95 research outputs found

    Inferring Person-to-person Proximity Using WiFi Signals

    Get PDF
    Today's societies are enveloped in an ever-growing telecommunication infrastructure. This infrastructure offers important opportunities for sensing and recording a multitude of human behaviors. Human mobility patterns are a prominent example of such a behavior which has been studied based on cell phone towers, Bluetooth beacons, and WiFi networks as proxies for location. However, while mobility is an important aspect of human behavior, understanding complex social systems requires studying not only the movement of individuals, but also their interactions. Sensing social interactions on a large scale is a technical challenge and many commonly used approaches---including RFID badges or Bluetooth scanning---offer only limited scalability. Here we show that it is possible, in a scalable and robust way, to accurately infer person-to-person physical proximity from the lists of WiFi access points measured by smartphones carried by the two individuals. Based on a longitudinal dataset of approximately 800 participants with ground-truth interactions collected over a year, we show that our model performs better than the current state-of-the-art. Our results demonstrate the value of WiFi signals in social sensing as well as potential threats to privacy that they imply

    Spatial and Temporal Sentiment Analysis of Twitter data

    Get PDF
    The public have used Twitter world wide for expressing opinions. This study focuses on spatio-temporal variation of georeferenced Tweets’ sentiment polarity, with a view to understanding how opinions evolve on Twitter over space and time and across communities of users. More specifically, the question this study tested is whether sentiment polarity on Twitter exhibits specific time-location patterns. The aim of the study is to investigate the spatial and temporal distribution of georeferenced Twitter sentiment polarity within the area of 1 km buffer around the Curtin Bentley campus boundary in Perth, Western Australia. Tweets posted in campus were assigned into six spatial zones and four time zones. A sentiment analysis was then conducted for each zone using the sentiment analyser tool in the Starlight Visual Information System software. The Feature Manipulation Engine was employed to convert non-spatial files into spatial and temporal feature class. The spatial and temporal distribution of Twitter sentiment polarity patterns over space and time was mapped using Geographic Information Systems (GIS). Some interesting results were identified. For example, the highest percentage of positive Tweets occurred in the social science area, while science and engineering and dormitory areas had the highest percentage of negative postings. The number of negative Tweets increases in the library and science and engineering areas as the end of the semester approaches, reaching a peak around an exam period, while the percentage of negative Tweets drops at the end of the semester in the entertainment and sport and dormitory area. This study will provide some insights into understanding students and staff ’s sentiment variation on Twitter, which could be useful for university teaching and learning management

    European Handbook of Crowdsourced Geographic Information

    Get PDF
    This book focuses on the study of the remarkable new source of geographic information that has become available in the form of user-generated content accessible over the Internet through mobile and Web applications. The exploitation, integration and application of these sources, termed volunteered geographic information (VGI) or crowdsourced geographic information (CGI), offer scientists an unprecedented opportunity to conduct research on a variety of topics at multiple scales and for diversified objectives. The Handbook is organized in five parts, addressing the fundamental questions: What motivates citizens to provide such information in the public domain, and what factors govern/predict its validity?What methods might be used to validate such information? Can VGI be framed within the larger domain of sensor networks, in which inert and static sensors are replaced or combined by intelligent and mobile humans equipped with sensing devices? What limitations are imposed on VGI by differential access to broadband Internet, mobile phones, and other communication technologies, and by concerns over privacy? How do VGI and crowdsourcing enable innovation applications to benefit human society? Chapters examine how crowdsourcing techniques and methods, and the VGI phenomenon, have motivated a multidisciplinary research community to identify both fields of applications and quality criteria depending on the use of VGI. Besides harvesting tools and storage of these data, research has paid remarkable attention to these information resources, in an age when information and participation is one of the most important drivers of development. The collection opens questions and points to new research directions in addition to the findings that each of the authors demonstrates. Despite rapid progress in VGI research, this Handbook also shows that there are technical, social, political and methodological challenges that require further studies and research

    Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project

    Get PDF
    Measuring the distribution and dynamics of the population at granular level both spatially and temporally is crucial for understanding the structure and function of the built environment. In this era of big data, there have been numerous attempts to undertake this using the preponderance of unstructured, passive and incidental digital data which are generated from day-to-day human activities. In attempts to collect, analyse and link these widely available datasets at a massive scale, it is easy to put the privacy of the study subjects at risk. This research looks at one such data source - Wi-Fi probe requests generated by mobile devices - in detail, and processes it into granular, long-term information on number of people on the retail high streets of the United Kingdom (UK). Though this is not the first study to use this data source, the thesis specifically targets and tackles the uncertainties introduced in recent years by the implementation of features designed to protect the privacy of the users of Wi-Fi enabled mobile devices. This research starts with the design and implementation of multiple experiments to examine Wi-Fi probe requests in detail, then later describes the development of a data collection methodology to collect multiple sets of probe requests at locations across London. The thesis also details the uses of these datasets, along with the massive dataset generated by the ‘Smart Street Sensor’ project, to devise novel data cleaning and processing methodologies which result in the generation of a high quality dataset which describes the volume of people on UK retail high streets with a granularity of 5 minute intervals since August 2015 across 1000 locations (approx.) in 115 towns. This thesis also describes the compilation of a bespoke ‘Medium data toolkit’ for processing Wi-Fi probe requests (or indeed any other data with a similar size and complexity). Finally, the thesis demonstrates the value and possible applications of such footfall information through a series of case studies. By successfully avoiding the use of any personally identifiable information, the research undertaken for this thesis also demonstrates that it is feasible to prioritise the privacy of users while still deriving detailed and meaningful insights from the data generated by the users
    • …
    corecore