miner
Our DFS code representation of a LF-pattern always takes

s as v0 and e as v1, thus “forcing” the (s, e) edge to be the
first DFS edge. For example, p2 has one DFS code, denoted
by p2(a) in Table 3. p3 has two possible DFS codes, denoted
by p3(a) and p3(b) in the table, and p3(a) is smaller than
p3(b) due to ≺D. Note that our representation does not
affect the correctness of minimum DFS code computation
as all possible DFS codes are built in the same way.

The importance of our DFS code representation is three-
fold. Firstly, it allows us to differentiate LF-patterns that
are topologically identical, such as p2 and p3. Using gSpan’s
original representation, p3(a) and p3(b) will be pruned as
their minimum form is p2(a). Secondly, it naturally cap-
tures the notion of ego in our work. Since v0 corresponds
to node s, every match for v0 in the actual graph is essen-
tially an ego that supports the LF-pattern represented by
the code. Lastly, by capturing the (s, e) link in the first
DFS edge, we can obtain the timestamp t(p̃.s, p̃.e) once we
start to enumerate an occurrence p̃. As we add more edges
to p̃, we only need to consider those with timestamps smaller

v0 v1

v2

(a)

v0 v1

v3 v2

(b)

v0 v1

v3 v2

(c)

Figure 4: Patterns that cannot be grown into LF-
patterns. Shaded nodes are disallowed to further
connect to v0 and/or v1 by rightmost extension.

than t(p̃.s, p̃.e). Our representation therefore facilitates the
process of enumerating LF-pattern occurrences.

To represent a precondition pa, we still take s as v0 to
construct the minimum DFS code of pa, but no longer fix
e as v1 since pa has no (s, e) link. Furthermore, we can
ignore the temporal order among edges in pa when finding
its occurrences in our implementation.

3.3 Rightmost Extension with Pruning
We would like to consider only LF-patterns, and interme-

diate patterns that can be grown into LF-patterns in LFR-
Miner. A naive approach to achieve this is to directly adopt
gSpan’s rightmost extension to obtain all frequent patterns
as intermediate results, and then extract LF-patterns from
them in a post-processing step. This approach is, however,
undesirable as we would need to process invalid patterns that
can never be grown into LF-patterns. Recall that Condition
2 in Definition 1 requires every intermediary to connect with
both s (v0) and e (v1). By exploiting this constraint and the
properties of rightmost extension, we identify the following
three cases where growing a DFS code c by a DFS edge z
will produce a code (pattern) in which an intermediary is
disallowed to connect with v0 and/or v1. We can therefore
prune such a code (i.e. we do not need to grow c by z).

Case 1: If z = (v0, vn) and n > 1, then adding z to c will
always exclude v1 from the rightmost path. As a result, vn

will be disallowed to connect to v1 by rightmost extension.
We therefore do not need to grow c by z. Fig. 4(a) illustrates
this case, in which v2 is disallowed to link to v1.

Case 2: If z = (vm, vn) and 1 ≤ m < n, then we check if
all nodes in {vk|1 < k < n}, if any, are connected with both
v0 and v1 in c. If not, we do not need to grow c by z. This
is because after adding z to c to form a new DFS code c′, vn

will become the rightmost vertex of c′. Rightmost extension
will disallow any node in {vk|1 < k < n} to link to v0 or v1

in any child of c′. In Fig. 4(b), for example, v2 is disallowed
to link to v0 since v3 is the rightmost vertex.

Case 3: If z = (vn, vm) and 2 ≤ m < n (z is a backward
edge), we check if vn is connected with both v0 and v1 in
c. If not, we do not need to grow c by z to form c′. The
reason is that the two backward edges (vn, v0) and (vn, v1)
are lexicographically smaller than z. They will therefore be
disallowed to exist in any child of c′, so that vn will not be
able to link back to v0 and v1. Fig. 4(c) illustrates this case.

In summary, LFR-Miner adopts the principles of rightmost
extension for pattern growth, but prunes invalid patterns
by addressing the above cases. We evaluate the amount of
computational effort saved by the pruning, and more impor-
tantly, the completeness of our results in Sect. 5.4.

3.4 The LFR-Miner Algorithm
We now describe the implementation of our LF-rule min-

ing algorithm, LFR-Miner. In what follows, the term “pat-
tern” or “rule” means one in our DFS code representation.



LFR-Miner takes as input a graph G, a support threshold
(minS), a confidence threshold (minC), and an optional
parameter that specifies the maximum number of nodes in
a pattern (maxV ). Algorithm 1 gives the overall flow of
LFR-Miner. Similar to gSpan, it starts mining with 1-edge
patterns, each of which corresponds to a (s, e) edge (line 3).
It then invokes the MineRules procedure in Algorithm 2 to
mine for larger patterns in DFS lexicographic order (lines
5-7). Given a pattern p, MineRules invokes the enumeration
engine in Algorithm 3 to enumerate the occurrences of p to
find the supporting egos of its valid children. Each frequent
pattern is recursively grown in MineRules until all its possible
valid children have been discovered. Further, LF-rules are
generated from frequent LF-patterns. Those that satisfy the
minC constraint are produced as output. We now detail
Algorithms 2 and 3.

Algorithm 1 LFR-Miner(G, minS, minC, maxV )

Input: Graph G, minimum support minS, minimum
confidence minC, maximum no. of nodes in a
pattern maxV .

Output: LF-rules R.

1: minSCnt = minS × |V |;
2: R ← ∅;
3: S1 ← all frequent 1-edge patterns in G;
4: sort S1 in lexicographic order;
5: for each p in S1 do
6: p.W ← supporting egos of p in G;
7: MineRules(p, minSCnt, minC, maxV, R);
8: return R;

Algorithm 2 MineRules(p, minSCnt, minC, maxV, R)

Input: p, minSCnt, minC, maxV , LF-rules R.
Output: LF-rules mined from p.

9: Q = GrowAndEnumerate(p, minSCnt, maxV );
10: for each q ∈ Q do
11: if |q.W | ≥ minSCnt then
12: if q is a LF-pattern then
13: generate r(q);
14: if conf(r(q)) ≥ minC then
15: add r(q) to R;
16: MineRules(q, minSCnt, minC, maxV, R);

MineRules starts by passing the input pattern p to the
GrowAndEnumerate procedure to obtain a set of child pat-
terns Q. Each returned child q ∈ Q is associated with its
set of supporting egos (q.W ). A frequent q is further pro-
cessed as follows. If q is a LF-pattern, MineRules generates
its LF-rule r(q) by constructing the minimum DFS code of
qa, counting freq(qa, G), and then computing conf(r(q)). It
is obvious that the supporting egos of q also support qa, thus
we only need to try enumerating occurrences of qa w.r.t.
nodes that do not support q and calculate freq(qa, G). If
r(p) satisfies the confidence threshold, then it is included in
the output R (lines 12-15). At line 16, each frequent q is
recursively grown by MineRules, until all of its children have
been processed. Infrequent patterns are not further pro-
cessed because their super-patterns must also be infrequent
given Property 1.

Algorithm 3 describes the enumeration engine GrowAndE-
numerate. It takes an input pattern p, determines its valid

Algorithm 3 GrowAndEnumerate(p, minSCnt, maxV )

Input: A pattern p, minSCnt, maxV .
Output Children patterns Q grown from p.

17: Q ← valid children of p that are minimum DFS codes;
18: if Q is empty then
19: return as p has no valid children;
20: set cnt = |p.W |; //no. of nodes to be processed in p.W
21: for each w in p.W do
22: repeat:
23: p̃ = the next occurrence of p w.r.t. w;
24: for each q ∈ Q, q̃ can be found given p̃ do
25: q.W ← q.W ∪ {w};
26: if ∀q ∈ Q, w ∈ q.W then
27: break; //skip to line 29
28: until all p’s occurrences in w have been enumerated;
29: reduce cnt by 1;
30: remove all q ∈ Q with |q.W |+ cnt < minSCnt;
31: if Q is empty then
32: return as p has no frequent children;
33: return Q;

children Q, enumerates the occurrences of p, and based on
which it tries to find the occurrences of all children in Q to
determine their supporting egos. Potential children of p are
generated based on our rightmost extension strategy with
pruning, in DFS lexicographic order. A generated child c is
valid if: (i) its number of nodes is at most maxV , if spec-
ified; and (ii) it is a minimum DFS code. The procedure
returns if p has no valid child (lines 18-19).

Lines 21 to 27 show the steps for enumerating the occur-
rences of p w.r.t. its supporting egos (p.W ), based on which
occurrences of its children are discovered. For each w in
p.W , line 23 enumerates p̃, the next ego-based occurrence of
p. Then, for each q whose occurrence(s) can be found based
on p̃, lines 24-25 record w as q’s supporting ego. Note that
we may not have to enumerate all occurrences of q w.r.t. w:
only one occurrence is enough to conclude |Γq

w| > 0. Lines
26-27 therefore state that we can stop processing w if all
possible children in Q have already been discovered at least
once w.r.t. w. Otherwise, the enumeration continues until
all occurrences of p w.r.t. w have been processed (line 28).

Line 30 implements an early and safe pruning. It prunes a
child q whose frequency upper bound is less than the thresh-
old minSCnt, such that q and its possible children are guar-
anteed to be infrequent. At any given w, the frequency
upper bound of q is given by the sum of q’s observed fre-
quency (|q.W |) and the number of unprocessed egos in p.W
(maintained by the counter cnt). Line 31 then checks if any
child still remains in Q after this early pruning. If not, the
GrowAndEnumerate procedure returns. Otherwise, it contin-
ues to process the next ego.

4. EXPECTED SUPPORT OF LF-RULES
We introduce the notion of expected support of LF-rules

to account for the extent to which they may exist by chance.
We first point out that analogous notions regarding pattern
occurrences exist in the literature. Sociology researchers
proposed various statistical methods for estimating triad
census (e.g. [16, 3]), but such methods do no consider the
temporal order of links. The study in [13] derived an ap-
proximation for the expected fraction of links that exhibit
directed closure in a network. Apart from statistical approx-
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Figure 5: Swapping the destination of edges. (a) is
successful if the new graph does not contain (C,D)
and (E,B). (b) will fail due to the self-loop (A,A).

imation, another approach is to compute such expected val-
ues from randomized networks that preserve certain nodal
properties of a given real network [11, 15]. For instances,
the studies in [7, 13] shuffled the timestamps in a network
for counting expected pattern occurrences.

Recall that support reflects the proportion of nodes acted
as the start node of a LF-rule at least once in a network,
but not the total number of occurrences of its corresponding
LF-pattern. As such, the aforementioned statistical approx-
imation methods are not suitable for estimating expected
support. We devise the following method for randomizing
a graph, based on which the expected support of a rule is
computed according to the notion of ego-based frequency.

Given an input graph G, let G′ = G. For each edge in
G′, we randomly pick another edge in it and try to swap the
end nodes of the two edges. If swapping would result in self-
loops or duplicated edges in G′, we discard the swapping,
and retry with another randomly picked edge. Otherwise,
we swap the end nodes of the two edges and update G′

accordingly. Fig. 5 illustrates the swapping of edges. The
randomized G′ preserves the degree, label and timestamp
distributions of G. We define the expected support of a LF-
rule r(p) given G, denoted by ŝupp(p), as its support in G′.
We further define the surprise value of the rule, denoted

by sur(r(p)), as the fraction supp(r(p))
ŝupp(r(p))

. sur(r(p)) > 1 if r(p)

has a higher-than-expected support given G. The higher
the surprise value of a rule, the more interesting it is. Note
that we do not consider the expected confidence of r(p), as
confidence is dependent upon another pattern pa.

As opposed to the randomization method in [7, 13], our
method does not change the time points at which a node
established links to other nodes in the original graph. If link
formation does follow some rules, then we shall expect such
rules to have higher support in the actual graph than in the
graph with randomized destinations of links.

5. EMPIRICAL STUDY
We applied LFR-Miner to two real-world datasets and re-

port empirical findings in this section. Our objective is to
discover interesting rules governing link formation in real-
world social networks. We do not aim to study LFR-Miner’s
computational efficiency as its mining principles are based
on gSpan. In what follows, we first describe our datasets,
and then analyze some of the interesting LF-rules discov-
ered. We also evaluate the pruning strategies incorporated
into the rightmost extension of LFR-Miner.

5.1 Datasets
Our two datasets, namely Epinions2 and myGamma3,

contain directed and time-stamped edges with two edge la-

2http://www.trustlet.org/wiki/Extended Epinions dataset
3http://www.buzzcity.com/f/mygamma

Table 4: Dataset statistics.
Epinions myGamma

Nodes: 56,499 689,843
Edges: total 496,627 9,156,575

+ve 85.4% 93.4%
-ve 14.6% 6.4%

bels, described as +ve and -ve edges/links. They are in-
teresting for our study as Epinions represents a more formal
network where users rely on others to find trustworthy infor-
mation (product reviews), whereas myGamma is for social
networking purpose with many informal links. We summa-
rize dataset statistics in Table 4.

The Epinions dataset contains trust (+ve) and distrust (-
ve) links. About 69% of links come with an initial timestamp
of 2001/01/10 (t0), which represents all timestamps on or
prior to t0. The formation date and order of all links formed
after t0 are known. As temporal information is important in
our work, we discarded a link (u, v) with timestamp t0 unless
both u and v were involved in at least one link formed after
t0. We also removed 577 erroneous self-assignment links as
they are not permitted in Epinions. Note that one’s -ve links
are not visible to others in Epinions. Hence, the likelihood
of a user retaliating another user with a -ve link is low.

Our myGamma dataset consists of a friendship network
with friend (+ve) and foe (-ve) links. We are given the
formation order of links. In myGamma, a user u is not fully
aware of the foe list of another user v, unless u finds her
messages to v rejected due to u being in the foe list of v.
Since not many users may realize such message blockage, the
likelihood of foe link retaliation should also be low.

5.2 Experimental setup
Our study focuses on analyzing LF-rules in real datasets,

rather than optimizing mining parameters for any specific
dataset. We therefore applied LFR-Miner to both datasets
with a reasonably low minS of 0.01, minC of 0 (for analysis
purpose), and a maxV of 5 as in [15].

We generated 10 randomized graphs for each dataset to
compute the expected support and surprise values of LF-
rules. We observed consistent qualitative results across all
randomized graphs for both datasets. Specifically, every r(p)
has an actual support that is either higher than or lower than
expected in all 10 randomized graphs of a specific dataset.
We report the average expected support and surprise values
of rules computed from the 10 randomized graphs.

5.3 Analysis of Interesting LF-Rules
We now analyze some interesting LF-rules. We only present

rules with surprise values above 1.1 (i.e. occurred 10% more
frequently than expected), although those with low surprise
values may also worth studying. For better readability, we
represent a LF-rule graphically by its corresponding LF-
pattern, in which solid arrows and dashed arrows denote
+ve and -ve edges respectively. We assign an ID to every
rule in the form of Rn to aid our discussions.

Fig. 6(a) depicts interesting basic dyads and triplets, which
are the building blocks of LF-patterns. Fig. 6(b) presents
20 rules (due to space constraint) combining a triplet and
reciprocal edges with high surprise values. We also mined
a large set of rules with multiple intermediaries between s
and e, since we used very low support and confidence thresh-
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Figure 6: Selected interesting LF-rules.

olds for mining. We manually examined our result set and
present 9 of them in Fig. 6(c) for discussions. In Fig. 6(c),
we use a bidirectional arrow to denote mutual links having
the same label, except for those between s and e, for bet-
ter readability. Tables 5 and 6 report the interestingness
scores of the LF-rules in Epinions and myGamma respec-
tively. Each table only includes rules that are interesting in
the corresponding dataset. We sort rules by their IDs, and
assign ranks to them based on descending order of support
values for easy comparison.

5.3.1 Major Observations
We first observe that our two datasets share the same top-

4 LF-rules in terms of support, with R5 (common trustee)
topping both lists. Yet, the same rule can obtain very dif-
ferent surprise values in the two datasets. An example is R1

(reciprocity), whose surprise value is 20.06 in myGamma and
7.76 in Epinions. Considering support, surprise and confi-
dence values of rules collectively, results seem to suggest that
R1 is the most prevalent LF-rule in both datasets. Note that
LF-rules generally have lower support in Epinions than in
myGamma, partially caused by the incomplete timestamp
information in Epinions.

LF-rules containing -ve links are uncommon, especially
for those with more than 3 nodes. This is partially due to
the skewed label (sign) distributions in the data. Although
Epinions has a much larger proportion of -ve links, R2 to
R4 are frequent only in myGamma. Among these rules, R3

Table 5: Results for Epinions.

ID supp(Rn) ŝupp(Rn) conf(Rn) sur(Rn) Rank
R1 0.1172 0.0151 0.2234 7.76 4
R5 0.1499 0.0985 0.2364 1.52 1
R6 0.1489 0.0987 0.2439 1.51 2
R7 0.0857 0.0678 0.2069 1.26 9
R8 0.0259 0.0168 0.1884 1.54 28
R9 0.0201 0.0152 0.0692 1.32 29
R11 0.1259 0.0358 0.2224 3.52 3
R12 0.0871 0.0164 0.3398 5.32 8
R13 0.0787 0.0325 0.2018 2.42 10
R14 0.0769 0.0142 0.3 5.42 11
R15 0.0702 0.0066 0.2891 10.65 13
R16 0.0662 0.0129 0.2837 5.13 14
R17 0.0559 0.0121 0.2889 4.62 15
R18 0.0551 0.0133 0.285 4.15 16
R19 0.0542 0.0117 0.3011 4.63 17
R20 0.051 0.0046 0.3087 11.04 19
R21 0.0513 0.006 0.3001 8.61 18
R22 0.0489 0.007 0.3177 7.04 20
R23 0.0473 0.0046 0.3206 10.26 21
R24 0.0439 0.0017 0.3219 25.23 22
R25 0.0174 0.0031 0.0944 5.54 30
R26 0.0131 0.0027 0.3065 4.89 32
R27 0.0132 0.003 0.2691 4.41 31
R28 0.0127 0.0018 0.2621 6.94 33
R29 0.0111 0.0025 0.0455 4.51 35
R30 0.0111 0.0018 0.2629 6.24 34
R31 0.0972 0.0602 0.3244 1.61 5
R32 0.0947 0.0579 0.3136 1.64 6
R33 0.0924 0.0575 0.3153 1.61 7
R34 0.0728 0.0425 0.3328 1.71 12
R35 0.0304 0.0002 0.3552 152 26
R36 0.0365 0.003 0.305 12.17 23
R37 0.0356 0.0025 0.3455 14.24 24
R38 0.0292 0.0004 0.3319 73 27
R37 0.0346 0.0002 0.3534 173 25

captures a particularly interesting situation where s recip-
rocates a +ve link from e with a -ve link. This can be due
to “unwanted friendships” in myGamma as users block some
other users who try to establish friendships to them. In
Epinions, unwanted trustors is not an issue. Note that R3

and R4, among others, violate structural balance[2], which
is the case when the product of edge signs in a group is +ve.

Another interesting observation is that mutual +ve links,
which are consequences of reciprocity, between s and an in-
termediary are more important than those between an in-
termediary and e. Consider R11 and R12, as well as R13

and R14 as examples. R12 (resp. R14) contains mutual links
between s and an intermediary. Its confidence and surprise
values in both datasets are significantly higher than those of
R11 (resp. R13), in which the intermediary has mutual +ve
links with e but not s. Furthermore, adding another link
between e and the intermediary to R12 and R14, resulting
in R15, does not raise the confidence of link formation. The
same observation can be made from rules R20 to R24, and
R36 to R38. It suggests that users rely more on mutually
trusted friends in forming new links in social networks.

The last observation is about LF-rules containing multi-
ple triads. R32 and R33 represent cases in which s forms a
link to e based on double occurrences of the same precondi-



Table 6: Results for myGamma.

ID supp(Rn) ŝupp(Rn) conf(Rn) sur(Rn) Rank
R1 0.2437 0.0122 0.3198 20.06 4
R2 0.0336 0.0017 0.0442 19.76 28
R3 0.0345 0.0001 0.1573 345 29
R4 0.0138 0.001 0.0628 13.8 33
R5 0.2891 0.2241 0.4322 1.29 1
R6 0.2838 0.2237 0.431 1.27 2
R7 0.2055 0.1149 0.2752 1.79 5
R8 0.0176 0.0121 0.1207 1.45 32
R10 0.0212 0.0144 0.0339 1.47 30
R11 0.2542 0.1354 0.3915 1.88 3
R12 0.1814 0.0133 0.4715 13.65 10
R13 0.1901 0.0814 0.2577 2.34 8
R14 0.1749 0.0122 0.4547 14.35 11
R15 0.1613 0.01 0.4221 16.13 12
R16 0.1202 0.0108 0.3881 11.17 14
R17 0.1136 0.0094 0.3951 12.03 16
R18 0.1157 0.0106 0.4027 10.88 15
R19 0.1065 0.0097 0.3902 10.98 17
R20 0.095 0.0028 0.4258 33.45 20
R21 0.0983 0.0082 0.3807 12.05 19
R22 0.0997 0.0077 0.4188 12.91 18
R23 0.0902 0.0028 0.4268 32.45 21
R24 0.083 0.0022 0.4202 37.39 22
R25 0.0127 0.0003 0.0381 42.33 36
R27 0.0131 0.0017 0.2182 7.75 35
R28 0.0135 0.0004 0.2119 33.75 34
R29 0.0196 0.0019 0.0513 10.48 31
R30 0.0127 0.0004 0.2082 30.98 37
R31 0.1941 0.1491 0.4328 1.30 6
R32 0.1931 0.1484 0.419 1.30 5
R33 0.1837 0.1566 0.4397 1.17 9
R34 0.1525 0.1104 0.4221 1.38 13
R35 0.0575 0.0013 0.3677 44.57 24
R36 0.057 0.0065 0.3225 8.78 25
R37 0.0548 0.0014 0.3794 39.42 26
R38 0.0448 0.001 0.3645 44.8 27
R37 0.0665 0.0022 0.4697 30.65 23

tion. In both datasets, about two-third of users who support
R5 also support R32, and similar for R6 and R33

4. Almost
half of the users who support R5 also support R34, whose
precondition is a triple occurrence of R5’s. These examples
show that if a user s formed a link to another user based on
a certain triadic effect, then there is a good chance (about
two-third in our datasets) that s also formed a link based on
multiple occurrences of the same triadic effect. Such mul-
tiple occurrences, however, may not raise the confidence or
surprise values of the rules as our empirical results show.

5.3.2 Discussions
Our study provides a form of empirical evidence of so-

cial phenomena in online social networks. Furthermore, it
serves as a macro-level analysis of local structures, to com-
plement micro-level analyses that focus on counting occur-
rences of particular structures. For instance, the study in
[7] reported that the joint endorsement pattern, in which

4This is also true for R7 (three-cycle), but the rule contain-
ing two occurrences of R7’s precondition is uninteresting in
both datasets and is therefore not reported.

Table 7: Rightmost extension in LFR-Miner and gSpan.
Description LFR-Miner gSpan
Runtime (sec.) 28,918.59 49,501.91
# patterns processed 126,508 177,812
# LF-patterns 111,556 111,556

s and e received a link from a common node, is the most
abundant type of triplet in Epinions. Although we have the
same finding based on ego-based occurrences, such a pat-
tern is found to be uninteresting in both of our datasets in
terms of surprise values. Sociology research has suggested
that a user would only require limited information about the
network (users with a geodesic distance of 2) when creating
social ties in practice [14]. The low interestingness of the
joint endorsement pattern in our study may be explained by
the fact that the intermediary in the pattern is unreachable
by s.

A LF-rule’s support reflects its “popularity” in terms of
the proportion of users who adopted that rule in the entire
network. One may observe that LF-rules in general have low
support values, as the highest support recorded, i.e. support
of R5 in myGamma, is only 0.2891. This, together with the
fact that a LF-pattern can have hundreds of thousands of
occurrences in our data, reflect that LF-rules are repeatedly
practiced by a relatively small group of users.

5.4 Evaluation of Pruning Cases
We described in Sect. 3.3 three pruning cases to consider in

rightmost extension. We now evaluate the reduction of com-
putational efforts achieved by the pruning, and more impor-
tantly, the completeness of our result set by cross-checking
the LF-rules produced by LFR-Miner and gSpan. Our focus
is not to study the absolute performance of LFR-Miner or to
compare it with gSpan as noted.

We implemented LFR-Miner in C#, and executed our ex-
periments on a Windows server machine with four 3.16GHz
64-bit processors and 24GB of RAM. To conduct this exper-
iment, we prepared a version of our algorithm in which we
implemented the original rightmost extension in gSpan while
keeping all other parts of the algorithm unchanged. We re-
port results based on the Epinions dataset. We set minS =
0 to obtain the complete set of patterns, and maxV = 4 as
growing 4-node patterns covers all three pruning cases.

Table 7 reports the runtime, total number of patterns pro-
cessed, and the number of LF-patterns produced using right-
most extension in LFR-Miner and in gSpan. Results show
that we achieved about 42% reduction in runtime and pro-
cessed about 29% fewer patterns in total, while producing
the complete set of LF-patterns. We expect the reduction in
computational effort to increase with larger values of maxV .

6. RELATED WORK
Our work is generally related to the rich literature of fre-

quent subgraph mining, as well as link and local structure
analysis in social networks. We could however describe only
some studies that are particularly related to our task due to
space limitation.

Berlingerio et al. [1] proposed the problem of mining graph
evolution rules from a single, undirected graph. Their Graph
Evolution Rule Miner (GERM) considers the temporal order
among edges in rules, and aims to extract rules with arbi-
trary structures. Compared to our work, the main limitation
of GERM is that it cannot handle multiple edge labels.



Other researchers also presented subgraph mining approaches
to extracting small graph patterns in social networks. Sto-
ica and Prieur [15] described a method for enumerating and
counting small induced subgraphs in the neighborhood of in-
dividual nodes. Their work only handles simple undirected
graphs as in GERM, but does not consider temporal in-
formation. Earlier studies by Leskovec et al. adopted a
similar enumerate-and-count approach to information cas-
cades extraction [9, 8]. Their approach, however, suffers
from over-counting of pattern occurrences, resulting in cases
where patterns could have higher frequencies than their sub-
patterns [9]. Our work, in contrast, rigorously defines pat-
tern frequency to guarantee the correctness and complete-
ness of our results.

Some studies aimed to analyze a predefined, limited class
of triadic structures in social networks. For instance, Romero
and Kleinberg [13] focused exclusively on directed closure
(i.e. R6 in Fig. 6(a)). The focal users they studied are
the receivers of links in Twitter. This might be counter-
intuitive in the study of link formation as links in many on-
line social networks, including Twitter, are actively created
by their senders. Leskovec et al. [7] studied contextualized
links (c-links) in social networks. The concepts of c-link and
LF-pattern are similar, but a c-link is confined to exist in
subgraphs with exactly three nodes. Besides, the study in
[7] focused on sign prediction based on the social theories
of status and balance, while we study interesting LF-rules
capturing various dyadic and triadic structures.

7. CONCLUSIONS & FUTURE WORK
We introduce the task of mining interesting LF-rules, each

of which captures a new link being formed from a user to an-
other user as a consequence of existing connections between
them. We formalize the notions of LF-patterns and their
corresponding LF-rules, and propose a frequent subgraph
mining approach to our task. We also apply graph ran-
domization technique to identify interesting LF-rules with
higher-than-expected support for analysis. We conduct an
empirical study on two real-world datasets, and report major
observations made from the interesting LF-rules discovered.

This paper presents LF-rules with multiple edge labels
but unlabeled nodes. Studying LF-rules with node labels,
which can readily be used in LFR-Miner, may uncover inter-
esting structures among nodes possessing various attributes,
such as users’ age groups and nationalities. Extending LFR-
Miner to consider arbitrary precondition structures (as in
[1]) is also possible by revising the pruning made in right-
most extension. Furthermore, we would like to analyze the
computational complexity of LFR-Miner in our future work.

We conclude by highlighting extensions of this work. Know-
ing that some rules are particularly interesting in some net-
works, and that which users supported which rules at a cer-
tain time point, we are working on link prediction based on
LF-rules. Another interesting extension is to study multi-
graphs that capture multiple relationships between nodes.
For instance, in Epinions where users can rate items and
product reviews, we may analyze how trust and distrust
links are formed as postconditions of interaction patterns.
This remains as a promising extension of our research.
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