13 research outputs found

    An Intelligent System for Mining and Maintaining Correlation Patterns among Appliances in Smart Home

    Get PDF
    [[abstract]]Recently, due to the great advent of sensor technology, residents can collect the usage data of appliances in a house easily. However, with data progressively generating, it is still a challenge to visualize how these appliances are used. Thus, a mining and maintaining system is needed to incrementally discover appliance usage patterns. Most previous studies on usage pattern discovery are mainly focused on analyzing the patterns of single appliance and do not consider the incremental maintenance of mining results. In this paper, a novel system, namely, Dynamic Correlation Mining System (DCMS) is developed to capture and maintain the correlation patterns among appliances incrementally. The experimental results indicate that proposed system is efficient in execution time and possesses scalability. Furthermore, we apply DCMS on a real-world dataset to show the practicability.[[conferencetype]]國內[[conferencedate]]20140826~20140827[[booktype]]紙本[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tainan, Taiwa

    Mining Correlation Patterns among Appliances in Smart Home Environment

    Get PDF
    [[abstract]]Since the great advent of sensor technology, the usage data of appliances in a house can be logged and collected easily today. However, it is a challenge for the residents to visualize how these appliances are used. Thus, mining algorithms are much needed to discover appliance usage patterns. Most previous studies on usage pattern discovery are mainly focused on analyzing the patterns of single appliance rather than mining the usage correlation among appliances. In this paper, a novel algorithm, namely, Correlation Pattern Miner (CoPMiner), is developed to capture the usage patterns and correlations among appliances probabilistically. With several new optimization techniques, CoPMiner can reduce the search space effectively and efficiently. Furthermore, the proposed algorithm is applied on a real-world dataset to show the practicability of correlation pattern mining.[[incitationindex]]EI[[conferencetype]]國際[[conferencedate]]20140513~20140516[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Tainan, Taiwa

    Incrementally Mining Temporal Patterns in Interval-based Databases

    Get PDF
    [[abstract]]In several applications, sequence databases generally update incrementally with time. Obviously, it is impractical and inefficient to re-mine sequential patterns from scratch every time a number of new sequences are added into the database. Some recent studies have focused on mining sequential patterns in an incremental manner; however, most of them only considered patterns extracted from time point-based data. In this paper, we proposed an efficient algorithm, Inc_TPMiner, to incrementally mine sequential patterns from interval-based data. We also employ some optimization techniques to reduce the search space effectively. The experimental results indicate that Inc_TPMiner is efficient in execution time and possesses scalability. Finally, we show the practicability of incremental mining of interval-based sequential patterns on real datasets.[[notice]]補正完畢[[conferencetype]]國際[[conferencedate]]20141030~20141101[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]Shanhai, Chin

    Monitoring land use: Capturing Change through an information fusion approach

    Get PDF
    Social and environmental factors affecting land use change are among the most significant drivers transforming the planet. Such change has been and continues to be monitored through the use of satellite imagery, aerial photography, and technical reports. While these monitoring tools are useful in observing the empirical results of land use change and issues of sustainability, the data they provide are often not useful in capturing the fundamental policies, social drivers, and unseen factors that shape how landscapes are transformed. In addition, some monitoring approaches can be prohibitively expensive and too slow in providing useful data at a timescale in which data are needed. This paper argues that techniques using information fusion and conducting assessments of continuous data feeds can be beneficial for monitoring primary social and ecological mechanisms affecting how geographic settings are changed over different time scales. We present a computational approach that couples open source tools in order to conduct an analysis of text data, helping to determine relevant events and trends. To demonstrate the approach, we discuss a case study that integrates varied newspapers from two Midwest states in the United States, Iowa and Nebraska, showing how potentially significant issues and events can be captured. Although the approach we present is useful for monitoring current web-based data streams, we argue that such a method should ultimately be integrated closely with less managed systems and modeling techniques to enhance not only land use monitoring but also to better forecast and understand landscape change. © 2010 by the authors

    Propositional and Activity Monitoring Using Qualitative Spatial Reasoning

    Get PDF
    SM thesisCommunication is the key to effective teamwork regardless of whether the team members are humans or machines. Much of the communication that makes human teams so effective is non-verbal; they are able to recognize the actions that the other team members are performing and take their own actions in order to assist. A robotic team member should be able to make the same inferences, observing the state of the environment and inferring what actions are being taken. In this thesis I introduce a novel approach to the combined problem of activity recognition and propositional monitoring. This approach breaks down the problem into smaller sub-tasks. First, the raw sensor input is parsed into simple, easy to understand primitive semantic relationships known as qualitative spatial relations (QSRs). These primitives are then combined to estimate the state of the world in the same language used by most planners, planning domain definition language (PDDL) propositions. Both the primitives and propositions are combined to infer the status of the actions that the human is taking. I describe an algorithm for solving each of these smaller problems and describe the modeling process for a variety of tasks from an abstracted electronic component assembly (ECA) scenario. I implemented this scenario on a robotic testbed and collected data of a human performing the example actions

    Fast implementation of pattern mining algorithms with time stamp uncertainties and temporal constraints

    Get PDF
    Pattern mining is a powerful tool for analysing big datasets. Temporal datasets include time as an additional parameter. This leads to complexity in algorithmic formulation, and it can be challenging to process such data quickly and efficiently. In addition, errors or uncertainty can exist in the timestamps of data, for example in manually recorded health data. Sometimes we wish to find patterns only within a certain temporal range. In some cases real-time processing and decision-making may be desirable. All these issues increase algorithmic complexity, processing times and storage requirements. In addition, it may not be possible to store or process confidential data on public clusters or the cloud that can be accessed by many people. Hence it is desirable to optimise algorithms for standalone systems. In this paper we present an integrated approach which can be used to write efficient codes for pattern mining problems. The approach includes: (1) cleaning datasets with removal of infrequent events, (2) presenting a new scheme for time-series data storage, (3) exploiting the presence of prior information about a dataset when available, (4) utilising vectorisation and multicore parallelisation. We present two new algorithms, FARPAM (FAst Robust PAttern Mining) and FARPAMp (FARPAM with prior information about prior uncertainty, allowing faster searching). The algorithms are applicable to a wide range of temporal datasets. They implement a new formulation of the pattern searching function which reproduces and extends existing algorithms (such as SPAM and RobustSPAM), and allows for significantly faster calculation. The algorithms also include an option of temporal restrictions in patterns, which is available neither in SPAM nor in RobustSPAM. The searching algorithm is designed to be flexible for further possible extensions. The algorithms are coded in C++, and are highly optimised and parallelised for a modern standalone multicore workstation, thus avoiding security issues connected with transfers of confidential data onto clusters. FARPAM has been successfully tested on a publicly available weather dataset and on a confidential adult social care dataset, reproducing results obtained by previous algorithms in both cases. It has been profiled against the widely used SPAM algorithm (for sequential pattern mining) and RobustSPAM (developed for datasets with errors in time points). The algorithm outperforms SPAM by up to 20 times and RobustSPAM by up to 6000 times. In both cases the new algorithm has better scalability

    Data mining and classification for traffic systems using genetic network programming

    Get PDF
    制度:新 ; 報告番号:甲3271号 ; 学位の種類:博士(工学) ; 授与年月日:2011/3/15 ; 早大学位記番号:新557

    Mining Predictive Patterns and Extension to Multivariate Temporal Data

    Get PDF
    An important goal of knowledge discovery is the search for patterns in the data that can help explaining its underlying structure. To be practically useful, the discovered patterns should be novel (unexpected) and easy to understand by humans. In this thesis, we study the problem of mining patterns (defining subpopulations of data instances) that are important for predicting and explaining a specific outcome variable. An example is the task of identifying groups of patients that respond better to a certain treatment than the rest of the patients. We propose and present efficient methods for mining predictive patterns for both atemporal and temporal (time series) data. Our first method relies on frequent pattern mining to explore the search space. It applies a novel evaluation technique for extracting a small set of frequent patterns that are highly predictive and have low redundancy. We show the benefits of this method on several synthetic and public datasets. Our temporal pattern mining method works on complex multivariate temporal data, such as electronic health records, for the event detection task. It first converts time series into time-interval sequences of temporal abstractions and then mines temporal patterns backwards in time, starting from patterns related to the most recent observations. We show the benefits of our temporal pattern mining method on two real-world clinical tasks
    corecore