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MINING PREDICTIVE PATTERNS AND EXTENSION TO MULTIVARIATE
TEMPORAL DATA

Iyad Batal, PhD

University of Pittsburgh, 2012

An important goal of knowledge discovery is the search for patterns in the data that can
help explaining its underlying structure. To be practically useful, the discovered patterns
should be novel (unexpected) and easy to understand by humans. In this thesis, we study
the problem of mining patterns (defining subpopulations of data instances) that are impor-
tant for predicting and explaining a specific outcome variable. An example is the task of
identifying groups of patients that respond better to a certain treatment than the rest of the
patients.

We propose and present efficient methods for mining predictive patterns for both atem-
poral and temporal (time series) data. Our first method relies on frequent pattern mining
to explore the search space. It applies a novel evaluation technique for extracting a small
set of frequent patterns that are highly predictive and have low redundancy. We show the
benefits of this method on several synthetic and public datasets.

Our temporal pattern mining method works on complex multivariate temporal data,
such as electronic health records, for the event detection task. It first converts time series
into time-interval sequences of temporal abstractions and then mines temporal patterns
backwards in time, starting from patterns related to the most recent observations. We show

the benefits of our temporal pattern mining method on two real-world clinical tasks.
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1.0 INTRODUCTION

The large amounts of data collected today provide us with an opportunity to better under-
stand the behavior and structure of many natural and man-made systems. However, the
understanding of these systems may not be possible without automated tools that enable
us to explore, explain and summarize the data in a concise and easy to understand form.
Pattern mining is the field of research that attempts to discover patterns that describe im-
portant structures and regularities in data and present them in an understandable form for

further use.

1.1 SUPERVISED PATTERN MINING

In this thesis, we study the application of pattern mining in the supervised setting, where we
have a specific class variable (the outcome) and we want to find patterns (defining subpop-
ulations of data instances) that are important for explaining and predicting this variable.
Examples of such patterns are: “subpopulation of patients who smoke and have a positive
family history are at a significantly higher risk for coronary heart disease than the rest of
the patients”, or “the unemployment rate for young men who live in rural areas is above the
national average”.

Finding predictive patterns is practically important for discovering “knowledge nuggets”
from data. For example, finding a pattern that clearly and concisely defines a subpopula-
tion of patients that respond better (or worse) to a certain treatment than the rest of the
patients can speed up the validation process of this finding and its future utilization in

patient-management. Finding predictive patterns is also important for the classification



task because the mined patterns can be very useful to predict the class labels for future

instances.

In order to develop an algorithm for mining predictive patterns from data, we need to
define a search algorithm for exploring the space of potential patterns and a pattern selection
algorithm for choosing the “most important” patterns.

To search for predictive patterns, we use frequent pattern mining, which examines all
patterns that occur frequently in the data. The key advantage of frequent pattern mining
is that it performs a more complete search than other greedy search approaches, such as
sequential covering [Cohen, 1995, Cohen and Singer, 1999, Yin and Han, 2003] and decision
tree [Quinlan, 1993]. Consequently, it is less likely to miss important patterns. However,
this advantage comes with the following disadvantages: 1) frequent pattern mining often
produces a very large number of patterns, 2) many patterns are not important for predicting
the class labels and 3) many patterns are redundant because they are only small variations
of each other. These disadvantages greatly hinder the discovery process and the utilization
of the results. Therefore, it is crucial to devise an effective method for selecting a small set

of predictive and non-redundant patterns from a large pool of frequent patterns.

Most existing approaches for selecting predictive patterns rely on a quality measure
(cf [Geng and Hamilton, 2006]) to score each pattern individually and then select the top
scoring patterns [Nijssen et al., 2009, Bay and Pazzani, 2001, Li et al., 2001b, Brin et al.,
1997a, Morishita and Sese, 2000]. In this thesis, we argue that this approach is ineffective
and can lead to many spurious patterns. To overcome this shortcoming, we propose the
Minimal Predictive Patterns (MPP) framework. This framework applies Bayesian statistical
inference to evaluate the quality of the patterns. In addition, it considers the relations
between patterns in order to assure that every pattern in the result offers a significant
predictive advantage over all of its generalizations (simplifications).

We present an efficient algorithm for mining MPPs. As opposed to the commonly used
approach, which first mines all frequent patterns and then selects the predictive patterns
[Exarchos et al., 2008, Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrac,
2006, Deshpande et al., 2005, Li et al., 2001b], our algorithm integrates pattern selection

with frequent pattern mining. This allows us to perform several strategies to prune the



search space and achieve a better efficiency.

1.2 TEMPORAL PATTERN MINING

Advances in data collection and data storage technologies have led to the emergence of com-
plex multivariate temporal datasets, where data instances are traces of complex behaviors
characterized by multiple time series. Such data appear in a wide variety of domains, such
as health care [Hauskrecht et al., 2010, Sacchi et al., 2007, Ho et al., 2003], sensor mea-
surements [Jain et al., 2004], intrusion detection [Lee et al., 2000], motion capture [Li et al.,
2009], environmental monitoring [Papadimitriou et al., 2005] and many more. Designing
algorithms capable of mining useful patterns in such complex data is one of the most chal-
lenging topics of data mining research.

In the second part of the thesis, we study techniques for mining multivariate tempo-
ral data. This task is more challenging than mining atemporal data because defining and
representing temporal patterns that can describe such data is not an obvious design choice.
Our approach relies on temporal abstractions [Shahar, 1997] to convert time series variables
into time-interval sequences of abstract states and temporal logic [Allen, 1984] to represent
temporal interactions among multiple states. This representation allows us to define and
construct complex temporal patterns (time-interval patterns) in a systematic way. For ex-
ample, in the clinical domain, we can express a concept like “the administration of heparin
precedes a decreasing trend in platelet counts”.

Our research work focuses primarily on mining predictive temporal patterns for event
detection and its application to Electronic Health Records (EHR) data. For EHR data, each
record (data instance) consists of multiple time series of clinical variables collected for a
specific patient, such as laboratory test results and medication orders. The data also pro-
vide temporal information about the incidence of several adverse medical events, such as
diseases or drug toxicities. Our objective is to mine patterns that can accurately predict
adverse medical events and apply them to monitor future patients. This task is extremely

used for intelligent patient monitoring, outcome prediction and decision support.



Mining predictive patterns in abstract time-interval data is very challenging mainly
because the search space that the algorithm has to explore is extremely large and complex.
All existing methods in this area have been applied in an unsupervised setting for mining
temporal association rules [Moskovitch and Shahar, 2009, Wu and Chen, 2007, Winarko and
Roddick, 2007, Papapetrou et al., 2005, Moerchen, 2006b, Hoppner, 2003]. These methods
are known to have a high computational cost and they do not scale up to large data.

In contrast to the existing methods, our work applies temporal pattern mining in the
supervised setting to find patterns that are important for the event detection task. To ef-
ficiently mine such patterns, we propose the Recent Temporal Patterns (RTP) framework.
This framework focuses the mining on temporal patterns that are related to most recent
temporal behavior of the time series instances, which we argue are more predictive for event
detection!. We present an efficient algorithm that mines time-interval patterns backward
in time, starting from patterns related to the most recent observations. Finally, we extend
the minimal predictive patterns framework to the temporal domain for mining predictive

and non-spurious RTPs.

1.3 MAIN CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

* Supervised Pattern Mining:

— We propose the minimal predictive patterns framework for mining predictive and

non-spurious patterns.

— We show that our framework is able to explain and cover the data using fewer pat-

terns than existing methods, which is beneficial for knowledge discovery.

— We show that our mining algorithm improves the efficiency compared to standard

frequent pattern mining methods.

In the clinical domain, the most recent clinical measurements of a patient are usually more informative
about his health state than distant measurements



¢ Temporal Pattern Mining:

— We propose the recent temporal patterns framework to mine predictive patterns for

event detection in multivariate temporal data.

— We show that our framework is able to learn accurate event detection classifiers
for real-world clinical tasks, which is a key step for developing intelligent clinical

monitoring systems.

— We show that our mining algorithm scales up much better than the existing tempo-

ral pattern mining methods.

— We present the minimal predictive recent temporal patterns framework, which ex-

tends the idea of minimal predictive patterns to the temporal domain.

1.4 OUTLINE OF THE THESIS

This thesis is organized as follows. Chapter 2 outlines the related research in frequent
pattern mining. Chapter 3 presents our approach for mining minimal predictive patterns.
It also presents our experimental evaluations on several synthetic and benchmark datasets.
Chapter 4 outlines the related research in temporal data mining. Chapter 5 presents our
approach for mining predictive patterns in multivariate temporal data. It also presents
our experimental evaluations on a synthetic dataset and on two real-world EHR datasets.

Finally, Chapter 6 concludes the thesis.

Parts of this dissertation and closely related work were published in [Batal et al., 2012b,
Batal et al., 2012a, Batal et al., 2012c, Batal et al., 2011, Batal and Hauskrecht, 2010b,
Batal and Hauskrecht, 2010a, Batal et al., 2009, Batal and Hauskrecht, 2009]



2.0 FREQUENT PATTERN MINING

Frequent patterns are simply patterns that appear frequently in a dataset. These patterns

can take a variety of forms such as:

1. Itemset patterns: Represent set of items [Agrawal et al., 1993, Yan et al., 2005, Cheng
et al., 2007, Batal and Hauskrecht, 2010b, Mampaey et al., 2011].

2. Sequential patterns: Represent temporal order among items [Srikant and Agrawal,

1996, Zaki, 2001, Pei et al., 2001, Wang and Han, 2004].

3. Time interval patterns: Represent temporal relations among states with time dura-
tions [Hoppner, 2003, Papapetrou et al., 2005, Winarko and Roddick, 2007, Moerchen,
2006a, Batal et al., 2009, Moerchen and Fradkin, 2010, Batal et al., 2011].

4. Graph patterns: Represent structured and semi-structured data such as chemical com-
pounds [Kuramochi and Karypis, 2001, Vanetik et al., 2002, Yan and Han, 2002, Desh-
pande et al., 2005].

Frequent pattern mining plays an essential role for discovering interesting regularities
that hold in data. Moreover, it has been extensively used to support other data mining tasks,
such as classification [Wang and Karypis, 2005, Deshpande et al., 2005, Cheng et al., 2007,
Batal and Hauskrecht, 2010b, Batal et al., 2011] and clustering [Agrawal et al., 1998, Beil
et al., 2002].

Frequent pattern mining was first introduced by [Agrawal et al., 1993] to mine associ-
ation rules for market basket data. Since then, abundant literature has been dedicated to

this research and tremendous progress has been made.



In this chapter, we attempt to review the most prominent research on frequent pat-
tern mining and focus mainly on mining itemset patterns'. Incorporating the temporal
dimension in pattern mining is deferred to chapters 4 and 5.

The rest of this chapter is organized as follows. Section 2.1 provides some definitions
that will be used throughout the chapter. Section 2.2 describes the most common frequent
pattern mining algorithms. Section 2.3 reviews methods that attempt to reduce the number
of frequent patterns (compress the results). Section 2.4 reviews methods that use patterns
for supervised learning, where the objective is to mine patterns that predict well the class

labels. Finally, Section 2.5 summarizes the chapter.

2.1 DEFINITIONS

Frequent pattern mining was first introduced by [Agrawal et al., 1993] for mining market
basket data that are in transactional form. The goal was to analyze customer buying
habits by finding associations between items that customers frequently buy together. For
example, if a customer buys cereal, he is also likely to buy milk on the same trip to the
supermarket. In this example, cereal and milk are called items and the customer’s trip to
the supermarket is called a transaction.

Formally, let ¥ = I1,19,...,I,, denotes the set of all items, which is also called the al-
phabet. An itemset pattern is a conjunction of items: P =1y, A...AI,, where [, €. Ifa
pattern contains % items, we call it a k-pattern (an item is a 1-pattern). We say that pattern
P is a subpattern of pattern P’ (P’ is a superpattern of P), denoted as P c P/, if every
item in P is contained in P’. The support of pattern P in database D, denoted as sup(P,D),
is the number of instances in D that contain P. Given a user specified minimum support

threshold o, we say that P is frequent pattern if sup(P,D)=o0.

Example 1. Consider the transaction data in Table 1, where the alphabet of items is X =

{A,B,C,D,E} and there are 5 transactions T1 to Ts (each represents a customer visit to the

I'Note that many of the techniques described in this chapter for itemset patterns are also applicable to more
complex types of patterns.



supermarket). We can see that pattern P = A AC appears in transactions T1, To and Ty,
hence the support of P is 3. If we set the minimum support o = 2, then the frequent patterns

for this example are: {A,C,D,E,ANC,A AD}.

Transaction | List of items
Ty A,C,D
Ty A,B,C
Ts A,D,E
Ty AC
T5 E

Table 1: An example of transaction data.

The original pattern mining framework was proposed to mine transaction data. How-
ever, the same concepts can be applied to relational attribute-value data, where each in-

stance is described by a fixed number of attributes such as the data in Table 2.

Age Education | Marital Status Income
Young (< 30) Bachelor Single Low (< 50K)
Middle age (30-60) | HS-grad Married Low (< 50K)
Middle age (30-60) | Bachelor Married Medium (50K-100K)
Senior (> 60) PhD Married High (> 100K)

Table 2: An example of relational attribute-value data.

Attribute-value data can be converted into an equivalent transaction data if the data
is discrete, which means the data contain only categorical attributes. In this case, we map
each attribute-value pair to a distinct item. When the data contain numerical (continuous)
attributes, these attributes should be discretized [Yang et al., 2005]. For example, the age
attribute in Table 2 has been converted into three discrete values: Young, Middle age and

Senior.



Table 3 shows the data in Table 2 in transaction format. Note that converting an
attribute-value data into a transaction data ensures that all transactions have the same
number of items (unless the original data contain missing values). After this transforma-

tion, we can apply pattern mining algorithms on the equivalent transaction data.

Transaction | List of items
T Age=Young, Education=Bachelor, Marital Status=Single, Income=Low
Ty Age=Middle age, Education=HS-grad, Marital Status=Married, Income=Low
Ts Age=Middle age, Education=Bachelor, Marital Status=Married, Income=Medium
Ty Age=Senior, Education=PhD, Marital Status=Married, Income=High

Table 3: The data in Table 2 in transaction format.

2.2 MINING ALGORITHMS

The task of pattern mining is challenging because the search space is very large. For in-
stance, the search space of all possible itemset patterns for transaction data is exponential
in the number of items. So if X is the alphabet of items, there are 2/*! possible itemsets (all
possible subsets of items). This search space can be represented by a lattice structure with
the empty set at the bottom and the set containing all items at the top. Figure 1 shows the
itemset lattice for alphabet ~ = {A,B,C}.

The search space of itemset patterns for attribute-value data is exponential in the num-
ber of attributes. So if there are d attributes and each attribute takes V possible values,
there are (V + 1)¢ valid itemsets. Note that the search space for more complex patterns,
such as sequential patterns, time interval patterns or graph patterns, is even larger than
the search space for itemsets.

Clearly, the naive approach to generate and count all possible patterns is infeasible.

Frequent pattern mining algorithms make use of the minimum support threshold to restrict



the search space to a hopefully reasonable subspace that can be explored more efficiently.
In the following, we describe the three main frequent pattern mining approaches: Apriori,

pattern growth and vertical format.

Figure 1: The itemset lattice for alphabet ~ = {A,B,C}.

2.2.1 The Apriori Approach

[Agrawal and Srikant, 1994] observed an interesting downward closure property among
frequent patterns: A pattern can be frequent only if all of its subpatterns are frequent. This
property is called the Apriori property and it belongs to a category of properties called
anti-monotone, which means that if a pattern fail to pass a test, all of its superpatterns will
fail the same test as well.

The Apriori algorithm employs an iterative level-wise search and uses the Apriori prop-
erty to prune the space. It first finds all frequent items (I-patterns) by scanning the database
and keeping only the items that satisfy the minimum support. Then, it performs the follow-

ing two phases to obtain the frequent k-patterns using the frequent (k-1)-patterns:

1. Candidate generation: Generate candidate k-patterns using the frequent (k-1)-patterns.

Remove any candidate that contains an infrequent (k-1)-subpattern because it is guar-
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anteed not to be frequent according to the Apriori property.
2. Counting: Count the generated candidates and remove the ones that do not satisfy the

minimum support.
This process repeats until no more frequent patterns can be found.

Example 2. This example illustrates the candidate generation phase for itemset mining.
Assume the algorithm found the following frequent 2-patterns: Fo ={A AN B,A A C, B A
C, B A D}. One way to generate candidate k-patterns for itemset mining is by joining two
(k-1)-patterns if they share the same k —2 prefix [Agrawal and Srikant, 1994]. Following this
strategy, we join A N B with A A C to generate candidate A N B A C. Similarly, we join
B A C with B A D to generate candidate B A C N D. However, B A C A D is guaranteed
not to be frequent because it contains an infrequent 2-subpattern: C N D ¢ Fo. Therefore,

A AN B A Cis the only candidate that survives the pruning.

Since the Apriori algorithm was proposed, there have been extensive research on im-
proving its efficiency when applied on very large data. These techniques include partition-
ing [Savasere et al., 1995], sampling [Toivonen, 1996], dynamic counting [Brin et al., 1997b]
and distributed mining [Agrawal and Shafer, 1996]. Besides, Apriori has been extended to
mine more complex patterns such as sequential patterns [Srikant and Agrawal, 1996, Man-
nila et al., 1997], graph patterns [Kuramochi and Karypis, 2001, Vanetik et al., 2002] and
time interval patterns [Hoppner, 2003, Moskovitch and Shahar, 2009, Batal et al., 2009].

2.2.2 The Pattern Growth Approach

Although the Apriori algorithm uses the Apriori property to reduce the number of candi-
dates, it can still suffer from the following two nontrivial costs: 1) generating a large number
of candidates, and 2) repeatedly scanning the database to count the candidates.

[Han et al., 2000] devised the Frequent Pattern growth (FP-growth) algorithm,
which adopts a divide and conquer strategy and mines the complete set of frequent itemsets
without candidate generation. The algorithm works by first building a compressed repre-
sentation of the database called the Frequent Pattern tree (FP-tree). The problem of mining

the database is transformed to that of mining the FP-tree.
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Similar to Apriori, the algorithm starts by finding all frequent items. For each frequent

item, the algorithm performs the following steps:

1. Extract the item conditional database.
2. Build the item conditional FP-tree.

3. Recursively mine the conditional FP-tree.

Pattern growth is achieved by the concatenation of the suffix pattern with the frequent
patterns generated from the conditional FP-tree.

[Han et al., 2000] showed that FP-growth is usually more efficient than Apriori. FP-
growth has been extended to mine sequential patterns [Pei et al., 2001, Pei et al., 2007] and
graph patterns [Yan and Han, 2002].

2.2.3 The Vertical Data Approach

Both Apriori and FP-growth mine frequent patterns from data represented in horizontal
format, where every data instance represents a transaction and is associated with a list of
items, such as the data in Table 1. Alternatively, the mining can be performed when the data
is presented in vertical format, where every data instance is an item and is associated with
a list of transactions, which is often called the id-list. Table 4 shows the vertical format of
the transaction data in Table 1. For example, the id-list of item C is {T'1,T9,T4}. Clearly, the

support of an item is simply the length of its id-list.

Item | List of transactions
A T1,T2,T3,Ty
B Ty
C T1,T2,Ty
D T1,Ts
E Ts,Ts

Table 4: The vertical data format of transaction data of Table 1.
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[Zaki, 2000] proposed the ECLAT algorithm for mining frequent patterns using the ver-
tical data format. Similar to Apriori, candidate k-patterns are generated from the frequent
(k-1)-patterns using the Apriori property. However, instead of scanning the database to
count every candidate, the algorithm computes the candidate’s id-list by simply intersect-
ing the id-lists of its (k-1)-patterns. For example, the id-list of pattern A A E in Table 4 is
{T\,T9,T3,T4} N {T3,T5} ={T3}, hence the support of AAE is 1. As we can see, the merit
of this approach is that it does not have to scan the data to calculate the support of the
candidates.

The vertical format approach has been extended to mine sequential patterns [Zaki, 2001]

and time interval patterns [Batal et al., 2011].

2.3 CONCISE REPRESENTATIONS

One of the most serious disadvantages of frequent pattern mining is that it often produces
a very large number of patterns. This greatly hinders the knowledge discovery process be-
cause the result is often overwhelming the user. Therefore, it is crucial to develop methods
that can summarize (compress) the result in order to retain only the most “interesting” pat-
terns. This section reviews some of the common techniques that aim to reduce the number

of frequent patterns.

2.3.1 Lossless Compression

Lossless compression ensures that the result contains all information about the entire
set of frequent patterns. A popular lossless representation is the closed frequent patterns
[Pasquier et al., 1999], where a pattern P is a closed frequent pattern in dataset D if P is
frequent in D and there is no proper superpattern P’ such that P’ has the same support as
P. Several efficient algorithms have been proposed to mine frequent closed patterns [Zaki

and Hsiao, 2002, Wang et al., 2003al.

Another lossless representation is the non-derivable frequent patterns [Calders and Goethals,
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2002]. The idea is to derive a lower bound and an upper bound on the support of a pattern
using the support of its subpatterns. When these bounds are equal, the pattern is called
derivable. Therefore, we can mine only non-derivable patterns because they are sufficient
to compute the support information for any frequent pattern. This idea was later extended

to mine non-derivable association rules [Goethals et al., 2005].

2.3.2 Lossy Compression

Lossy compression usually provides greater compression rates than lossless compression,
but looses some information about the frequent patterns. One of the earliest lossy represen-
tations is the maximal frequent patterns [Bayardo, 1998] [Yang, 2004], where a pattern P
is a maximal frequent pattern in dataset D if P is frequent in D and there exists no proper
superpattern of P that is also frequent in D. Note that by keeping only maximal frequent
patterns, we can know the set of all frequent patterns. However, we loose the information
about their exact support?.

Another branch of lossless compression takes a summarization approach, where the
aim is to derive k representatives that approximate well the entire set of frequent patterns.
[Yan et al., 2005] proposed the profile-based approach to summarize a set of frequent pat-
terns using representatives that cover most of the frequent patterns and are able to accu-
rately approximate their support. These profiles are extracted using a generative model.
The Clustering-based approach summarizes the frequent patterns by clustering them and
selecting one representative pattern for each cluster. [Xin et al., 2005] defined the distance
between two patterns in terms of the transactions they cover (two patterns are considered
similar if they cover similar transactions). The patterns are clustered with a tightness
bound § to produce what they called §-clusters, which ensures that the distance between
the cluster representative and any pattern in the cluster is bounded by 6.

While the previous approaches [Yan et al., 2005, Xin et al., 2005] aim to find a set of
patterns that summarizes well all frequent patterns, another view of this problem is to find

a set of patterns that summarizes well the dataset. [Siebes et al., 2006] proposed a

2If we know that P is a maximal frequent pattern and we know its support, we cannot compute the exact
support of its subpatterns.
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formulation with the Minimum Description Length (MDL) principle. The objective is to
find the set of frequent patterns that are able to compress the dataset best in terms of MDL.
The authors showed that finding the optimal set is computationally intractable (an NP-
hard problem) and proposed several heuristics to obtain an approximate solution. Recently,
[Mampaey et al., 2011] proposed summarizing the data with a collection of patterns using
a probabilistic maximum entropy model. Their method mines patterns iteratively by first
finding the most interesting pattern, then updating the model, and then finding the most

interesting pattern with respect to the updated model and so on.

2.3.3 Constraint-based Compression

A particular user may be only interested in a small subset of frequent patterns. Constraint-
based mining requires the user to provide constraints on the patterns he would like to
retrieve and tries to use these constraints to speed up the mining. Most of user constraints

can be classified using the following four categories [Pei and Han, 2000]:

1. Anti-monotone: A constraint C, is anti-monotone if and only if for any pattern that does
not satisfy C,, none of its superpatterns can satisfy C,. For example, the minimum
support constraint in frequent pattern mining is anti-monotone.

2. Monotone: A constraint C,, is monotone if and only if for any pattern that satisfies C,,,
all of its superpatterns also satisfy C,,.

3. Convertible: A constraint C, is convertible if it can be converted into an anti-monotone
constraint or a monotone constraint by reordering the items in each transaction.

4. Succinct: A constraint Cj is succinct if we can explicitly and precisely enumerate all and

only the patterns that satisfy Cs.

Example 3. Suppose each item in the supermarket has a specific price and we want to impose
constraints on the price of items in the patterns. An example of an anti-monotone constraint is
sum(P.price) < g or min(P.price) = 0. An example of a monotone constraint is sum(P.price) = o
or max(P.price) = a. An example of a convertible constraint is avg(P.price) = o or avg(P.price)

< 0. An example of a succinct constraint is min(P.price) = o or max(P.price) < 0.

These different types of constraints interact differently with the mining algorithm:
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1. Anti-monotone constraints can be pushed deep into the mining and can greatly reduce

the search space.

2. Monotone constraints are checked for a pattern, and once satisfied, they do not have to

be rechecked for its superpatterns.

3. Convertible constraints can be converted into anti-monotone or monotone constraints by
sorting the items in each transaction according to their value in ascending or descending

order [Pei and Han, 2000].

4. Succinct constraints can be pushed into the initial data selection process at the start of

mining.

Constraint-based mining as described above considers what the user wants, i.e., con-
straints, and searches for patterns that satisfy the specified constraints. An alternative
approach is to mine unexpected patterns, which considers what the user knows, i.e.,
knowledge, and searches for patterns that surprise the user with new information. [Wang
et al., 2003b] defined a preference model which captures the notion of unexpectedness.
[Jaroszewicz and Scheffer, 2005] proposed using a Bayesian network to express prior knowl-
edge and defined the interestingness of a pattern to be the difference between its support in

data and its expected support as estimated from the Bayesian network.

2.4 PATTERN MINING FOR SUPERVISED LEARNING

So far, we have discussed the main frequent pattern mining algorithms and described sev-
eral methods for reducing the number of patterns. In this section, we turn our attention to
methods that apply pattern mining in the supervised setting, where we have labeled train-
ing data of the form D ={x;,y;}7 ; (y; is the class label associated with instance x;) and we
want to mine patterns that can predict well the class labels for future instances.

In the supervised setting, we are only interested in rules that have the class label in
their consequent. Hence, a rule is defined as P =y, where P (the condition) is a pattern and

y is a class label. An example of a rule is sky=cloudy AN humidity=high = play-tennis=No.
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In the following, we review several methods for supervised pattern mining (classification
rule mining). We start by discussing methods from artificial intelligence and machine learn-
ing that try to achieve a similar goal. In particular, we discuss concept learning, decision
tree induction and sequential covering. After that, we describe methods that use frequent

pattern mining and contrast them to the other approaches.

2.4.1 Concept Learning

Concept learning is one of the most classical problems in artificial intelligence. The setting

n
=1’

is that the learner is presented with training data of the form D = {x;, c(x;)} where c(x;)
is the concept associated with instance x;. Instances for which c(x;) =1 are called positive
examples (members of the target concept) and instances for which c(x;)=0 are called nega-
tive examples (nonmembers of the target concept). Let A denote a Boolean-valued function
defined over the input space (4 is called a hypothesis) and let H denote the space of all pos-
sible hypotheses the learner may consider. The problem faced by the learner is to find h € H
such that A(x)=c(x) for all x.

In concept learning, the hypothesis space H is determined by the human designer choice
of hypothesis representation. Most commonly, H is restricted to include only conjunction of
attribute values. For example, assume the data contain four attributes: sky, temp, hu-
midity and wind. Hypothesis h =< sky = ?,temp = hot,humidity = high,wind = ¢ > means
that the target concept is true when the value of temp is hot and the value of humidity is
high (regardless of the values of sky and wind). Note that if we use conjunctive hypoth-
esis space, the definition of a hypothesis becomes equivalent to the definition of an item-
set pattern (see Section 2.1). For example, hypothesis 4 is exactly the same as pattern
temp = cold N humidity = high. Hence, the search space for learning conjunctive description
hypotheses is the same as the search space of itemset mining for relational attribute-value
data.

A useful structure that is used for concept learning is the general-to-specific partial or-
dering of hypotheses. For example, hypothesis h1 = < sky = 2,temp = ¢, humidity = high,

wind = ? > is more-general-than ho = < sky = clear, temp = warm, humidity = high,wind = ¢ >.
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Note that this is exactly the definition of subpatterns, where pattern hq is a subpattern of
pattern ho. The general-to-specific partial ordering is used to organize the search through
the hypothesis space. In the following, we describe two common concept learning algo-
rithms: find-S and candidate elimination.

Find-S finds the most specific hypothesis in H that is consistent with (correctly classi-
fies) the training data. It starts with the most specific hypothesis (a hypothesis that does
not cover any example) and generalizes this hypothesis each time it fails to cover a pos-
itive training example. This algorithm has many serious drawbacks. First, it is unclear
whether we should prefer the most specific consistent hypothesis over, say the most general
consistent hypothesis or some other hypothesis of intermediate generality [Mitchell, 1997].
Second, there is no way to determine whether find-S has found the only hypothesis in H
consistent with the data (converged), or whether there are other hypotheses in H that are
also consistent with the data.

To overcome these shortcomings, the candidate elimination algorithm was proposed by
[Mitchell, 1982]. This algorithm outputs a description of the set of all hypotheses consistent
with the training data, which is represented by the version space. The idea is to use the
more-general-than partial order to represent the version space without explicitly enumerat-
ing all of its members. This is accomplished by storing only its most specific members (the
S-boundary) and its most general members (the G-boundary). The algorithm incrementally
refines the S-boundary and G-boundary as new training examples are encountered.

It is important to note that concept learning methods rely on two strong assumptions:

1. The hypothesis space H contains the true target concept: 3~ € H : h(x) = c(x) Vxe X.

2. The training data contain no errors (noise free).

For instance, if the hypothesis space supports only conjunctive description and the true
target concept is a disjunction of attribute values, then concept learning will fail to learn
the concept. One obvious fix to this problem is to use a hypothesis space that is capable
of representing every teachable concept (every possible Boolean function). Unfortunately,
doing so causes the concept learning method to learn a concept that exactly fits the training

data, hence totally fails to generalize to any instance beyond the training data [Mitchell,
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1997]. In the remainder of this section, we describe methods that do not rely on these two

assumptions.

2.4.2 Decision Tree Induction

Decision tree induction is a popular machine learning technique for building classification
models. An example of a decision tree is shown in Figure 2. Each internal node in the tree
denotes a test on an attribute, each branch represents an outcome of the test, and each leaf
node holds a class label (predicts the concept play-tennis in this example). Many algorithms
exist to learn a decision tree, such as ID3 [Quinlan, 1986], CART [Breiman et al., 1984] and
C4.5 [Quinlan, 1993]. All of these algorithms build the decision tree from the root downward

in a greedy fashion.

Figure 2: An example decision tree for the concept play-tennis.

One obvious way to obtain a set of classification rules is to first learn a decision tree,
then translate the tree into an equivalent set of rules: one rule is created for each path from
the root to a leaf node. That is, each internal node along a given path is added to the rule
antecedent (with conjunction) and the leaf node becomes the rule consequent. For example,

the rules corresponding to the tree in Figure 2 are:

* Ri:sky =sunny A wind = strong = play-tennis = No
* Rgy:sky =sunny A wind = weak = play-tennis = Yes

* Rg:sky = rainy = play-tennis = No
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* R4:sky =cloudy A humidity = low = play-tennis = Yes

* Ry :sky =cloudy N humidity = high = play-tennis = No

Because every decision tree induces a partition of the input space, rules that are ex-
tracted directly from the tree are mutually exclusive and exhaustive. Mutually exclusive
means that the rules do not overlap (an instance can be covered by only one rule), while
exhaustive means that the rules cover the entire input space (every instance is cover by a
rule).

There are several drawbacks for using rules from a decision tree. First, the extracted
rules have a very restrictive form. For example, the attribute of the root note has to appear
in every rule. Second, the rules are often difficult to interpret, especially when the original
decision tree is large (the rules are often more difficult to interpret than the original tree).
Finally, since the decision tree is built greedily, the resulting rules may miss important pat-
terns in the data. To alleviate some of these problems, rules post-pruning can be applied as
follows: for each rule, remove items from its antecedent if they do not improve its estimated
performance [Quinlan, 1993]. Note that after performing rule post-pruning, the resulting

rules will no longer be mutually exclusive and exhaustive.

2.4.3 Sequential Covering

Sequential covering learns a set of rules based on the strategy of learning one rule, removing
the data it covers and then repeating the process. Sequential covering relies on the learn-
one-rule subroutine, which accepts a set of positive and negative training examples as input
and then outputs a single rule that tries to cover many of the positive examples and few of
the negative examples.

learn-one-rule works by greedily adding the item (attribute-value pair) that most im-
proves the rule’s performance (e.g. the precision) on the training data. Once this item has
been added, the process is repeated to add another item and so on until the rule achieves
an acceptable level of performance. That is, learn-one-rule performs a greedy general to
specific search by staring with the most general rule (the empty rule) and adding items to

its antecedent to make it more specific. Note that this is the opposite of the find-S concept
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learning algorithm (Section 2.4.1), which performs a specific to general search.

Sequential covering methods invoke learn-one-rule on all available training data, re-
move the positive examples covered by the rule, and then invoke it again to learn another
rule based on the remaining training data and so on. The most common sequential cover-
ing algorithms are CN2 [Clark and Niblett, 1989], RIPPER [Cohen, 1995], SLIPPER [Cohen
and Singer, 1999] and CPAR [Yin and Han, 2003]. Sequential covering has been extended by
[Quinlan, 1990] to learn first-order rules (inductive logic programming), which are outside
the scope of this thesis.

Let us now compare sequential covering rules and decision tree rules. Both approaches
rely on a greedy search to explore the space of rules (patterns). However, the main difference
is that sequential covering learns one rule at a time, while decision tree induction learns a
set of rules simultaneously as part of a single search. To see this, notice that at each step
of the search, a decision tree method chooses among alternative attributes by comparing
the partitions of the data they generate, while a sequential covering method chooses among
alternative items (attribute-value pairs) by comparing the subset of data they cover. In other
words, the choice of a decision node in decision tree induction corresponds to choosing the
precondition for multiple rules that are associated with that node (attribute). Therefore,
decision tree usually makes fewer independent choices than sequential covering.

The main drawback of sequential covering is that it relies on many greedy choices: not
only each rule is built greedily (using the learn-one-rule subroutine), but also the set of rules
are obtained greedily (a single rule is learned at each iteration without backtracking). As
with any greedy search, there is a danger of making a suboptimal choice at any step, which

can affect the quality of the final results.

2.4.4 Frequent Patterns for Classification

As we discussed in Section 2.4.1, concept learning methods search an incomplete hypothesis
space because they totally fail when the hypothesis space is complete (the learned concept
would exactly replicate the training data). On the other hand, decision tree induction and

sequential covering search the complete hypothesis space (i.e., a space capable of expressing
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any discrete-valued function). However, the space is searched incompletely using greedy
heuristics. In comparison, frequent pattern mining uses a complete hypothesis space and
performs a more complete search than decision tree and sequential covering. The reason is
that frequent pattern mining examines all patterns that occur frequently in the data instead

of relying on greedy choices to explore the patterns.

Frequent patterns have been demonstrated to be useful for classification. Earlier ap-
proaches focused on associative classification, where rules describing strong associations
between frequent patterns and class labels are used to build a rule-based classifier. In many
studies, associative classification has been found to outperform some traditional classifiers,
such as C4.5 decision trees [Quinlan, 1993]. Classification Based Association (CBA) [Liu
et al., 1998] is the first associative classification method. It uses frequent pattern mining to
mine a set of class association rules and uses the most confident (accurate) rule to classify
test instances. Classification based on Multiple Association Rules (CMAR) [Li et al., 2001b]
is more efficient than CBA because it applies several rule pruning strategies and uses a
tree structure for efficient storage and retrieval of rules. In addition, CMAR can be more
accurate than CBA because it considers multiple rules when making its class prediction
(weighted majority voting) as opposed to using only a single rule as in CBA. [Cong et al.,
2005] applies associative classification on gene expression profiles. Their method mines the
top k& covering rule groups for each instance and use them to construct the classifier. HAR-
MONY [Wang and Karypis, 2005] uses an instance-centric approach to assure that for each
training instance, one of the highest confidence rules covering the instance is included in
the final set of rules. [Veloso et al., 2006] proposed Lazy Associative Classification (LAC),
where the mining is defer until classification time. The advantage of LAC is that it restricts
the search space by mining only rules that apply to the test instance. However, its disad-
vantage is that the mining is performed separately for each test instance, which becomes

computationally expensive when there are many testing instances.

Recently, the focus shifted from associative classification to pattern-based classifica-
tion, where discriminative frequent patterns are used to define new features in order to
improve the performance of standard classification methods. [Cheng et al., 2007] conducted

a systematic study to establish a connection between the support and several discriminative
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measures, such as information gain and fisher score. They proposed using frequent patterns
to represent the data in a different space, in which standard classifiers like SVM and C4.5
can be used to learn the model. Pattern-based classification has also been used to classify
more complex structures, such as sequences [Tseng and Lee, 2005, Exarchos et al., 2008],
graphs [Deshpande et al., 2005] and time interval sequences [Batal et al., 2009, Batal et al.,
2011].

The most common approach for using frequent patterns for classification is to apply the
two-phase approach, which mines all frequent patterns in the first phase and then selects
the most discriminative patterns in the second phase [Cheng et al., 2007, Tseng and Lee,
2005, Exarchos et al., 2008, Deshpande et al., 2005]. In contrast, the works by [Fan et al.,
2008, Cheng et al., 2008] attempt to directly mine discriminative patterns. The Model Based
Search Tree (MBST) method [Fan et al., 2008] uses frequent pattern mining to build a deci-
sion tree. The basic idea is to partition the data in a top down manner and construct a tree
as follows: At each node of the tree, 1) invoke a frequent pattern mining algorithm, 2) select
the most discriminative pattern (according to information gain), 3) divide the data into two
subsets, one containing this pattern and the other not, and 4) repeat the process recursively
on the two subsets. The Direct Discriminative Pattern Mining (DDPMine) method [Cheng
et al., 2008] is similar to [Fan et al., 2008] in that it mines the most discriminative patterns
on progressively shrinking subsets of the data. However, DDPMine applies the sequential
covering paradigm by mining the most discriminative frequent pattern (according to infor-
mation gain), removing the instances covered by this pattern and recursively applying the
algorithm on the remaining instances. DDPMine uses an upper bound on information gain
(derived in [Cheng et al., 2007]) to prune parts of the search space that are guaranteed not

to contain patterns with higher information gain than the current best pattern.

2.5 SUMMARY

Frequent pattern mining has been a focused theme in data mining research for over a

decade. There have been hundreds of research publications, developments and application
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activities in this domain. In this chapter, we did not attempt to provide a complete cover-
age of this topic, but we highlighted the aspects that are most relevant to this thesis. We
mostly emphasized on two important research problems in frequent pattern mining: concise
representations of frequent patterns and using pattern mining for supervised learning.
Several concise representation methods have been proposed for obtaining a compact but
high quality set of patterns that are most useful for knowledge discovery. For most methods,

the objective can be one of the following:

1. Obtain a lossless compression of all frequent patterns.

2. Obtain a “good” (but lossy) compression of all frequent patterns.
3. Obtain patterns that best summarize the data.

4. Obtain patterns that satisfy user constraints.

5. Obtain patterns that are surprising to the user (based on his prior knowledge).

Using pattern mining for supervised learning is a another interesting topic. Earlier
approaches focused on concept learning, decision tree induction and sequential covering.
In recent years, there has been a lot of research in data mining on using frequent pattern
mining to improve classification performance. An important research direction is to develop
more efficient pattern-based classification methods that can focus the search on predictive
patterns instead of exploring the entire space of frequent patterns. We will address this

issue in the next chapter.
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3.0 MINING PREDICTIVE PATTERNS

Frequent Pattern Mining (FPM) is a very popular data mining technique for finding useful
patterns in data. Since it was introduced by [Agrawal et al., 1993], FPM has received a
great deal of attention and abundant literature has been dedicated to this research (see
[Han et al., 2007]).

In this chapter, we study the application of pattern mining in the supervised setting,
where we have a specific class variable (the outcome) and we want to find patterns (defin-
ing subpopulations of data instances) that are important for explaining and predicting this
variable. These patterns are presented to the user in terms of if-then rules that are intuitive
and easy to understand. Examples of such rules are: “If a patient smokes and has a positive
family history, then he is at a significantly higher risk for lung cancer than the rest of the
patients”. This task has a high practical relevance in many domains of science or business.
For example, finding a pattern that clearly and concisely defines a subpopulation of patients
that respond better (or worse) to a certain treatment than the rest of the patients can speed
up the validation process of this finding and its future utilization in patient-management.

We use FPM to explore the space of patterns because it performs a more systematic
search than heuristic rule induction approaches, such as greedy sequential covering [Clark
and Niblett, 1989, Cohen, 1995, Cohen and Singer, 1999, Yin and Han, 2003]. However,
the disadvantage of FPM is that it often produces a large number of patterns. Moreover,
many of these patterns are redundant because they are only small variations of each other.
This large number of patterns (rules) easily overwhelms the domain expert and hinders the
process of knowledge discovery. Therefore, it is crucial to devise an effective method for
selecting a small set of predictive and non-redundant patterns from a large pool of frequent

patterns.
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To achieve this goal, we propose the Minimal Predictive Patterns (MPP) framework. This
framework applies Bayesian inference to evaluate the quality of the patterns. In addition,
it considers the structure of patterns to assure that every pattern in the result offers a
significant predictive advantage over all of its generalizations (simplifications). We present
an efficient algorithm for mining the MPP set. As opposed to the widely used two-phase
approach (see Section 2.4.4), our algorithm integrates pattern selection and frequent pattern
mining. This allows us to perform a lot of pruning in order to speed up the mining.

The rest of the chapter is organized as follows. Section 3.1 provides some definitions
that will be used throughout the chapter. Section 3.2 describes the problem of supervised
descriptive rule discovery. Section 3.3 describes the problem of pattern-based classification.
Section 3.4 illustrates the problem of spurious patterns. Section 3.5 presents our approach
for mining minimal predictive patterns. We start by defining a Bayesian score to evaluate
the predictiveness of a pattern compared to a more general population (Section 3.5.1). Then
we introduce the concept of minimal predictive patterns to deal with the problem of spuri-
ous patterns (Section 3.5.2). After that, we present our mining algorithm and introduce two
effective pruning techniques (Section 3.5.3). Section 3.6 presents our experimental evalua-
tion on several synthetic and publicly available datasets. Finally, Section 3.7 summarizes

the chapter.

3.1 DEFINITIONS

We are interested in applying pattern mining in the supervised setting, where we have a
special target variable Y (the class variable) and we want to find patterns that are important
for describing and predicting Y. In this chapter, we focus on supervised pattern mining for
relational attribute-value data D = {x;, yi}?zl, where every instance x; is described by a fixed
number of attributes and is associated with a class label y; € dom(Y). We assume that all
attributes have discrete values (numeric attributes must be discretized [Fayyad and Irani,
1993, Yang et al., 2005]). As we discussed in Section 2.1, the data can be converted into an

equivalent transactional format.
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We call every attribute-value pair an item and a conjunction of items an itemset pat-
tern, or simple a pattern. A pattern that contains % items is called a k-pattern (an item
is a I-pattern). For example, Education = PhD N Marital-status = Single is a 2-pattern.

Pattern P is a subpattern of pattern P’, denoted as P c P/, if every item in P is con-
tained in P’ and P #P’. In this case, P’ is a superpattern of P. For example, P; : Education
= PhD is a subpattern of Py : Education = PhD A Marital-status = Single. The subpattern
(more-general-than) relation defines a partial ordering of patterns, i.e. a lattice structure,

as shown in Figure 3.

Patterns Instances

P,: Education = PhD
P,: Education = PhD A Marital-Status = Single
P : Education = PhD A Income = High

Figure 3: The box on the left shows the set of all patterns and the box on the right shows
the set of all instances. Each pattern is associated with a group of instances that satisfy
the pattern. The patterns are organized in a lattice structure according to the subpattern-

superpattern relation.

Instance x; satisfies pattern P, denoted as P € x;, if every item in P is present in x;.
Every pattern P defines a group (subpopulation) of the instances that satisfy P: Gp =
{(x;,yi) : x; € D A P € x;}. If we denote the empty pattern by ¢, Gy represents the entire
data D. Note that P < P' (P is a subpattern of P') implies that Gp 2 Gp' (see Figure 3).

The support of pattern P in dataset D, denoted as sup(P,D), is the number of instances
in D that satisfy P (the size of Gp). Given a user defined minimum support threshold o,
P is called a frequent pattern if sup(P,D)=o0.

Because we apply pattern mining in the supervised setting, we are only interested in
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mining rules that predict the class variable. Hence, a rule is defined as P =y, where P (the
condition) is a pattern and y € dom(Y) (the consequent) is a class label. We say that P = y
isasubrule of P'= y' if Pc P and y=y'.

A rule is usually assessed by its coverage and confidence. The coverage of P = y, de-
noted as cov(P = y), is the proportion of instances in the data that satisfy P. The confidence
of P=y, denoted as conf(P = y), is the proportion of instances from class y among all the

instances that satisfy P. By using D, to denote the instances in D that belong to class y:

sup(P,D,)

conf(P=>y)= sup(P.D)

We can see that the confidence of P = y is the maximum likelihood estimation of Pr(Y =
y|Gp). Intuitively, if pattern P is predictive of class y, we expect conf(P = y) to be larger
that the prior probability of y in the data.

3.2 SUPERVISED DESCRIPTIVE RULE DISCOVERY

Rule discovery is a very important tool for knowledge discovery because it has the advantage
of representing the knowledge in terms of if-then rules that are easy to interpret by humans.
This can facilitate the process of discovery and utilization of new practical findings.

Rule discovery using frequent pattern mining (i.e., association rule mining) has been
mostly applied in the unsupervised setting to find rules that describe strong associations
between different items.

In this work, we are interested in applying rule mining in the supervised setting. Our
aim is to find a set of comprehensible rules/patterns that are statistically interesting com-
pared to the entire data, e.g., the rules should have wide coverage and unusual distribu-
tional characteristics with respect to the class variable [Lavrac¢ and Gamberger, 2005]. This
task appeared in the literature under a variety of different names, such as contrast set min-
ing [Bay and Pazzani, 2001], emerging pattern mining [Dong and Li, 1999, Bailey et al.,
2002, Yu et al., 2012] and subgroup discovery [Lavra¢ and Gamberger, 2005, Kavsek and
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Lavrac, 2006]. Later on, [Novak et al., 2009] provided a unifying framework of this work
which is named Supervised Descriptive Rule Discovery (SDRD).

A straightforward approach to SDRD is to use a rule quality measure (cf [Geng and
Hamilton, 2006]) to score each rule by contrasting it to the general population (the entire
data) and report the top rules to the user [Nijssen et al., 2009, Bay and Pazzani, 2001, Li
et al., 2001b, Brin et al., 1997a, Morishita and Sese, 2000]. We will argue that this approach
is ineffective and can lead to many spurious rules. We start by illustrating this problem

using an example and then describe it more formally in Section 3.4.

Example 4. Assume our objective is to identify populations of patients who are at high risk
of developing Coronary Heart Disease (CHD). Assume our dataset contains 150 instances, 50
of them are CHD cases and the others are controls. That is, the CHD prior in our data is

33.3%.

Now, our task is to evaluate the following 5 rules:

R1: Race = African American = CHD
[#cases=19, #controls=40, conf=32.2%]

Rs: Race = Caucasian = CHD
[#cases=32, #controls=58, conf=35.56%]

R3: Family history = Yes = CHD
[#cases=30, #controls=20, conf=60%]

R4: Race = African American N Family history = Yes = CHD
[#cases=11, #controls=8, conf=57.89%]

R5: Race = Caucasian A Family history = Yes = CHD
[#cases=21, #controls=11, conf=65.63%]

For each rule, we show the number of CHD cases and the number of controls that the rule

covers. We also show the confidence of the rule.

The original association rule mining framework [Agrawal et al., 1993] outputs all rules
with higher confidence than a user specified minimum confidence threshold. For instance,

if the minimum confidence is 50%, rules R3, R4 and R5 will be returned to the user.
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One of the commonly used approaches to filter out uninteresting rules is to apply the )(2
test to assure that there is a significant positive correlation between the condition and the
consequent of each rule [Nijssen et al., 2009, Bay and Pazzani, 2001, Li et al., 2001b, Brin
et al., 1997a, Morishita and Sese, 2000]. If we apply the )(2 test on our rules, the p-values we
get for R1, Ro, R3, R4 and R5 are 0.813, 0.479, 9.6x1077, 0.015 and 1.2x1072, respectively.
That is, R3, R4 and R5 are all statistically significant with respect to a significance level a =
0.05. Moreover, these rules will be considered interesting using most rule quality measures

[Geng and Hamilton, 2006].

The main problem with these approaches is that they evaluate each rule individually
without considering the relations between the rules. For example, if we are given rule Ry
by itself, we may think it is an important rule. However, by looking at the other rules,
we can see that R4 is not interesting because it is more specific than R3 (covers a smaller

population) and has a lower confidence.

To tackle this problem, [Bayardo, 1999] proposed the confidence improvement constraint,
which says that each rule in the result should have a higher confidence than all of its sub-

rules:

conf(P=y) —glaylg{ conf(S=>y)}>0

This filter have been used quite often in the rule mining literature [Grosskreutz et al., 2010,
Webb, 2007, Li et al., 2001b, Li et al., 2001a]. If we applied the confidence improvement

constraint to our working example, Ro, R3 and R5 will be retained.

As we can see, both the y? test and the confidence improvement constraint agree that
R5 is an interesting rule. However, this may not be true and the observed improvement in
the confidence of R5 (65.63%) compared to the confidence of R3 (60%) can be due to chance
rather than actual causality. In fact, there is a high chance that refining a rule by adding
random items to its condition leads to a higher confidence (we will elaborate on this later
in Section 3.4). So should we consider R5 to be interesting or spurious? We will revisit this

question after the introducing minimal predictive patterns.
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3.3 PATTERN-BASED CLASSIFICATION

In the previous section, we discussed using pattern mining for finding rules that may help
in knowledge discovery. In this section, we discuss using pattern mining for building classi-
fication models.

Earlier approaches in using patterns for classification focused on associative classifi-
cation, which builds a rule-based classifier [Liu et al., 1998, Li et al., 2001b, Cong et al.,
2005, Wang and Karypis, 2005, Veloso et al., 2006] (see Section 2.4.4).

Recently, the focus was more on using patterns to define features that can represent
higher order interactions between the original data features [Cheng et al., 2007, Batal and
Hauskrecht, 2010b]. The rationale behind this approach is that patterns (feature-value
combinations) may capture more underlying semantics than simple features. Hence, the
inclusion of some patterns can improve the classification performance.

Formally, given a dataset D = {x;,y;}_; in d dimensional space and a set of patterns
Q ={P4,...,Py}, D is mapped into a higher dimensional space with d + m dimensions by

adding indicator binary features to the original features:

X; —>x: =x; ® {b;1,...,b; m} where bi,j =1 ifPJ' € x; and bi’j =0 ifPJ' & x;

The classification model is then learned in the new expanded feature space D' = {x’, y; 1

Example 5. Consider the example in Figure 4, where there are two class labels y1 and yo and
the original data has three trinary features (F1, Fo and Fs). Assume we have the following
two patterns: P1: F1=1 A F3=2 and Py: Fo=2. Using this information, we can map the
data into a higher dimensional space by defining two additional binary features b1 and b,
where b1 (bg) indicates the presence or absence of pattern P1 (P2) in each data instance. After
performing this dimensionality expansion, it becomes very easy to classify the data (e.g., using

a linear model).

Note that applying frequent pattern mining usually returns a large number of frequent
patterns, most of which may be irrelevant to the classification task (patterns are generated

solely based on their support, not based on their discriminative power). Using all of these
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Augment by P;: [FF;=1 A F3=2] and P,: [F,=2]
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Figure 4: An example illustrating how to expand the original feature space (defined by F'1,
Fy and F3) with features that correspond to more complex patterns. Binary features b1 and

bo correspond to patterns F'1=1 A F3=2 and Fe=2, respectively.

patterns as features may hurt the classification performance due to the curse of dimension-
ality. Therefore, it is important to select a subset of frequent patterns that are important

for classification.

The most common approach for pattern-based classification is to evaluate each frequent
pattern individually in order to select the most discriminative patterns [Nijssen et al., 2009,
Cheng et al., 2007, Deshpande et al., 2005, Bay and Pazzani, 2001, Li et al., 2001b, Morishita
and Sese, 2000]. However, as we discussed earlier, this approach usually leads to many

spurious patterns in the results.

One way to partially overcome this problem is to apply an iterative forward feature
selection method. In [Cheng et al., 2007], the authors defined a redundancy score (based on
the Jaccard score [Geng and Hamilton, 2006]) and selected the classification patterns in an
incremental way as follows: a pattern is added to the set of patterns if it is both predictive
and has low redundancy to the patterns that are already selected. However, such iterative
methods can be computationally expensive when applied on a large number of frequent

patterns.
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Having discussed these problems, it is important to develop a method that considers the
relations among the patterns to ensure that the selected ones are highly predictive and at

the same time contain low redundancy.

3.4 THE SPURIOUS PATTERNS PROBLEM

The task of selecting predictive patterns from a large pool of frequent patterns is more
challenging than the standard task of feature selection. This is due to the nested structure
of patterns: if a pattern is frequent, all of its subpatterns are also frequent, hence are also
in the mining result. This nested structure causes the problem of spurious patterns, which

we discuss and analyze in this section.

Definition 1. A pattern P is a spurious pattern if P is predictive when evaluated by itself,
but it is redundant given one of its subpatterns. Spurious patterns are formed by adding

irrelevant items to other simpler predictive patterns.

To illustrate this definition, consider the Bayesian belief network example in Figure 5.
In this network, the value of the class variable Y only depends on the value of feature F;
and is independent of the values of the other features: Y 1L F; : i € {2,...,n}. Assume that
pattern P : F; =1 is highly predictive of class Y =y, so that Pr(Y = y1|P) > Pr(Y = y1).
Clearly, P is the only important pattern for predicting y;.

Now consider a spurious pattern P’ that is a superpattern of P, P':F1=1 A Fg,=vq, A
..\ Fgq, =vg,, where Fy, € {Fg,....,F,} and vy, is any possible value of Fy,. The network
structure implies that Pr(Y =y1|P’') = Pr(Y =y1|P), hence Pr(Y =y1|P’) is also larger than
the prior Pr(Y =y1).

The problem is that if we evaluate the patterns individually (without considering the
nested structure of the patterns), we may falsely think that P’ is a predictive pattern be-
cause the confidence of rule P’ = y; is significantly larger than y; prior. However, P’ is totally
redundant given the real pattern P. Even by requiring a complex rule to have a higher confi-

dence than their simplifications (the confidence improvement) [Bayardo, 1999, Grosskreutz
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Figure 5: Illustrating the problem of spurious patterns in frequent pattern mining.

et al., 2010, Webb, 2007, Li et al., 2001b, Li et al., 2001a], the problem still exists and
many spurious patterns can easily satisfy this constraint due to noise in sampling. Hav-
ing spurious patterns in the mining results is undesirable for both knowledge discovery and
classification. For knowledge discovery, spurious patterns can easily overwhelm the domain
expert and prevent him/her from understanding the real causalities in the data. For classi-
fication, spurious patterns can lead to redundant and highly correlated features, which may
negatively affect the classification performance. Therefore, it is very important to devise a

method that can effectively filter out spurious patterns from the result.

3.5 MINING MINIMAL PREDICTIVE PATTERNS

In this section, we present our approach for mining minimal predictive patterns. We start
by defining a Bayesian score to evaluate the predictiveness of a pattern compared to a more
general population. After that, we introduce the concept of minimal predictive patterns to
address the problem of spurious patterns. Lastly, we present an efficient mining algorithm

that integrates pattern evaluation and frequent pattern mining.
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3.5.1 Evaluating Patterns using the Bayesian Score

3.5.1.1 Classical Evaluation Measures A large number of measures have been pro-
posed in the literature to evaluate the interestingness of individual rules. Examples of
such measures include confidence, lift, weighted relative accuracy, J-measure, and others
(cf [Geng and Hamilton, 2006]). Most of these measures trade-off two factors: 1) the distri-
butional unusualness of the class variable in the population covered by the rule compared to
the general population and 2) the coverage of the rule, which reflects its generality [Lavrac
and Gamberger, 2005, Novak et al., 2009]. This trade-off is often achieved in an ad-hoc way,
for instance by simply multiplying these two factors as in the weighted relative accuracy
score [Kavsek and Lavrac, 2006] or in the J-measure [Smyth and Goodman, 1992]. Further-
more, most measures rely on point estimates of these quantities, often using the maximum
likelihood estimation, and they do not capture the uncertainty of the estimation. In the

following, we present a novel evaluation measure based on the Bayesian principal.

3.5.1.2 The Bayesian Score Suppose we want to evaluate how predictive is pattern P
of class y compared to a more general group of instances G that contains the instances
covered by P: Gp <G. We will denote our proposed Bayesian score for rule P = y compared
to group G by BS(P = y,G). We want this score to be high when there is a strong evidence
in the data to support the hypothesis that the probability of y in the instances covered by
P is higher than the probability of y in the instances of G that are not covered by P. The
Bayesian score treats these probabilities as uncertain random variables as opposed to just
relying on their point estimates as in the classical measures.

To explain the Bayesian score, we begin by defining the following three models:

1. M, is the model that conjectures that all instances in group G have the same probabil-
ity of having class y.

2. My, is the model that conjectures that the probability of y in Gp is higher than the
probability of y in the instances of G that are not covered by P (G \ Gp).

3. M; is the model that conjectures that the probability of ¥ in Gp is lower than the prob-
ability of y in the instances of G that are not covered by P.
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The Bayesian score is based on the idea of scoring the marginal likelihoods of these
three models. Intuitively, the more likely is model M} compared to the other models, the
more confident we are that pattern P is predictive of class y, hence the higher BS(P=y,G)
should be.

Let us start by defining the marginal likelihood for model M,. This model assumes that
all instances in G have the same probability of y, even though we are uncertain what that
probability is. Let us denote Pr(Y =y|G) by 6. To represent our uncertainty about 6, we
use a beta distribution with parameters a and . Let N.; be the number of instances in G
with class Y =y and let N.g be the number of instances in G with class Y #y. The marginal

likelihood for model M, is as follows:

1
Pr(GIM,) :f oN1.(1-0)N2 . beta(0;a, f)dO
6=0

The above integral yields the following well known closed-form solution [Heckerman
et al., 1995]:

I'a+p) _F(a+N*1).F(,6+N*2)
[(a+N,1+p+N.2) I'(a) '

Pr(GIM,) = (3.1)

where I is the gamma function.

Now let us now define the marginal likelihood for model M}. This model assumes that
the probability of y in Gp, denoted by 61, is different from the probability of y in the in-
stances of G that are not covered by P (G \ Gp), denoted by 65. Furthermore, M} believes
that 07 is higher than 6. To represent our uncertainty about 61, we use a beta distribution
with parameters a@; and ;1. To represent our uncertainty about 02, we use a beta distribu-
tion with parameters ag and B2. Let N1; and N2 be the number of instances in Gp with
class Y =y and with class Y # y, respectively. That is, N1 is the number of true posi-
tives (instances correctly classified by the rule) and N9 is the number of false positives
(instances incorrectly classified by the rule). Let No; and Ng2 be the number of instances
outside Gp with Y =y and with Y #y, respectively (see Figure 6). Note that N,; = N11+ N2y
and N,9 = N19 + Nog.

The marginal likelihood for model M}, is defined as follows:
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Figure 6: A diagram illustrating model M},.

beta(f1;a1,P1)-beta(02;az, B2)
k

1 01
Pr(GIMy) = fe . fe Oean-(1—91)1"12-92N21-(1—92)N22 . dBsd; (3.2)
1= 2=

where £ is a normalization constant for the parameter prior. Note that this formula does
not assume that the parameters are independent, but rather constrains 61 to be higher than
0s.

Below we show the closed-form solution we obtained by solving Equation 3.2. The

derivation of this solution is fully described in the dissertation’s appendix.

1 T(ai+f) Tlag+Pp) “TY T@I®)  Tlc+)la+b+d—j-1)

Pr(G|Mh):k T(a)T(B1) T(a)l(B2) = \T(G+Dla+b—j) T(a+b+c+d—1)

(3.3)

Jj=

where a =Ngj + a2, b=Noa+ B2, c=N11+a1, d=Nj2+ 1. We solve for the normalization
constant & by applying Equation 3.3 (without the £ term) with a = a2, b = 2, ¢ = @1 and
d =pf1. Note that & = % if we use uniform priors on both parameters by setting a; = f1 = as =
B2 =1.

Equation 3.3 can be expressed in logarithmic form to avoid computing very large num-
bers (to preserve numerical precision). Its computational complexity is O(b) = O(Na2+ 2)

(the number of terms in the summation). It turns out that we can redefine the solution of
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Equation 3.2 so that its computational complexity is O(min(Ni1+a1,N12+P1,No1+ag, Noo+
B2)). The modifications that achieve this complexity result are also described in the ap-
pendix.

Lastly, let us define the marginal likelihood for model M;, which assumes that 0; is
lower than 65. The marginal likelihood for M; is similar to Equation 3.2, but integrates 69
from 0 to 1 and constrains 6; to be integrated from 0 to 02 (forcing 0; to be smaller than
02). The solution for P(G|M;) can be computed with complexity O(1) by reusing the terms
computed in Equation 3.3, which is described in the appendix.

Now that we have computed the marginal likelihood of the three models: Pr(G|M,),
Pr(G|My) and Pr(G|M;), we compute the posterior probability of M} (the model of interest)

using Bayes theorem:

~ Pr(G|M)Pr(My;)
Pr(M|G) = Pr(GIM,)Pr(M,)+Pr(G|My)Pr(Mp)+Pr(G|M;)Pr(M;) (3.4)

To be “non-informative”, we might simply assume that all three models are a priori
equally likely: Pr(M,) = Pr(M}) = Pr(M;) = %

Note that Equation 3.4 quantifies in a Bayesian way how a posteriori likely is model
Mj,. Since this is the quantity we are interested in, Pr(M|G) is used to score rule P=y

compared to group G: BS(P = y,G) = Pr(M|G).

Example 6. Let us use the Bayesian score to evaluate rule R3: Family history = Yes = CHD
in Example 4. This rule covers 30 CHD cases (N11 =30) and 20 controls (N12=20). Let us
compute BS(R3,G ) for evaluating the predictiveness of R3 compared to the entire dataset.
Using the notations introduced earlier, N1 =50 and N.9 =100 (the number of CHD cases
and controls in the dataset). Also, No1 =N.1—N11=20 and N9og =N.9o—N19=80. Let us use
uniform beta priors for all parameters: a=B=a1=01=a2=P2=1. The likelihood of M, is
3.2x107%3, the likelihood of My, is 1.5x10738 and the likelihood of M; is 1x107%4. Using
Equation 3.4, we get BS(R3,G¢)=Pr(My|Gy)=0.99998. This implies that there is a strong

evidence in the data to conclude that pattern Family history=yes makes CHD more likely.
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Example 7. Figure 7 shows a plot that illustrates the Bayesian score. In this plot, we set
N.1=N,2=30. We vary each of N11 and N1g from 0 to 30 and plot the logit (log-odds) of the
corresponding Bayesian score'. We can see that the score is an increasing function of N11 (the
number of true positives) and a decreasing function of N1 (the number of false positives). It
achieves its maximum when N11 = N.1 and N19 = 0 (the pattern correctly classifies all the

instances).

logit(P(M,|G)

Figure 7: A plot showing the logit function of the Bayesian score as a function of the true
positives and the false positives. Points above the plane have a Bayesian score larger than

0.95.

3.5.2 Minimal Predictive Patterns

The Bayesian score proposed in the previous section provides a way to evaluate the pre-
dictiveness of a pattern by contrasting it to a more general population than the population
covered by the pattern. A straightforward approach for mining predictive patterns is to ap-
ply the Bayesian score to compare each pattern to the entire data and report the top scoring

patterns to the user. However, this approach does not overcome the spurious patterns prob-

IThe logit function of a probability p (the inverse of the logistic function) is monotonically increasing in p.
We plot the logit of the score instead of the actual score because it has a smoother transition, making it easier
to visualize.
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lem we discussed in Section 3.4: If rule P = y has a very high Bayesian score (pattern P is
highly predictive of class y), many rules P'= y that correspond to spurious patterns P'>P
are expected to have a high Bayesian score as well (provided that P’ have enough support
in the data). As a result, the rules presented to the user would contain a lot of redundancies
and fail to provide a good coverage of the data.

Now we introduce the minimal predictive patterns framework for selecting patterns that

are highly predictive of the class variable and at the same time contain low redundancy.

Definition 2. A pattern P is a Minimal Predictive Pattern (MPP) with respect to class

label y if P predicts y significantly better than all of its subpatterns:

VScP : BSP=>y,Gg)=0d

Where 6 is a user specified significance parameter.

This definition means that if P is an MPP with respect to class y, then there is a strong
evidence in the data not only to conclude that P improves the prediction of y compared to
the entire data, but also compared to the data matching any of its subpatterns. Notice that
the MPP definition prefers simple patterns over more complex patterns (the Occam’s Razor
principal) because a pattern is not an MPP if its effect on the class distribution “can be
explained” by a simpler pattern (subpattern) that covers a larger population.

We would like to note that detecting MPP patterns can also be done, in addition to
using our Bayesian score, using a frequentist statistical significance test. We used this
approach in our earlier work [Batal and Hauskrecht, 2010a]. A similar method based on
Fisher exact test has also been used by [Wong et al., 2005] for disease outbreak detection on

biosurveillance data.

Example 8. Let us go back to Example 4. We want to decide whether rule R5: Race =
Caucasian N Family history = Yes = CHD is an interesting rule (we should show it to the
user) or a spurious rule (we should remove it from the results). This rule covers 21 CHD
cases and 11 controls. In order to be an MPP, pattern Race = Caucasian N Family history
= Yes should predict CHD significantly better than all of its subpatterns. If we compare R
to the entire dataset, we get BS(R5,G ) = 0.9997. If we compare Rj5 to its subrule Ro, we get
BS(R5,GR,) = 0.9998. Finally, if we compare R5 to its subrule R3, we get BS(R5,GRr;) = 0.47.
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We can see that Rs is considered very predictive when compared to the entire dataset or to
subrule R, but is not predictive when compared to subrule R3. Therefore, we do not consider
R5 an important rule because it is equivocal whether it predicts CHD as being more likely

than does R3.

Example 9. Let us consider again the simple Bayesian network in Figure 5 to illustrate how
the MPP framework tackles the problem of spurious patterns. Assume we have 10 binary
features (Fi to F1o) and a binary class variable: dom(Y)={y1,y2}. Assume the CPTs of the
network are defined as follows: Pr(F;=1)=04:i¢€{1,...,10}, Pr(Y =y1|F1=1)=0.9 and
Pr(Y =y1|F1=0)=0.5. Let the data D be 500 instances that are randomly generated from
this network. Our task is to mine patterns that are predictive of class yi12. As we discussed
earlier, the only important rule in D for predicting y1 is F1 =1 = yi. All other rules are

SPUrious.

Let us use frequent pattern mining to explore patterns that occur in more than 10% of
the data. Doing so, we obtain 1,257 frequent patterns (potential rules). If we apply the x>
test with significance level a=0.05 to select rules that have a significant positive correlation
with class y1, we get 284 rules that are statistically significant. Even if we apply the False
Discovery Rate (FDR) technique [Benjamini and Hochberg, 1995] to correct for multiple hy-
pothesis testing, we get 245 significant rules! Note that these methods do not overcome the
spurious patterns problem. Let us now apply the confidence improvement constraint to filter
out “non-productive” rules [Bayardo, 1999, Grosskreutz et al., 2010, Webb, 2007, Li et al.,
2001b, Li et al., 2001a]. By doing so, we get 451 rules! This clearly demonstrates that the
confidence improvement constraint is an ineffective criterion. Lastly, let us mine rules that
correspond to MPPs for yi using significance parameter 6 = 0.95. Doing so, we obtain only
a single rule F1=1= y; (the only important rule) and effectively filter out all other spurious

rules®.

2The prior of y; in this network is Pr(Y =y;)=0.66.
3The 0.95 significant parameter is chosen so that it is comparable to the commonly used frequentist 0.05
significance level.
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3.5.3 The Mining Algorithm

In this section, we present the algorithm for mining the minimal predictive patterns. The
algorithm utilizes frequent pattern mining to explore the space of potential patterns (rules)
and applies the Bayesian score to select the ones that satisfy the MPP definition (Definition
2).

To search the space of patterns, we partition the data according to the class labels and
explore frequent patterns for each class y € dom(Y') separately using a local minimum sup-
port o, that is related to the number of instances from class y. This approach is reasonable

when pattern mining is applied in the supervised setting for the following reasons:
1. For unbalanced data, mining frequent patterns using a global minimum support may
result in missing many important patterns in the rare classes.

2. Mining patterns that are frequent in one of the classes (hence potentially predictive for

that class) is more efficient than mining patterns that are globally frequent?.

Figure 8 shows an example of a dataset with two class labels y; and y2. The data is
partitioned into two parts based on the class label and MPPs are mined from each partition
using a local minimum support that is related to the partition size. Finally, the class specific

MPPs are combined to form the final result.

Y, |mmmmmmm)| MPPfory,
k4 ~

Y1 e N

Yoo T~
~ sl
Y, |mmmmmmm)| MPPfory,

Figure 8: The Mining is applied on each class label separately and then final result is ob-

tained by combining the class specific MPPs.

41t is much more efficient to mine patterns that cover more than r instances in one of the classes as opposed
to mining all patterns that cover more than n instances in the entire database (the former is always a subset
of the latter).
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The algorithm for mining MPPs for class label y € dom(Y) takes as input the following

arguments:

1. The data instances from class y: D, = {(x;,y;) : y; = y}.

2. The data instances that do not belong to class y: D, ={(x;,y;): y; # y}.
3. The local minimum support threshold o.
4

. The significance parameter é.

The algorithm explores the space of frequent patterns and outputs patterns (rules) that
satisfy the MPP definition.

A straightforward way to obtain the result is to apply the commonly used two-phase
approach as in [Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrac, 2006,
Exarchos et al., 2008, Deshpande et al., 2005, Li et al., 2001b], which generates all frequent
patterns in the first phase and evaluates them in the second phase (a post-processing phase).

That is, this approach would apply the following two phases to mine MPPs for class y:

1. Phase I: Mine all frequent patterns: FP ={P,...,Pp, :sup(P;,D,)=0,}.
2. Phase II: For each pattern P; € FP, output rule P; = y if BS(P;=>y,Gg) =0 : VS cP;.

In contrast to this two-phase approach, our algorithm integrates pattern evaluation with
frequent pattern mining. This allows us to apply additional pruning techniques that are not
applicable in the two-phase approach.

Our algorithm explores the lattice of frequent patterns level by level from the bottom-up.
It starts by exploring frequent I-patterns, then frequent 2-patterns, and so on. Whenever
the algorithm visits a frequent pattern P (a node in the lattice), it computes its Bayesian

score with respect to its subpattens and adds it to result if it satisfies the MPP definition.

Example 10. Assume that our data D contains 100 instances from class yi1 and 100 in-
stances from class ys and that our task is to find MPPs for class y1. Figure 9 illustrates the
mining algorithm on a small frequent pattern lattice (with three items 11, Is and I3). Every
frequent k-pattern is represented as a node in the lattice with k children: one child for each
of its (k-1)-subpatterns. Next to each pattern P, we show the number of instances from class
y1 that satisfy P (#y1), the number of instances from class yy that satisfy P (#y2) and the

confidence of rule P = yy (conf = (#y1+#y2))
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[#y,=10, #y,=10, conf=0.5]

Gt
e

[#y,=25, #y,=30,conf=0.45] [#y,=45, #y,=10,conf=0.82]

#y,=20, #y,=30, conf=0.4]

[#y,=65, #y,=35, conf=0.65] [#y,=40, #y,=60, conf=0.4] #y,=55, #y,=45, conf=0.55]

[#y,=100, #y,=100, conf=0.5]

Figure 9: An illustrative example showing the frequent pattern lattice associated with I; A
I A I3. Next to each pattern (node), we show the number of instances from class y; and yo
that the pattern covers. We also show the confidence of the rule that predicts y;. The MPPs

for class y; are shown in red.

The algorithm works by exploring the frequent pattern lattice level by level. It first ex-
plores the first level to find MPPs of size 1. Assuming a significance parameter 6 = 0.95, pat-
tern Iy is an MPP because BS(I1=y1,G¢)=6. Next, the algorithm explore the second level of
the lattice to find MPPs of size 2. Pattern I1 AI3 is an MPP because BS(I1 AN13=>y1,G¢)=6,
BS(I1AI3=y1,G1,)=6 and BS(I1 AN13= y1,G1;) =06. After that, the algorithm explores the

third level and so on.
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3.5.4 Pruning the Search Space

In this section, we illustrate how integrating MPP evaluation with frequent pattern mining
helps pruning the search space (speeding up the mining). We say that pattern P is pruned if
we do not explore any of its superpatterns. This can be seen as excluding the entire sublattice
with bottom P from the lattice of patterns.

Frequent pattern mining relies only on the support information to prune patterns ac-
cording to the Apriori property: Any infrequent pattern is pruned because its superpatterns
are guaranteed not to be frequent (see Section 2.2.1).

However, frequent pattern mining can be computationally very expensive, especially

when:

* The data dimensionality is high.
* The minimum support is low.

* The data features are highly correlated.

These reasons cause the frequent pattern lattice to become extremely large. One simple
way to speed up the mining is to raise the minimum support threshold. However, doing
so may result in missing many important predictive patterns. In fact, [Cheng et al., 2007]
argued that the predictive power of very high support patterns is often limited®.

In the following, we present two effective pruning techniques that can utilize the predic-
tiveness of patterns to further prune the search space. The first technique is lossless and the

second is lossy.

3.5.4.1 Lossless pruning The MPP definition can help us to prune the search space.
The idea is to prune pattern P if we guarantee that none of its superpatterns is going to be
an MPP. However, since patterns are explored in a level-wise fashion, we do not know the

class distribution in the superpatterns of P. But we know that

VP'oP : Gp<Gp = sup(P',Dy)Ssup(P,Dy) A sup(P',D-‘y)Ssup(P,D—.y)

We now define the optimal superpattern of P with respect to class y, denoted as P*, to be

5This is analogous to the uselessness of stop words for document classification or retrieval.
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a hypothetical pattern that covers all instances from y and none of the instances from the

other classes:
sup(P*,Dy)=sup(P,D,) A sup(P*,D-,)=0

P~ is the best possible superpattern for predicting y that P can generate. Now, we safely
prune P if P* does not satisfy the MPP definition. That is, if P* does not predict y signifi-

cantly better than P or one of its subpatterns:

Prune Pif3S<cP: BS(P*=>y,Gg)<6

Note that this pruning technique does not miss any MPP (lossless) and it is an anti-

monotone test in the sense that if a pattern fails to pass the test, all of its superpatterns

will fail the same test as well (see Section 2.3.3).

Example 11. Consider pattern P =11 ANIs A I3 in Figure 9. This pattern covers 10 instances
from yi and 10 instances from ys. P cannot generate any MPP for y, because even its opti-
mal superpattern P* is not significant compared to subpattern I1 AN13: BS(P* = y1,G1,a15) =
0.62 <6 =0.95. Therefore, we can safely prune P because we know that none of its superpat-

terns will be an MPP for y;.

3.5.4.2 Lossy pruning This technique performs lossy pruning, which means that it speeds
up the mining, but at the risk of missing some MPPs. The idea is that for mining MPPs for
class y, we prune pattern P if the underlying probability of y in the instances covered by P
is lower than the probability of y in the entire data: Pr(Y =y|Gp) < Pr(Y =y|G¢). To decide
whether this is the case, we apply our Bayesian score to evaluate rule P =y compared to G4
and we prune P if model M; (the model that assumes the probability of y in P is lower than
outside P) is the most likely model (see Section 3.5.1.2).

Let us now explain the rationale behind this heuristic. Assume we are interested in
mining MPPs for class y and we have pattern P where the probability of y in Gp is lower
than the probability of y in the data. To give a concrete example, let us say that we have a
census income data and we are interested in MPPs for the class Income = High (e.g., people

who make over 80K a year). Let us say that the probability of Income = High is low for
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people that match pattern P : Education = High-School (people with high school degree as
their highest eduction level).

For every pattern P’ that is a superpattern of P, we can write the following:

P'oP = 3P'":P'=P A P'"= Gp =Gp n Gpr

Going back to our running example, P’ can be Education = High school N Gender =
Female. The population of instances covered by P’ is the intersection of the population
covered by P : Education = High school and the population covered by P" : Gender = Female

as shown in Figure 10.

P': Education = High school A Gender = Female

|

/ N\

P: Education = High school P'"': Gender = Female

Figure 10: If the probability of class Income = High in the population defined by Education
= High school is low, we do not expect the probability of Income = High in the population
defined by Education = High school N Gender = Female to be significantly higher than the
probability of Income = High in the population defined by Gender = Female.

Now in order for P’ to be an MPP, it should predict y significantly better than all of its
subpatterns, including P”. However, we know that the probability of y in Gp is low, hence it
is very unlikely that the probability of y in Gp N Gpr will be significantly higher than the
probability of y in Gpr.
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Example 12. Consider pattern 15 in Figure 9. This pattern covers 40 instances from y; and
60 instances from yo. If we apply the Bayesian score to evaluate rule Is =y, compared to
Gy, we find that M; is the most likely model. Therefore, we prune I because it is unlikely
to generate any MPP for y1. That is, we do not generate its superpatterns I1 A1o, Io AN1I3 and

Il/\Izl\Ig.

3.6 EXPERIMENTAL EVALUATION

3.6.1 UCI Datasets

For our experimental evaluation, we use 15 publicly available datasets from the UCI ma-
chine learning repository [Asuncion and Newman, 2007]. Recall that pattern mining meth-
ods require the data to be discrete (see Section 2.1). We discretize numerical attributes
using [Fayyad and Irani, 1993] supervised discretization method, which recursively applies
entropy minimization and uses the minimum description length criterion to decide on the

number of bins.

Table 5 shows the main characteristics of these datasets. For each dataset, we show the
number of instances, the number of attributes, the number of items (distinct attribute-value

pairs after discretization) and the number of classes.

3.6.2 Quality of Top-K Rules

In this section, we present our experiments for supervised descriptive rule discovery (see
Section 3.2). The purpose is to show that the MPP framework is able to explain and cover
the data with fewer rules than existing methods, which is beneficial for knowledge discovery.

We present the results first on a synthetic dataset and then on the UCI datasets.

3.6.2.1 Compared Methods We compare the quality of the top rules for the following

rule evaluation measures:
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Dataset # Instances | # Attributes | # Items | # Classes
Lymphography 142 18 57 2
Parkinson 195 22 51 2
Heart 270 13 33 2
Hepatitis 155 19 39 2
Diabetes 768 8 19 2
Breast cancer 286 9 41 2
Nursery 12,630 8 27 3
Red wine 1,599 11 32 3
Mammographic 961 5 13 2
Tic tac toe 958 9 27 2
Ionosphere 351 34 145 2
Kr vs kp 3,196 36 73 2
Pen digits 10,992 16 141 10
Zoo 74 16 32 3
WDBC 569 30 94 2

Table 5: UCI datasets characteristics.

1. GR: Rules are ranked using the Growth Rate measure, which was used in [Dong and Li,
1999, Bailey et al., 2002, Yu et al., 2012] in the context of emerging pattern mining.

sup(P,Dy) |D-y|

GR(P=y)=
Y= sup(®,D-,) 1D,

where D, and D, represent the instances from class y and not from class y, respec-

tively.
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2. J-measure: Rules are ranked using the J-measure [Smyth and Goodman, 1992], a pop-
ular information theoretic measure that scores the rules by their information content.

P,D
J-measure(P = y) = sup,D) x Y conf(P:>z)-log2(

conf(P :>z))
|D| ze{y’ﬂy}

conf(®=z)

3. WRAcc: Rules are ranked using the Weighted Relative Accuracy, which was used in
[Kavsek and Lavraé¢, 2006] in the context of subgroup discovery®.

WRAcc(P=y) = % x(conf(P=>y)—conf(®=y))

Note that this measure is compatible (provides the same rule ranking) with the support
difference measure used in [Bay and Pazzani, 2001] for contrast set mining (see [Novak

et al., 2009] for more details).

4. BS: Rules are ranked using our proposed Bayesian score. However, this method scores
each rule individually with respect to the entire data and do not consider the relations

between the rules.

5. Conf-imp: Only rules that satisfy the confidence improvement constraint are retained
[Bayardo, 1999, Grosskreutz et al., 2010, Webb, 2007, Li et al., 2001b, Li et al., 2001a]

and they are ranked according to their confidence.

6. MPP: Our proposed method, which mines rules that correspond to MPPs (patterns that
satisfy Definition 2 using significance parameter 6 = 0.95) and rank them according to

the Bayesian score.

Note that the GR measure does not consider the coverage of the rule when assessing its
interestingness. For example, GR favors a rule that covers 8% of the instances of in one class
and 1% of the instances in the other classes over a rule that covers 70% of the instances of
in one class and 10% of the instances in the other classes (because % > %). As a result, GR
often chooses rules that are very specific (with low coverage) and do not generalize well.

To overcome this, the J-measure and WRAcc explicitly incorporate the rule coverage
Sup(P,D) .

Dr In their evaluation functions to favor high coverage rules over low coverage rules.

This is done by multiplying the coverage with a factor that quantifies the distributional

6The algorithm by [Kavsek and Lavraé, 2006] uses weighted sequential covering and modifies the WRAcc
measure to handel example weights.
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surprise (unusualness) of the class variable in the rule (the cross entropy for J-measure and
the relative accuracy for WRAcc). However, it is not clear whether simply multiplying these
two factors leads to the optimal trade-off. On the other hand, our Bayesian score (used by
BS and MPP) achieves this trade-off implicitly by properly modeling the uncertainty of the
estimation (the more data we have, the more certain is our estimation).

Note that the first four methods (GR, J-measure, WRAcc and BS) evaluate the rules
individually with respect to the entire data without considering their relations. On the other
hand, Conf-imp and MPP evaluate each rule with respect to all of its subrules. Conf-imp
simply requires each rule have a higher confidence than its subrules, while MPP requires
each rule to be significantly more predictive than its subrules according to Definition 2.

For all methods, we use frequent pattern mining to explore the space of potential rules
and we set the local minimum support (o) to 10% the number of instance in the class. For
BS and MPP, we use uniform beta priors (uninformative priors) for all parameters when
computing the Bayesian score. We apply both the lossless pruning 3.5.4.1 and the lossy
pruning 3.5.4.2 for the MPP method.

3.6.2.2 Performance Measures We evaluate the quality of the top rules that are in-
duced by the different evaluation measures in terms of their classification performance and
their representation in the ROC space.

Classification performance: For a set of rules to be practically useful, the rules should
accurately predict the class label of unseen data instances (high precision) and the rule set
should provide a good coverage of the data (high recall).

We compare the different evaluation measures according to the classification perfor-
mance of the top rules. In particular, for each of the compared measures, we mine top &
rules from the training data and use them to classify the testing data. The classification is

done according to the highest confidence rule in the set of top rules [Liu et al., 1998]:

Prediction(x) = argmax{ conf(P = y;): Pex}
Vi

We evaluated the classification performance using the F'1 score [Sebastiani, 2002], which

is the harmonic mean of the precision and recall. We compute it using micro-averaging,
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which constructs a global contingency table to calculate precision and recall. The reason we
use micro-average F1 score instead of the classification accuracy is because it differentiates
between the error of an unclassified instance (not covered by any rule) and the error of a
misclassified instance (incorrectly classified). This is because an unclassified instance only
negatively affects the recall, while a misclassified instance negatively affects both precision
and recall. Note that if all test instances are classified (covered) by the rule set, then micro-
average F'1 score is the same as the classification accuracy.

ROC space representation: Another way to evaluate the quality of rules is to analyze
them in the ROC (Receiver Operating Characteristics) space, as suggested by [Lavrac¢ and
Gamberger, 2005, Kavsek and Lavrac, 2006, Novak et al., 2009].

The ROC space [Fawcett, 2006] is a two-dimensional space that shows classifier perfor-
mance in terms of its False Positive Rate (FPR) (the fraction of false positives out of the
negatives) plotted on the X-axis, and True Positive Rate (TPR) (the fraction of true positives
out of the positives) plotted on the Y-axis.

To analyze rules in the ROC space, we find the top rules that predict a specific class
label and represent each rule by its FPR and TPR. Rules that lie close to the main diagonal
are usually considered as insignificant because the distribution of positives and negatives
in the population they cover is similar to the distribution in the entire dataset. According
to [Lavra¢ and Gamberger, 2005, Kavsek and Lavrac, 2006, Novak et al., 2009], the most
significant rules correspond to the points from which the ROC convex hull is constructed.
Consequently, the area under the ROC convex hull (AUC) was used to measure the combined
quality of the rule set. Figure 11 shows a set of 5 rules in the ROC space and their convex
hull, which is defined by R1, R3 and Ry4.

All reported results (for both classification performance and area under the ROC con-
vex hull) are obtained using 10-fold cross-validation, where the same train/test splits are

applied for all compared methods.

3.6.2.3 Results on Synthetic Data We first start by showing results on a synthetic
dataset (generated from pre-defined patterns). This dataset is obtained by randomly sam-

pling 500 instances from the Bayesian network in Figure 12. In this network, we have 20
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Figure 11: Representation of 5 rules in the ROC space and their convex hull.

binary features (1 to Fyy) and a binary class variable Y: dom(Y) = {y1,y2}. The value of
Y only depends on the values of features F'; and F9 and is independent of the values of the
other features: Y 1L F; for i € {3,...,20}. Features F; and F9 follow a bernoulli distribution
with probability 0.5 and features Fg to Fyy follow a bernoulli distribution with probabil-
ity 0.25. Note that there are only four predictive rules in this data: F1=1 A Fo=1= y,
Fi=1ANF3=0=>y9, F1=0 A F3=1= yy and F1 =0 A F3=0 = y; with confidences 0.95,
0.95, 0.8 and 0.8, respectively. All other rules are spurious.

Figure 13 shows the classification performance for the different rule evaluation mea-
sures. The X-axis shows the number of top rules that are used for classification and the

Y-axis shows their F1 score.

We can see that MPP achieves the optimal classification performance using only the
top four rules, which correspond to the true predictive rules in this data. In comparison,
the other methods require much more rules to achieve the same performance because they
favor many spurious rules (such as F1 =1 A Fo =1 A F5 =0 = y1) over more important

rules (such as F;1 =0 A Fo =0 = y1). As a result, the top rules contain a lot of redundancies
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Figure 12: The Bayesian belief network used to generate the synthetic dataset.
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Figure 13: Comparing the performance of the different rule evaluation measures (see Sec-
tion 3.6.2.1) on the synthetic dataset. The X-axis is the number of the top rules and the

Y-axis is the F1 score of the rule set.

and fail to cover the patterns of this data.

Let us now discuss the ROC space representation. In Figure 14, we plot rules Ry :
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Fi1=1AFs=1=yiand Ry:F1=0 A F9 =0 = y1, which we know are both important
for predicting class y;. According to the ROC representation, Ry is considered suboptimal
because it lies below the ROC convex hull. This means that a rule mining method that finds
only rule R has the same “quality” (measured using the area under the ROC convex hull)
as a method that finds both R{ and Ry. However, this is not the case because we need both
R and R to classify the instances of y; (notice that the population cover by R is disjoint
from the population covered by Rs).
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Figure 14: Illustrating the deficiency of the ROC space representation on the synthetic data.
The figure shows rule R{: F1=1 A Fo=1 = y;andrule Ro:F1=0 A F3 =0 = y;. Note

that R9 is not on the convex hull.

3.6.24 Results on UCI Datasets Figure 15 shows the classification performance for
the different evaluation measures on the UCI datasets. We can see that GR is the worst
performing method for most datasets. The reason is that rules with the highest GR scores
are usually very specific (have low coverage) that may easily overfit the training data. The
other measures (J-measure, WRAcc and BS) perform better than GR because they favor
high-coverage rules over low-coverage rules, which results in rules that generalize better
on the testing data. However, because these measures do not consider the relations among
the rules, the top scoring rules usually contain many spurious rules. As a result, they
fail to provide a good coverage of the data (see for example the lymphography and the zoo

datasets). Finally, we can see that for most datasets, MPP achieves the best performance
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with the smallest number of rules.

Table 6 shows the area under the rules’ ROC convex hull for the different rule evalua-
tion measures on the UCI datasets. For each measure, we mine the top 5 rules from each
class label, compute their AUC and finally average all class-specific AUCs’. The results are
reported using averages obtained via 10-fold cross-validation. We can see that MPP is the

best performing method on eleven out of the fifteen datasets.

"For each class label y € dom(Y), we mine the top 5 rules for predicting y from the training data and
compute their AUC on the testing data. Then we average the class specific AUCs.
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Figure 15: Comparing the performance of the different rule evaluation measures (see Sec-
tion 3.6.2.1) on the UCI datasets. The X-axis is the number of the top rules and the Y-axis

is the F'1 score of the rule set. 58



Dataset GR | J-measure | WRAcc | BS | conf-imp | MPP

Lymphography | 71.5 76.68 79.01 | 77.14 | 744 | 85.43

Parkinson 70.61 73.31 76.4 | 76.22 75.9 84.32

Heart 63.08 76.44 81.51 | 79.76 63.82 80.13
Hepatitis 72.01 70.97 83.47 | 83.92 74.65 | 85.51
Diabetes 58.48 65.66 72.66 | 69.42 58.57 73.64

Breast cancer || 57.57 60.01 69.76 | 68.62 59.21 70.29

Nursery 72.83 80.94 80.76 | 80.94 72.88 | 80.94

Red wine 56.72 65.16 68.58 | 67.35 57.28 68.9

Mammographic || 62.05 81.26 85.29 | 85.54 | 63.75 85.41

Tic tac toe 59.77 59.77 68.1 68.8 59.77 68.8

Ionosphere 75.44 78.81 81.82 | 80.82 76.71 82.02

Kr vs kp 72.15 78.87 79.04 | 78.62 72.21 | 84.17

Pen digits 61.41 80.64 83.08 | 81.67 61.49 81.9

Zoo 100 100 100 100 100 100
WDBC 81.85 90.3 90.64 | 90.53 82.6 90.89
# wins 0 1 2 3 0 11

Table 6: The area under the rules’ ROC convex hull for the different rule evaluation mea-

sures (see Section 3.6.2.1) on the UCI datasets.

3.6.3 Pattern-based Classification

In this section, we present our experiments for classification. The purpose is to show that

mapping the data into a higher dimensional space using MPPs as additional features (see
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Section 3.3) can boost the classification performance. We present the results first on a syn-

thetic dataset and then on the UCI datasets in Section 3.6.1.

3.6.3.1 Compared Methods We compare the performance of the following classifiers:

1. SVM: The linear Support Vector Machine (SVM) classifier [Vapnik, 1995] on the original
feature space. We optimize the cost parameter (a parameter that controls regularization)

using internal cross-validation.

2. SVM RBF: SVM with the Radial Basis Function (RBF) kernel (Gaussian kernel). We
optimize the cost parameter and the kernel width parameter by a grid search using

internal cross-validation.

3. DT: Decision tree using the CART (Classification And Regression Tree) [Breiman et al.,
1984] algorithm.

4. Boost: The boosting algorithm with decision stumps (one level decision trees) as weak
learners. We use the Gentle AdaBoost algorithm [Friedman et al., 2000] because it is
known to be more robust than the original AdaBoost algorithm [Schapire and Singer,
1999]. We set the maximum number of boosting iterations to 100.

5. KNN: The k-nearest neighbors classifier. We set the number of neighbors 2 =5 and use
the Euclidean distance to measure the similarity between instances.

6. MBST: The recently proposed Model Based Search Tree (MBST) algorithm [Fan et al.,
2008], which uses frequent pattern mining to build a decision tree. The basic idea is to
partition the data in a top down manner. That is, at each node of the tree: 1) invoke a
frequent pattern mining algorithm, 2) select the most discriminative pattern (according
to IG), 3) divide the data into two subsets, one containing this pattern and the other not,
and 4) repeat the process recursively on the two subsets.

7. FP-IG: This method ranks the frequent patterns according to information gain and se-
lects the top 50 patterns for classification.

8. MPP: Our proposed method, which ranks the MPPs (patterns that satisfy Definition 2
using significance parameter 6 = 0.95) according to the Bayesian score and selects the

top 50 patterns for classification.
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The first five methods (SVM, SVM RBF, DT, Boost and KNN) are standard classification
methods that work directly on the original feature space®. On the other hand, MBST, FP-
IG and MPP are pattern based classification methods that expands the feature space with
additional patterns. The classification model for FP-IG and MPP is built by learning a
linear SVM classifier in the space of the original features plus the induced patterns (see
Section 3.3).

For FP-IG and MPP, we set the local minimum support (o) to 10% of the number of
instances in the class. For MBST, we found that its performance (execution time and clas-
sification accuracy) is very sensitive to the invocation minimum support parameter. Un-
fortunately, the authors did not provide guidance on how to set this parameter. We tried
many values and found that setting the invocation minimum support to 25% is a reasonable
choice for our datasets. Note that setting it to lower values made MBST computationally
prohibitive on several datasets.

All results are reported using averages obtained via 10-fold cross-validation, where the

same train/test splits are used for all compared methods.

3.6.3.2 Results on Synthetic Data We first start by showing results on a synthetic
dataset because this allows us to better understand the relation between the methods and
their classification performance.

We use the 3 circles dataset, which consists of 20 numerical features (F; to Fgp) and
a trinary class variable Y: dom(Y) = {y1, ¥2,y3}. The relation between the class labels and
features F'; and Fy is shown in Figure 16:a, where each class label is shown with a dif-
ferent color. The other features (F's to Fy) are just noisy features that follow a Gaussian
distribution N(0,02), where o2 is approximately the same as the variance of F; and Fs.

Since this data is numeric, discretization should be applied in order to do pattern mining
(for MBST, FP-1G and MPP). Figure 16:b shows the data after applying [Fayyad and Irani,
1993] supervised discretization method. As we see, F1 and Fy were divided into 5 bins

each. The other noisy features were divided into 2 bins each (the minimum number of bins)

8SVM RBF implicitly maps the data into a high dimensional space, but performs all computations in the
original feature space using the kernel trick
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Figure 16: On the left (a), we show the 3 circles synthetic dataset projected on the 2D plane
defined by features F; and Fy. On the right (b), we show the data after applying [Fayyad

and Irani, 1993] discretization.

because they do not contain any discriminative signal.

Figure 17 shows the classification accuracy on the 3 circles dataset. Let us first discuss
the performance of the classical classification methods. Linear SVM completely fails on this
datasets (with accuracy close to random guessing) because the classes cannot be linearly
separated. SVM RBF improves the performance over linear SVM because of its ability to
define non-linear decision boundaries. However, because the data contain a lot of noise (only
2 out of the 20 features are useful for classification), SVM RBF does not always generalize
well to the testing examples. Both DT and boost perform well on this data. KNN performs
poorly because the presence of noisy features makes the Euclidean distance is inappropriate

for measuring similarity between the data instances.

Now, Let us discuss the performance of the pattern-based classification methods. Notice
that the discretized 3 circles dataset (Figure 16:b) contains several patterns that are impor-

tant for classification. For example, all instances that satisfy pattern F; =1 belong to the
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black class and all instances that satisfy pattern F; =3 A Fy =3 belong to the red class.
Figure 17 shows that MBST also does not perform very well on this data and is out-
performed by simple decision tree (DT). FP-IG performs poorly because it evaluates the
patterns individually, hence it ends up selecting many spurious patterns that are not useful
for classification. For example, a spurious pattern such as F{ =3A A Fo =3 A F1p=1 have
a higher information gain score than an important pattern such as F; = 2. Finally, MPP is

the best performing method and achieves an accuracy of 98.9%.

B SVM ESVM_RBF @DT O Boost
B KNN O MBST W FP-1G | MPP
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Figure 17: The classification accuracy (%) of the different classifiers (see Section 5.7.2.1) on

the 3 circles synthetic dataset.

3.6.3.3 Results on UCI Datasets Table 7 shows the classification accuracy on the UCI
datasets. We can see that MPP is the best performing method on seven out of the fifteen

datasets. Figure 18 summarizes the results of Table 7 in a graphical form.
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Dataset SVM | SVM RBF | DT | Boost | KNN | MBST | FP-IG | MPP

Lymphography || 86.52 88 76.67 | 84.62 | 85.14 | 83.05 | 88.71 | 90.05

Parkinson 87.54 88.13 86.04 | 90.62 | 91.26 | 87.49 | 85.99 | 92.10

Heart 85.19 84.07 76.67 80 | 81.11 | 75.56 | 83.59 | 85.19
Hepatitis 78.86 85.19 72.23 | 79.17 | 80.62 | 83.17 | 82.42 | 85.32
Diabetes 75.91 77.08 71.10 | 76.04 | 74.10 | 77.47 | 76.17 | 76.43

Breast cancer || 71.31 75.15 68.15 | 71.27 | 74.82 | 69.19 | 72.36 | 74.82

Nursery 75.61 84.08 87.59 | 75.74 | 78.14 | 88.69 | 89.32 | 96.64

Red wine 61.29 69.10 66.30 | 64.36 | 61.85 | 61.36 | 63.30 | 63.67

Mammographic || 81.06 83.56 80.34 | 82.10 | 80.96 | 83.76 | 82.83 | 83.14

Tic tac toe 65.34 89.66 86.74 | 83.71 | 84.76 | 79.12 100 100

Ionosphere 86.04 94.28 88.56 | 93.45 | 84.65 | 87.17 92 92.30

Kr vs kp 95.99 97.94 99.31 | 96.56 | 94.68 | 95.77 | 96.81 | 97.03

Pen digits 98.29 99.50 95.78 | 96.89 | 99.32 | 68.52 | 98.81 | 98.74

Zoo 100 100 98.57 | 100 | 97.32 | 98.57 100 100
WDBC 97.72 96.66 92.45 | 97.89 | 96.83 | 94.22 | 97.72 | 97.72
# wins 2 5 1 2 0 2 2 7

Table 7: The classification accuracy (%) of the different classifiers (see Section 5.7.2.1) on

the UCI datasets.

3.6.4 Mining Efficiency

In this section, we present our experiments for comparing the efficiency of several pattern

mining methods. The purpose is to show that our proposed pruning techniques can greatly
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Figure 18: Comparing the classification accuracies for different methods on the UCI
datasets against MPP. Every point corresponds to a specific method on a specific dataset: its
y-coordinate represents its accuracy and its x-coordinate represents the accuracy of MPP for
the same dataset. Points above the diagonal correspond to methods that outperform MPP

and points below the diagonal correspond to methods that are outperformed by MPP.

improve the efficiency of frequent pattern mining.

3.6.4.1 Compared Methods We compare the running time of the following methods:

1. FPM: A frequent pattern mining method, which corresponds to the first phase of any
two-phase method [Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrac,
2006, Exarchos et al., 2008, Deshpande et al., 2005, Li et al., 2001b]. We use the algo-
rithm by [Zaki, 2000], which applies the vertical data format (see Section 2.2.3).

2. MBST: The Model Based Search Tree (MBST) method [Fan et al., 2008], which uses

frequent pattern mining to build a decision tree (see Section 5.7.2.1).
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3. MPP-naive: This method mines MPPs using a naive two-phase implementation, which
first applies FPM (the first phase) and then evaluate all frequent patterns (the second
phase).

4. MPP-lossless: This method mines MPPs by integrating pattern evaluation with fre-
quent pattern mining. It applies only the lossless pruning described in Section 3.5.4.1.

5. MPP-lossy: Our proposed method, which mines MPPs by integrating pattern evaluation
with frequent pattern mining. It applies both the lossless pruning and the lossy pruning

described in Section 3.5.4.2.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon

3GHz CPU and 16GB of RAM. All methods are implemented in MATLAB.

3.6.4.2 Results on UCI Datasets Table 8 shows the execution time (in seconds) of the
compared methods on the UCI datasets. We use the same settings as before (see Section
5.7.2.1): For FPM, MPP-naive, MPP-lossless and MPP-lossy, we set the local minimum sup-
port (o) to 10%. For MBST, we set the invocation minimum support to 25%.

The results show that scalability is a concern for FPM, MPP-naive and MBST. For ex-
ample, these methods are very slow on the parkinson, hepatitis, ionoshpere and WDBC
datasets. In comparison, MPP-lossless is faster due to its lossless pruning and MPP-lossy is
much faster due to its lossy pruning. Consider for instance the parkinson dataset. Mining
all frequent patterns took 9,866 seconds, MBST took 5,159 seconds and MPP-naive took
10,832 seconds. On the other hand, MPP-lossless took 828 seconds (an order of magnitude
faster than FPM) and MPP-lossy took only 37 seconds (more than two orders of magnitude
faster than FPM). This shows that our pruning techniques can significantly improve the
mining efficiency.

Effectiveness of the lossy pruning: Remember that the lossy pruning heuristic used
by MPP-lossy does not guarantee the completeness of the result (see Section 3.5.4.2). Here,
we discuss its effectiveness by examining the number of MPPs that are missed when we
apply the lossy pruning. In turned out that on ten out of the fifteen datasets (namely, lym-
phography, heart, hepatitis, diabetes, breast cancer, nursery, mammographic, tic tac toe,

tonosphere and zoo), MPP-lossy did not miss any MPP. On the parkinson, red wine, Kr vs
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Dataset FPM | MBST | MPP-naive | MPP-lossless | MPP-lossy
Lymphography 335 568 344 154 22
Parkinson 9,866 | 5,159 10,832 828 37
Heart 41 143 57 38 9
Hepatitis 1,121 | 1,808 1,156 394 35
Diabetes 3 16 6 6 2
Breast cancer 3 13 4 4 2
Nursery 2 3 11 9 8
Red wine 24 73 52 52 11
Mammographic 1 2 1 1 1
Tic tac toe 2 7 4 4 3
Ionosphere 16,580 | 3,522 16,809 1,080 814
Kr vs kp 175 538 535 479 104
Pen digits 70 23 137 135 121
Zoo 183 116 242 23 4
WDBC 2,305 | 1,834 5,182 270 73

lossy pruning.

3.6.4.1) on the UCI datasets.
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Table 8: The mining time (in seconds) for the different pattern mining methods (see Section

KP, pen digits and WDBC datasets, MPP-lossy misses on average 1.6%, 2.1%, 1.5%, 2.1%
and 0.9% (respectively) of the total number of MPPs. This small loss in completeness can

be often tolerated in exchange for the large gain in efficiency that is obtained by using the

Changing the minimum support threshold: Let us now compare the execution time




of the different methods using different minimum support thresholds. Figure 19 shows the
execution time (on logarithmic scale) of FPM, MPP-naive, MPP-lossless and MPP-lossy on
the lymphography dataset and on the hepatitis dataset. We did not include MBST because

it is very inefficient for low minimum support thresholds.
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Figure 19: The mining time (on logarithmic scale) for the different pattern mining methods
using different support thresholds on the lymphography dataset (a) and the hepatitis dataset
(b).

We can see that the execution time of FPM and MPP-naive exponentially blows up when
the minimum support decreases. On the other hand, MPP-lossless controls the complexity
and the execution time increases much slower when the minimum support decreases. For
example, by setting the minimum support to 5% for hepatitis, MPP-lossless becomes more
than 15 times faster than FPM. Finally, MPP-lossy is very fast and it scales up much better

than the other methods when the minimum support is low.
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3.7 SUMMARY

In this chapter, we studied pattern mining in the supervised setting and presented the
minimal predictive patterns (MPP) framework. Our framework relies on Bayesian inference
to evaluate the predictiveness of patterns. It also considers the structure of the patterns to
ensure that each pattern in the result offers a significant predictive advantage over all of its
generalizations. We presented an efficient algorithm for mining the MPP set. In contrast
to the widely used two-phase approach, our algorithm integrates pattern evaluation with
frequent pattern mining and applies several pruning techniques to improve the efficiency.
Our experimental evaluation on several synthetic and real-world data illustrates the

following benefits of our work:

1. The MPP framework is able to explain and cover the data with fewer rules than existing
rule mining methods, which facilitates the process of knowledge discovery.
2. Pattern-based classification using MPPs outperforms many well known classifiers.

3. Mining MPPs is more efficient than mining all frequent patterns.
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4.0 TEMPORAL PATTERN MINING

In Chapter 2, we discussed mainly the related research on pattern mining for attribute-
value data (atemporal data). Now, we focus our attention to temporal data, which require
different tools and techniques than those used for atemporal data.

This chapter provides an overview of the related research on temporal pattern mining.
Our objective is not just to enumerate the methods proposed so far, but also to classify and
organize them in a way that makes it easier to compare and contrast the different methods.

The rest of this chapter is organized as follows. Section 4.1 provides our categorization
of the different types of temporal data, which will be used throughout the chapter. Section
4.2 reviews methods for classifying temporal data. Section 4.3 describes pattern mining
methods for time point data. Section 4.4 describes pattern mining methods for time interval
data. Section 4.5 describes temporal abstraction techniques for converting numeric time

series into time interval sequences. Finally, Section 4.6 summarizes the chapter.

4.1 TEMPORAL DATA MODELS

Temporal data usually refers to any type of data that explicitly or implicitly capture the
notion of time or define a specific order. For example, even when time is not explicit and only
an ordering is given, we may still consider the data to be temporal (e.g., DNA sequences).
We say that the temporal data is univariate if the data instances consist of measure-
ments of a single variable over time. We say that the data is multivariate if the data
instances consist of measurements of multiple variables over time. Multivariate temporal

data appear in a wide variety of domains, such as health care [Hauskrecht et al., 2010, Sac-
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chi et al., 2007, Ho et al., 2003], sensor measurements [Jain et al., 2004], intrusion detection
[Lee et al., 2000], motion capture [Li et al., 2009], environmental monitoring [Papadimitriou

et al., 2005] and many more.

We say that the temporal data is regularly sampled in time if the time between con-
secutive events is uniform (the same for all pairs of consecutive events). Otherwise, the data
is irregularly sampled in time. The latter is often the case for electronic health records®,

which is the focus of this thesis.

Temporal data can be also classified based on the values of its observations. If the val-
ues are numerical, we have numeric time series (see Figure 20:a). If the values are dis-
crete (belong to a finite alphabet X), we have symbolic sequences. For example, a DNA
sequence (Figure 20:b) is a symbolic sequence, where the alphabet represents the 4 possi-
ble nucleotides X = {A,G,C,T}. Figure 20:c shows an example of a multivariate symbolic
sequence that is irregularly sampled in time. In this example, there are 3 temporal vari-
ables F'1, Fs and F3 and the observations belong to alphabet > = {A,B,C,D}?. A real world
example of such multivariate symbolic sequences are log messages that are emitted from
multiple machines or alarms that are emitted in a telecommunication network [Mannila
et al., 1997]. Note that symbolic sequences can also be obtained from numeric time series

using discretization [Lin et al., 2003, Yang et al., 2005].

In some cases, the data do not consist of time points, but of time intervals that have
durations and are associated with specific start and end times. For example, the data may
express temporal concepts such as: “the patient underwent cancer chemotherapy from day
11 until day 15 of his hospitalization”. In this case, we have state sequences, where each
state holds during a specific time interval. Figure 20:d shows an example of a multivariate
state sequence, where there are 3 temporal variables F1, F's and F5 and the states belong to
alphabet ~ ={A,B,C,D}. Note that state sequences can also be obtained from numeric time

series using temporal abstraction, which will be discussed in Section 4.5.

Finally, for each temporal data model, the database may consist of a single long se-

IThe time period between the consecutive lab measurements usually varies within the same patient (de-
pending on his clinical situation) and also across different patients.

2If the different temporal variables take different sets of values, the alphabet is defined as the union of all
such values.
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Figure 20: Illustrating different temporal data models: the upper left (a) is a univariate

numeric time series, the upper right (b) is a univariate symbolic sequence, the bottom left

(c) is a multivariate symbolic sequence and the bottom right (d) is a multivariate state

sequence.

quence or multiple (short) sequences. Examples of the former are weather data [Hopp-

ner, 2003] or stock market data (may be collected over several years). Examples of the latter

are web-click data, customer shopping profiles [Agrawal and Srikant, 1995], telephone calls,

electronic health records [Hauskrecht et al., 2010], etc. Long sequences are usually mined

using a sliding window approach, where a window of a specific width is slid along the se-

quence and only patterns that are observed within this window are considered to be valid

[Mannila et al., 1997, Hoppner, 2003, Moerchen, 2006b].




4.2 TEMPORAL DATA CLASSIFICATION

In this section, we review commonly used methods for classifying temporal data. First,
let us make a distinction between temporal classification and time series forecasting. The
task of temporal classification is defined as follows: “Given an unlabeled sequence or time
series T, assign it to one of predefined classes”. On the other hand, the task of time series
forecasting is defined as follows: “Given a time series T that contains n data points, predict
its future values at time n+1,n+2,...”. We start by briefly reviewing the most common time
series forecasting methods. After that, we discuss in more details temporal classification

methods, which are more related to the topic of the thesis.

In time series forecasting, the goal is to learn a model that can predict future values
of a time series based on its past values. This area has been extensively studied in statistics
[Shumway and Stoffer, 2006]. One of the most popular techniques is Auto-Regressive In-
tegrated Moving Average (ARIMA), which fits a parametric model that approximately gen-
erates the values of the time series and uses it to predict the future values. Generalized
Auto-Regressive Conditional Heteroscedastic (FARCH) is another popular method that is
used to model changes of variance along time (heteroskedasticity). Recurrent Neural Net-
works (RNN) [Rojas, 1996] is a machine learning approach that extends neural networks to
the temporal domain. The idea is to add a context node to the hidden layer to summarize
the network output at time ¢. This node is fed as input to the network at time ¢+ 1, which
creates a directed cycle in the network. This modification allows RNN to capture dynamic

temporal behavior.

In temporal classification, each sequence (time series) is assumed to belong to one
of finitely many predefined classes and the goal is to learn a model that can classify future
sequences. There are many practical applications of temporal classification, such as classi-
fying Electroencephalography signals [Xu et al., 2004], speech recognition [Rabiner, 1989],
gesture recognition [Li et al., 2009], handwritten word recognition [Plamondon and Srihari,

2000] and more. In the following, we describe the main temporal classification approaches.
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4.2.1 The Transformation-based Approach

This approach applies a space transformation on the original time series and learn the
classification model in the transformed space. It is mostly used when the data instances are
univariate numeric time series.

The most straightforward transformation is to represent every time series of length n
as a point in an n-dimensional Euclidean space and then apply standard machine learning
methods. However, this approach is often limited because it completely ignores correlations
between the consecutive time points, which is usually very informative for classification.

To overcome this shortcoming, a transformation can be applied to de-correlate the fea-
tures (the time series points) and reveal structures that are often hidden in the time domain.
In [Batal and Hauskrecht, 2009], time series are first transformed from the time domain into
a frequency domain using Discrete Cosine Transform (DCT), or into a joint time-frequency
domain using Discrete Wavelet Transform (DWT). After that, feature selection is performed
on the transformed representation in order to select the classification features. The exper-
iments showed that this method is able to outperform classifiers that are built using the
original time series (without any transformation). [Ye and Keogh, 2009] introduced a trans-
form based on shapelets, which are are time series subsequences that are in some sense

maximally representative of of class membership.

4.2.2 The Instance-based Approach

This approach stores all training instances and defers the classification of a new instance
until the time it is encountered (lazy classification). The most common instance-based
method is k-nearest neighbor (KNN), which classifies an instance by taking a majority vote
of its £ nearest neighbors.

The success of KNN heavily depends on the quality of the distance metric. For time
series data, using simple metrics such as the Euclidean distance may result in poor classi-
fication performance, especially when time series from the same class are similar in shape,
but are not perfectly aligned on the time axis (with phase shifts). To overcome this, we

can use the Dynamic Time Warping (DTW) [Ratanamahatana and Keogh, 2005], which has
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the ability to warp the time axis of the compared time series in order to achieve a better
alignment. The work by [Xi et al., 2006] shows that the 1NN classifier with DTW is an
exceptionally accurate method for classifying univariate numeric time series, such as the
benchmark data provided by [Keogh et al., 2010].

For classifying univariate symbolic sequences, such as gene sequences or protein se-
quences, we can apply KNN with the edit distance (Levenshtein distance) [Levenshtein,
1966]. This distance is defined as the minimum number of edits needed to transform one
symbolic sequence into the other, with the allowable edit operations being insertion, dele-
tion, or substitution of a single symbol.

Note that instance-based approaches are not used for classifying multivariate time series
or multivariate sequences. The reason is that it is very difficult to define a meaningful

distance metric to compare instances for such data.

4.2.3 The Model-based Approach

This approach learns a parametric model (usually a probabilistic model) from the training
data and uses it for classification. The most common model-based method for temporal
classification is the Hidden Markov Model (HMM) [Rabiner, 1989]. HMM is very popular for
many applications, such as speech recognition, gesture recognition, part-of-speech tagging
and bioinformatics. The common way to use HMM for temporal classification is to apply the

following two phases [Blasiak and Rangwala, 2011]:

* Training phase: Learn a separate model for each class label using the Baum-Welch
algorithm.

* Testing phase: Classify the test sequence by evaluating its probability under the differ-
ent models (using the forward algorithm) and assigning it to the class corresponding to

the most probable model.

The Conditional Random Field (CRF) model [Lafferty et al., 2001] is a discriminative
model that conditions on the entire observation sequence. It is more flexible that HMM be-
cause it avoids the need for independence assumptions between observations. CRF has been

recently applied for temporal classification. [Vail et al., 2007] showed that CRF outperforms
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HMM on an activity recognition task.

HMM and CRF can be applied on univariate symbolic sequences, univariate time se-
ries and multivariate time series. However, both models assume that the observations are
equally spaced in time. Hence, they cannot be applied on irregularly sampled temporal data,

such as the electronic health records data.

4.2.4 The Pattern-based Approach

In Section 2.4.4, we discussed several pattern mining methods for classifying atemporal
data. Here, we discuss pattern mining methods for classifying temporal data. We describe
methods that classify symbolic sequences (time point data). We are not aware of any pattern-
based method that was proposed to classify state sequences (time interval data), which is the
focus of our work.

The methods by [Tseng and Lee, 2005, Exarchos et al., 2008] classify symbolic sequences
by applying a two-phase approach, which mines all frequent sequences (sequential patterns)
in the first phase and selects the classification sequences in the second phase. As opposed
to the two-phase approach, the recently proposed method by [Ifrim and Wiuf, 2011] smartly
interleaves pattern selection and frequent pattern mining. It employs gradient-bounded co-
ordinate descent to efficiently select discriminative sequences without having to explore the
whole space of subsequences. Their experiments showed that this method can achieve com-
parable performance to the state of the art kernel-based support vector machine methods
(e.g, [Leslie et al., 2002]) for classifying symbolic sequences.

This thesis focuses on the pattern-based approach. The next two sections discuss in

more details the algorithms for mining time point data and time interval data.

4.3 TEMPORAL PATTERNS FOR TIME POINT DATA

In this section, we review the major approaches for mining symbolic sequences, where the

events are instantaneous and do not have time durations.
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4.3.1 Substring Patterns

The simplest form of patterns that can be extracted from time point symbolic sequences are
the substring patterns [Manber and Myers, 1990, Fischer et al., 2008], which are subse-
quences of symbols that appear consecutively in a sequence (without gaps). For example,
Figure 21 shows the occurrences of substring pattern < B,C,D > in a symbolic sequence.
Discovering such patterns is mostly used in bioinformatics and computational biology for
matching sequences of nucleotides or amino acids. Substring pattern mining is applied on

univariate symbolic sequences that are regularly sampled in time.

ABBCDADBBCDADABCDABAB

Figure 21: An example showing the occurrences of substring pattern < B,C,D > in a sym-

bolic sequence.

4.3.2 Sequential Patterns

Sequential patterns are more general than substring patterns because they do not have to
be consecutive in the sequence (allow gaps). Similar to itemset mining, sequential pattern
mining was initially proposed for analyzing market basket data and customer shopping
behavior [Agrawal and Srikant, 1995]. An example of a sequential pattern is “customers
who buy a Canon digital camera are likely to buy an HP color printer within a month”.

In the following example, we illustrate the main concepts of sequential pattern mining
in the setting of market basket data. However, the presented concepts generalize to other

domains, such as telecommunication data, machine logs, web-click data and more.

Example 13. Consider the data in Table 9, where the alphabet of items is £ ={A,B,C,D}
and there are 5 transactions T to Ts. Each transaction is a sequence of events (customer

visits to the supermarket) and each event can be a single item or a set of items (items bought
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by the customer on the same trip to the supermarket). For example, customer T1 bought
first item A, then item C, then items B and A together. We can see that sequential pattern
P, =<C,B > (C followed by B) appears in transactions T1, Ts, T's and T4, hence sup(P1) =4,

while sequential pattern Po =< B,C > appears only in transaction T4 and hence sup(P3) = 1.

Transaction | sequence of items
T <A,C,(B,A)>
T <C,(D,A),B >
Ts <A,C,B,A>
Ty <C,B,D),A,C)>
Ts <B,D >

Table 9: An example of a sequence data.

The standard sequential pattern mining framework only cares about the order of events
rather than their exact times. Therefore, sequential pattern mining does not require the
original sequences to be regularly sampled in time. Note that the application of sequential
pattern mining goes far beyond the market basket analysis task. It can be applied to any
kind of univariate or multivariate symbolic sequences.

In the following, we first outline the most common sequential pattern mining algorithms
and then discuss how to reduce the number of sequential patterns using temporal con-
straints.

Mining algorithms: The first algorithm for mining frequent sequential patterns was
proposed by [Agrawal and Srikant, 1995], which is based on the Apriori approach (see Sec-
tion 2.2.1). PrefixSpan [Pei et al., 2001] mines sequential patterns using the pattern growth
approach (see Section 2.2.2) and SPADE [Zaki, 2001] uses the vertical data approach (see
Section 2.2.3). CloSpan [Yan et al., 2003] and BIDE [Wang and Han, 2004] are two efficient
methods for mining closed sequential patterns (see Section 2.3.1 for the definition of closed
patterns).

Temporal Constraints: Mining the complete set or even the closed set of frequent

sequential patterns usually leads to results that are too large to be analyzed by humans.
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Many of the concise representations described in Section 2.3 can be applied for compressing
sequential patterns. Another way to reduce the number of sequential patterns is to impose
temporal constraints on the patterns. One common temporal constraint is to restrict the
total duration of the pattern. For example, we may specify that the total pattern duration
must not exceed w time unites (e.g., 6 months). This constraint translates to defining a
sliding window of width w and mining only sequential patterns that can be observed within
this window. Another common temporal constraint is to define the maximum gap that is
allowed between consecutive events in a pattern. For example, we may specify that the
difference between consecutive events should not be more than g time units (e.g., 2 weeks).
Incorporating temporal constraints in the Apriori approach is described in [Srikant and

Agrawal, 1996] and in the pattern growth approach is described in [Pei et al., 2007].

4.3.3 Episode Patterns

We saw that sequential patterns are used to express order among events. Episode pat-
terns [Mannila et al., 1997, Méger and Rigotti, 2004] are more general than sequential
patterns because they can also express the concept of concurrency. [Mannila et al., 1997]

defined two special types of episodes:

1. Serial episodes: express order of events (equivalent to a sequential pattern with a

maximum pattern duration constraint).

2. Parallel episodes: express concurrency of events (the order does not matter).

In general, an episode is a combination of serial and parallel episodes. For example, an
episode can be a sequence of parallel episodes or a parallel combination of serial episodes.
Episodes are usually represented as a directed acyclic graph of events whose edges specify
the temporal order of events. On the right of Figure 22, we show an example of an episode
pattern that is a parallel combination of two serial episodes < Fo =C, F; =A > and < F3 =
D, F3 = B >. Note that this episode represents only a partial order because the relation
between Fy = C and F3 = D is unspecified. On the left of Figure 22, we show the occurrences

of this episode in a multivariate symbolic sequence using a sliding window.
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Figure 22: An example showing the occurrences of episode pattern (< Fo =C,F1 = A >,<

F3=D,F3=B >)in a multivariate symbolic sequence using a sliding window.

Although these episodes are able to represent partial order patterns, not every partial
order pattern can be represented as a combination of serial and parallel episodes. [Casas-
Garriga, 2005] proposed an algorithm for mining all partial order patterns. However, their

algorithm is computationally very expensive and does not scale up to large data.

4.4 TEMPORAL PATTERNS FOR TIME INTERVAL DATA

In this section, we review the main approaches for mining state sequences, where the events

have time durations.

4.4.1 Allen’s Temporal Relations

The temporal relation between two time points can be easily described using the following
three relations: before, equals (at the same time) and after. However, when the events
have time durations, the relations become more complex. The most common way is to use
Allen’s temporal relations [Allen, 1984], which were introduced in artificial intelligence

for temporal reasoning and have been later adopted in the research for mining time interval
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data [Kam and Fu, 2000, Hoppner, 2003, Papapetrou et al., 2005, Winarko and Roddick,
2007, Patel et al., 2008, Moskovitch and Shahar, 2009].

Allen formalized a logic on time intervals (states) by specifying 13 different temporal
relations and showing their completeness. Any pair of states are temporally related by one
of the following 13 relations: before, meets, overlaps, is-finishes-by, contains, starts; their
corresponding inverses: after, is-met-by, is-overlapped-by, finishes, during, is-started-by and

the equals relation (see Figure 23).

E T E, E4 before E, E, after E,

€y E, Eq meets E, E, is-met-by E

€1 E, Eqoverlaps E; | E, is-overlapped-by E4
ST E, is-finished-byE, |  E, finishes E;

€1 E, E4 contains E, E, during E4
E;__ E, starts E, E, is-started-by E,
E; — E4equals E, E, equals E4

Figure 23: Allen’s temporal relations.

Allen’s relations can precisely describe the temporal relation between two states. How-
ever, it is less obvious how to describe the temporal relations for a pattern with multiple
states. In the following, we outline the most common time interval pattern representations
and discuss several mining algorithms. We will see that most of these algorithms are exten-
sions of sequential pattern mining algorithms [Srikant and Agrawal, 1996, Zaki, 2001, Pei
et al., 2001, Yan et al., 2003, Lin and Lee, 2005] to handle time intervals?®.

In order to simplify the notations in the subsequent sections, we use a subscript next
to each state to denote its temporal variable. For example, in Figure 24, state A; means

F{=A, state Dy means Fy =D and state Bg means F3 = B.

3Sequential pattern mining is a special case of time interval pattern mining, in which all intervals are
instantaneous with zero durations.
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4.4.2 Early Approaches

[Villafane et al., 2000] is the earliest work in the area of mining time interval patterns. Their
temporal patterns are restricted to having only containment relations, which corresponds to
Allen’s contains relation. An example of such patterns is “during a FLU infection, a certain
strain of bacteria is often found on the patient”.

[Kam and Fu, 2000] is the first to propose using Allen’s relations for defining temporal
patterns. Their temporal patterns, called the Al patterns, are based on a nested repre-
sentation which only allows concatenations of temporal relations on the right hand side of
the pattern. For example, P1 = ((A1 before D3) overlaps B3) is interpreted as: “state A; is
before state Do and the interval that contains both A; and D overlaps with state Bs”. Fig-
ure 24 shows a graphical representation of a situation that matches pattern P;. Note that
this representation is ambiguous because the situation in Figure 24 can be also described
as: Py = ((A1 overlaps B3) contains Ds) (“state A overlaps state Bs and the interval that
contains both A; and B3 contains state Ds”). That is, the exact same situation in the data

can be described by multiple Al patterns, which is an undesirable property.

Fy i
D,
FZ —
Fs Bs .

Figure 24: The pattern in this figure can be described by several Al patterns, such as
((A1 before D3) overlaps Bs) and ((A1 overlaps Bs) contains Dg). This illustrates the am-

biguity of the nested representation.

4.4.3 Hoppner Representation

[Hoppner, 2003] proposed the first non-ambiguous representation for defining time interval

patterns. The idea is to first define the normalized form of temporal patterns, where the

82



states of a pattern are always sorted in increasing index according to their start times, end
times and value*. Now in order to define a temporal pattern with % states (a k-pattern), we
should specify the relations for all pairs of states. However, since the patterns are in the
normalized form, we only need 7 of the 13 Allen’s relations, namely: before, meets, overlaps,
is-finished-by, contains, starts and equals.

Figure 25 shows an example of a temporal pattern with states A, Bs and Dy. The
matrix on the right of the figure specifies the relations for all pairs of states. Because the
pattern is in normalized form, it suffices to only specify the relations between each state
and all of its following states (only using the upper triangular matrix). Therefore, defining
a k-pattern requires specifying all of its 2 states and specifying all & x (k¢ — 1)/2 relations
between the states. Hence the “cost” of this representation is & + k& x (k — 1)/2, where the cost

is informally defined as the effort needed to describe a pattern to the user.

F1 Al A, B, D,
———
D, A, Equals Overlaps Before
Fp —— B, Overlapped-by Equals Contains
Fg . B3 . D2 After During Equals

Figure 25: A temporal pattern represented using Hoppner’s non-ambiguous representation.

For mining these patterns, [Hoppner, 2003] used a sliding window approach to extract
local temporal patterns (i.e., patterns with limited total durations) from a single long mul-
tivariate state sequence (weather data). He defined the support of a pattern to be the total
time in which the pattern can be observed within the sliding window. Note that this defi-
nition is different from the conventional support definition, which is the number of times a
pattern appears in the data. His algorithm extends Apriori for sequential patterns [Agrawal
and Srikant, 1995] to handle the more complex case of time interval patterns.

Later on, the same pattern representation as [Hoppner, 2003] was independently de-

4We first sort all states by their start times. If two states have the same start time, we sort them by their
end times. If they also have the same end time, we sort them alphabetically.
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scribed by [Papapetrou et al., 2005, Winarko and Roddick, 2007]. [Papapetrou et al., 2005]
proposed the hybrid-DFS method, which uses a tree-based enumeration algorithm like the
one introduced by [Bayardo, 1998]. [Winarko and Roddick, 2007] proposed the ARMADA
algorithm, which extends a sequential pattern mining algorithm called MEMISP [Lin and

Lee, 2005] to mine time interval patterns.

4.4.4 Other Representations

[Moerchen, 2006a, Moerchen, 2006b] proposed the Time Series Knowledge Representation
(TSKR) as an alternative to using Allen’s relations. This representation is based on the
concept of cords, which describe coincidence (overlapping) of several states. Figure 26
shows the same pattern in Figure 25 in the TSKR format. The cords of this pattern are
<A1,A1B3,B3,D9B3,B3 >, which mean that state A; is first observed alone, then both A;
and B3 are observed, then Bs alone and so on. Mining TSKR patterns was done by modifying
the CloSpan algorithm [Yan et al., 2003] and using a sliding window approach. Moerchen

also proposed mining patterns that describe partial order of cords, which he called phrases.

A
Fy 1
D,
F»
F, Bs
A, |A/B, |B, | D,B, |B,

Figure 26: A temporal pattern represented using the TSKR representation.

In [Sacchi et al., 2007], the user is required to define beforehand a set of complex pat-
terns of interest, which are called Abstractions of Interest (Aol). These Aol constitute the
basis for the construction of temporal rules. A temporal association rule is defined as A = ¢,

where A is a set of Aol and c is a single Aol. The temporal rule holds when the precedes re-
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lation is satisfied between the antecedent (A) and the consequent (c¢). This relation requires

specifying three parameters (see Figure 27):

1. Left shift: the maximum allowed time between the start of ¢ and the maximum start of
the patterns in A.

2. Gap: the maximum allowed time between the start of ¢ and the minimum end of the
patterns in A.

3. Right shift: the maximum allowed time between the end of ¢ and the minimum end of

the patterns in A.

As we can see, this representation relies on the user to define the Aol and to specify the

three parameters of the proceeds relation.

Antecedent Consequent
i
1 ————————
I [
|:',:| 1 1
1 1 1 1
| 1 Left shift : :
1€ I >
1 1 1
1 L Gap 5! 1
1
: 4 Right shift | b,
1 I I 1
1 1 ! !
1 1 1 1
time

Figure 27: Illustrating the three parameters of the precedes relation for a rule that has two

Aol in the antecedent.

[Patel et al., 2008] realized the ambiguity of the nested representation of [Kam and
Fu, 2000] and proposed augmenting this representation with additional counts to make it
unambiguous. However, the resulting patterns are very complicated and hard to interpret.
Besides, there was no clear justification (nor a comparison) for using this representation
instead Hoppner’s representation that is already non-ambiguous and easier to understand.

[Wu and Chen, 2007] proposed a very different interval pattern language, where every
state S in the data is represented by its two interval boundaries: 1) the time S appears,

denoted as S* and 2) the time S disappears, denoted by S~. An interval pattern is repre-
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sented as a sequence of its state boundaries. Because this representation only deals with
time points (as opposed to time intervals) and sorts the boundaries according to their times,
it suffices to use only two relations: before (<) and equals (=) to describe any temporal pat-
tern.

Figure 28 shows the same pattern in Figure 25 represented as A7 <Bj <A <Dg <
D, <Bj. As we can see, representing a k-pattern in this framework requires specifying the
k states and 2 x k — 1 relations between their boundaries. Hence, the cost of this represen-
tation is £ + 2 x k£ — 1. This representation can be considered more compact than Hoppner’s
representation (which has a cost of £ + & x (k — 1)/2) when the patterns are large. However,

it may be less intuitive and harder to communicate with the experts.

Ay

AY B AV DS B B

Figure 28: A temporal pattern represented by the order of its state boundaries.

In order to mine these patterns, the algorithm by [Wu and Chen, 2007] first converts all
state sequences in the data into sequences of state boundaries and then employs a sequen-
tial pattern mining algorithm. This algorithm is modification of PrefixSpan [Pei et al., 2001]
that adds additional constraints to ensure that the sequential state boundary patterns cor-
respond to valid time interval patterns. For example, patterns like A7 <AJ or AT <B; <A7
will be suppressed from the results.

It is important to note that there is a one-to-one correspondence between this represen-
tation and Hoppner’s representation. In other words, both representations give the same

result if they are applied on the same data with the same minimum support.
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The work of [Moerchen and Fradkin, 2010] is similar to [Wu and Chen, 2007] in that
they represent the states by their boundaries. However, the difference is that [Moerchen
and Fradkin, 2010] do not force the mined patterns to be proper time interval patterns,
which results in what they call Semi-Interval Sequential Patterns (SISP). According to their

definition, patterns like AT < A7 or A7 <B;, < A7 are considered to be valid results.

As an example, consider A] < B} < A7 <D;. This SISP matches all three Hoppner’s
5

K

patterns in Figure 29. As we can see, SISPs are always a super set of Hoppner’s patterns

which the authors claim is the advantage of this representation (a more flexible representa-

tion).
:\1 fxl Al
G ——D o—
D, D, D,
G— G [ ——)
B; B, B;
@ ) G (—

Figure 29: Three different Hoppner’s patterns that match SISP: A7 <B; <A] <Dj.

However, using this representation has the following disadvantages:

1. It usually returns a huge number of patterns®.

2. Patterns do not describe precise situations in the data (Figure 29). For example, SISP
A7 < B, does not tell us much about the temporal relation between state A; and state
Bs. 1t is possible that By contains A1, A1 overlaps By or A1 before By, which are concep-

tually very different situations.

3. The mining is computationally very expensive because the search space is very large.

5A Héppner’s pattern matches only one SISP, while a SISP can match several Hoppner’s patterns.

6As we saw in Section 2.3, one of the most active research in pattern mining is reducing the number of
discovered patterns. This representation blows up the number of temporal patterns, which makes the task of
knowledge discovery much harder.
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4.5 TEMPORAL ABSTRACTION

Temporal abstraction [Shahar, 1997] transforms numeric time series from a low-level
quantitative form into a high-level qualitative form. More specifically, temporal abstraction
segments the numeric time series into a sequence of states, where each state represents a
property that holds during a time interval. These states become the building blocks to con-
struct more complex time interval patterns as we explained in the previous section. That is,
temporal abstraction can be seen as a pre-processing step for time interval pattern mining.
Usually, we would like these abstractions to be meaningful and easy to interpret by humans
so that the resulting patterns would be useful for knowledge discovery. In the following, we
describe the three main temporal abstraction approaches: abstraction by clustering, trend

abstractions and value abstractions.

4.5.1 Abstraction by Clustering

Abstraction by clustering is the process of inductively deriving a set of states for a nu-
meric time series by clustering similar parts of the time series [Das et al., 1998, Kadous,
1999]. In this approach, subsequences (portions of time series) are considered data objects
and clusters correspond to inductively derived states that describe similar subsequences.
More concretely, given a time series T'=(T'1,..,T,) and a window of width w, abstraction by

clustering works as follows:

1. Extract all subsequences of length w using a sliding window.

2. Cluster the set of all subsequences to obtain clusters C1,...,C. Note that this requires
defining a distance metric for measuring similarity between two subsequences of length
w (e.g., the Euclidean distance or dynamic time warping [Ratanamahatana and Keogh,
2005]).

3. Define the abstracted version of T by assigning every subsequence to its corresponding

cluster symbol: 7" = (s (1),5 @), ---»S j(n-w+1)), Where s; is the symbol for cluster C;.

The basic property of abstraction by clustering is that the alphabet is not predefined,

but automatically derived from the data. However, it has the following disadvantages:
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1. The output highly depends on the choice of the window width w, the choice of the dis-

tance metric and the choice of the clustering algorithm.

2. The resulting abstractions are usually very hard to understand by humans because they

do not have intuitive interpretations.

4.5.2 Trend Abstractions

Trend abstractions is the process of partitioning numeric time series based on its local

trends. This is usually done using the following steps:

1. Apply Piecewise Linear Representation (PLR) to approximate the series with straight
lines (Figure 30).

2. Define the abstractions based on the slopes of the fitted lines (segments). For example,
assume we want to use alphabet X = { decreasing, steady, increasing }. We label the
segments that result from applying PLR as following: Given a threshold §, if the slope of
the segment is positive and greater than §, we assign it the label increasing. If the slope
is negative and its absolute value is greater than §, we assign it the label decreasing.

Otherwise, we assign it the label steady.

Figure 30: An example illustrating the piecewise linear representation.

PLR has been also used to support a variety of data mining tasks, such as classification
[Batal et al., 2009, Batal et al., 2011], clustering [Keogh and Pazzani, 1998] and indexing
[Keogh et al., 2001].
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The algorithm for finding a PLR is usually called a segmentation algorithm. It requires
defining a measure to evaluate the fitness of a potential segment. The most common mea-
sure is the residual error, which is the sum of squares of the differences between the actual
time series values and the fitted segment.

The objective of a segmentation algorithm can be formulated in one of the following two

ways:

1. Produce a PLR such that the error for any segment does not exceed a user-specified

threshold e.

2. Produce the “best” PLR using only k& segments.

[Keogh et al., 1993] group time series segmentation algorithms into the following three

categories:

1. Sliding window: This approach works by first anchoring the left point of a potential
segment at the first time point of the time series, then attempting to approximate the
data to its right with increasing longer segments. At some point i, the error for the
potential segment becomes greater than €, so the subsequence from the anchor to point
i — 1 is transformed into a segment. The anchor is then moved to location i and the
process repeats until the entire time series is segmented. This algorithm is attractive
because it is very simple, intuitive and online in nature.

2. Top-down: This approach works by considering every possible two-ways partitioning of
the time series and splitting it at the best location. Both segments are tested to check
whether the stopping condition is satisfied (the errors of all segments is below € or the
total number of segments is k). If not, the algorithm recursively continues splitting the
subsequences until the stopping condition is satisfied.

3. Bottom-up: This approach begins by creating the finest possible segmentation of the
time series, so that n/2 segments are used to approximate a time series of length n.
Next, the cost of merging each pair of adjacent segments is calculated and the algorithm

iteratively merges the lowest cost pair until the stopping condition is satisfied.

Note that both top-down and bottom-up allow the user to specify the maximum error per

segment € or to specify the desired number of the segments 2. On the other hand, sliding
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window only allows the first option.

4.5.3 Value Abstractions

Value abstractions is the process of partitioning numeric time series based on its values.
The most straightforward approach is to use standard discretization methods [Yang et al.,
2005], such as equal width histogram or equal frequency histogram, to discretize the time
series values. However, such methods ignore the temporal order of values, which may lead

to states that are not practically meaningful.

To overcome this, [Moerchen and Ultsch, 2005] argued that a good discretization method
should produce states with persisting behavior. They proposed the Persist algorithm, which
tries to obtain discretization symbols with a self transition distribution (under the first
order Markovian assumption) P(S; = s|S;_1 = s’) significantly higher than their marginal

distribution P(S; = s).

Symbolic Aggregate Approximation (SAX) [Lin et al., 2003] is a popular time series dis-

cretization technique, which applies the following two steps:

1. Divide the time series into g equal-sized segments and replace the values in each seg-
ment with their average. These q coefficients are known in the literature as the Piece-

wise Aggregate Approximation (PAA) [Keogh et al., 2000].

2. Convert the PAA coefficients to £ symbols (£ is the alphabet size) by determining the
breakpoints which divide the distribution space into k equiprobable regions. In other
words, determine the breakpoints such that the probability of a segment falling into any
of the regions is approximately the same. Once the breakpoints are determined, each

region is assigned a symbol.

Figure 31:a shows the PAA of a time series using g =8 segments. Figure 31:b shows the
SAX symbols for an alphabet of size k£ =3.
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Figure 31: An example illustrating the SAX representation. The figure on the left shows the
PAA of the series and the figure on the right shows the derived SAX symbols.

4.6 SUMMARY

Temporal data mining refers to mining data that have a temporal aspect. Temporal data
can take a variety of forms from simple univariate regularly sampled data, to complex mul-
tivariate irregularly sampled data. In this chapter, we presented an overview of temporal
data mining and we mostly focused on temporal classification and temporal pattern mining.

The goal of temporal classification is to train a classifier that can accurately predict
the class label for future unlabeled sequences. There are several approaches to construct a

temporal classifier:

1. Apply a time series transformation such as DFT, DWT or shapelet transform. This
approach is mostly applied to univariate regularly sampled numeric time series.

2. Define a distance metric and classify unlabeled sequences according to the most similar
training sequences (the KNN classifier). This approach is mostly applied to univariate
regularly sampled series.

3. Learn a probabilistic model such as HMM or CRF and use it for classification. This
approach can handle univariate and multivariate regularly sampled series.

4. Apply temporal pattern mining and use the patterns for classification.
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Temporal pattern mining can be applied to symbolic sequences to mine sequential pat-
terns (Section 4.3) and to state sequences to mine time interval patterns (Section 4.4). In
order to apply temporal pattern mining on numeric time series, the series should be con-

verted into state sequences using temporal abstraction (Section 4.5).
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5.0 MINING PREDICTIVE TEMPORAL PATTERNS

The majority of existing temporal classification methods (see Section 4.2) assume that each
data instance (represented by a single or multiple time series) is associated with a single
class label that affects its entire behavior. That is, they assume that all temporal observa-
tions are potentially equally useful for classification.

However, the above assumption is not suitable when considering event detection prob-
lems. In these problems, a class label denotes an event that is associated with a specific time
point (or a time interval) in the instance, not necessarily the entire instance (see Figure 32).
The objective is to learn a predictive model that can accurately identify the occurrence of
events in unlabeled time series instances (a monitoring task). Examples of such problems
are the detection of adverse medical events (e.g. drug toxicity) in clinical data [Hauskrecht
et al., 2010], the detection of equipment malfunctions [Guttormsson et al., 1999], fraud
detection [Srivastava et al., 2008], environmental monitoring [Papadimitriou et al., 2005],
intrusion detection [Chandola et al., 2006] and others.

Given that class labels are associated with specific time points (or time intervals), each
time series instance can be annotated with multiple labels!. Consequently, the context in
which the classification is made is often local and affected by the most recent behavior of the
monitored instances.

This chapter proposes a novel temporal pattern mining approach for event detection
that takes into account the local nature of decisions. We present the Recent Temporal
Pattern (RTP) mining framework, which mines frequent temporal patterns backward in

time, starting from patterns related to the most recent observations. Applying this tech-

In the clinical domain, a patient may be healthy at first, then develop an adverse medical condition, then
be cured and so on.

94



Class label The instance Class label (event)

Time

(a) (b)

Figure 32: Illustrating the difference between temporal classification and event detection.

nique, temporal patterns that extend far into the past are likely to have low support in
the data and hence would not be considered for classification. Incorporating the concept
of recency in temporal pattern mining is a new research direction that, to the best of our
knowledge, has not been previously explored in the pattern mining literature.

We primarily focus on applying RTP mining to temporal data in Electronic Health
Record (EHR) systems. In this data, each record (data instance) consists of multiple time
series of clinical variables collected for a specific patient, such as laboratory test results
and medication orders. The record may also provide information about patient’s diseases
and other adverse medical events over time. Our objective is to mine patterns that can ac-
curately predict adverse medical events and apply them to monitor future patients. This
task is extremely used for intelligent patient monitoring, outcome prediction and decision
support.

The task of temporal modeling for EHR data is challenging because the data are multi-
variate and the time series for clinical variables are irregularly sampled in time (measured
asynchronously at different time moments). Therefore, most existing times series classifi-
cation methods [Blasiak and Rangwala, 2011, Vail et al., 2007], time series similarity mea-
sures [Ratanamahatana and Keogh, 2005, Yang and Shahabi, 2004] and time series feature
extraction methods [Li et al., 2010, Batal and Hauskrecht, 2009, Weng and Shen, 2008]
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cannot be directly applied on the raw EHR data.

The key step for analyzing EHR data is defining a language that can adequately rep-
resent the temporal dimension of the data. Our approach relies on 1) temporal abstrac-
tions (see Section 4.5) to convert numeric time series variables to time interval sequences
and 2) temporal relations (see Section 4.4.1) to represent temporal interactions among the
variables. For example, this allows us to define complex temporal patterns (time-interval
patterns) such as “the administration of heparin precedes a decreasing trend in platelet
counts”.

After defining temporal patterns, we need to design an efficient algorithm for mining
predictive patterns in temporally abstracted time interval data. This task is very challeng-
ing because the search space of such patterns is extremely large. All existing methods in
this area (see Section 4.4) have been applied in an unsupervised setting to mine temporal
association rules [Moskovitch and Shahar, 2009, Wu and Chen, 2007, Winarko and Roddick,
2007, Papapetrou et al., 2005, Moerchen, 2006b, Hoppner, 2003]. These methods are known

to be computationally very expensive and they do not scale up to large data.

In contrast to the existing methods, our work applies temporal pattern mining in the su-
pervised setting to find patterns that are important for the event detection task. To achieve
this, we present an efficient algorithm for mining RTPs (see above) from time interval data.
We also present the Minimal Predictive Recent Temporal Patterns (MPRTP), which extends
the MPP framework to the temporal domain in order to find predictive and non-spurious

RTPs.

The rest of the chapter is organized as follows. Section 5.1 describes the event detec-
tion problem and briefly outlines our approach for solving it. Section 5.2 describes temporal
abstraction and defines temporal patterns for time interval data. Section 5.3 defines the
recent temporal patterns (RTPs) and illustrate their properties. Section 5.4 describes our
algorithm for mining frequent RTPs. Section 5.5 describes our algorithm for mining mini-
mal predictive recent temporal patterns (MPRTPs). Section 5.6 illustrates how to obtain a
feature vector representation of the multivariate time series data in order to learn the event
detection classifier. Section 5.7 compares our methods with several baselines on a synthetic

dataset and two real-world clinical datasets. Finally, Section 5.8 summarizes the chapter.
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5.1 PROBLEM DEFINITION

Let D = {<x;,y; >}]_; be a training dataset such that x; € X is a multivariate temporal
instance up to some time ¢; and y; € Y is a class label (an event) associated with x; at time
t; (see Figure 32:b). The objective is to learn a function f: X — Y that can label unlabeled
time series instances. This setting is applicable to a variety of event detection problems,
such as the ones described in [Srivastava et al., 2008, Chandola et al., 2006, Guttormsson
et al., 1999, Papadimitriou et al., 2005].

In this work, we test our method on data from Electronic Health Records (EHRs). For
this task, every data instance x; is a record for a specific patient up to some time ¢; and
the class label y; denotes whether or not this patient is diagnosed with an adverse medical
condition (e.g., renal failure) at ¢;. Figure 33 shows a graphical illustration of an EHR
instance with 3 clinical temporal variables. The objective is to learn a classifier that can

predict well the studied medical condition and apply it to monitor future patients.

EHR nstance Xx;
] . .
Creatinine (-]
()
e )
Glucose Py
Cholesterol ° © e
(=)
Time t;

Figure 33: An example of an EHR data instance with three temporal variables. The black

dots represent their values over time.

Learning the classifier directly from EHR data is very difficult because each instance
consists of multiple irregularly sampled time series of different length. Therefore, we want
to apply a space transformation ¥ : X — X' that maps each EHR instance x; to a fixed-size
feature vector x’i, while preserving the predictive temporal characteristics of x#; as much as
possible.

One approach to define v is to represent the data using a predefined set of features and
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their values as in [Hauskrecht et al., 2010]. Examples of such features are “most recent
creatinine value”, “most recent glucose trend”, “maximum cholesterol value”, etc. Our ap-
proach is different because we learn transformation y from the data using temporal pattern

mining. This is done by applying the following steps:

1. Convert the numeric time series variables into time interval state sequences using tem-

poral abstraction.
2. Mine recent temporal patterns from the time interval data.
3. Transform each instance x; into a binary indictor vector x; using the patterns obtained

in step 2.

After applying this transformation, we can use a standard machine learning method
(e.g. support vector machines, decision tree, or logistic regression) on {<x’i, yi>}! , to learn
the classifier f.

In the following, we explain in details each of these steps.

5.2 TEMPORAL ABSTRACTION PATTERNS

5.2.1 Temporal Abstraction

The goal of temporal abstraction (Section 4.5) is to transform the numeric time series
variables to a high-level qualitative form. More specifically, each temporal variable (e.g.,
series of platelet counts) is transformed into an interval-based representation (vi[s1, e1], ...,
vnplsn,enl), where v; € Z is an abstraction that holds from time s; to time e; and X is the
abstraction alphabet that represents a finite set of permitted abstractions.

In our work, we use two types of temporal abstractions:

1. Trend abstractions: Segment the time series based on its local trends (see Section 4.5.2).
We use the following abstractions: Decreasing (D), Steady (S) and Increasing (I), i.e.,
2 =1{D, S, I}. These abstractions are obtained by using the sliding window segmentation
method [Keogh et al., 1993] and labeling the states according to the slopes of the fitted

segments. For more information about trend segmentation, see Section 4.5.2.
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2. Value abstractions: Segment the time series based on its values (see Section 4.5.3). We
use the following abstractions: Very Low (VL), low (L), Normal (N), High (H) and Very
High (VH), i.e., Z={VL, L, N, H, VH}. These abstractions are obtained using the 10th,
25th, 75th and 90th percentiles on the lab values: a value below the 10th percentile is

very low (VL), a value between the 10th and 25th percentiles is low (L), and so on.

Figure 34 shows the trend and value abstractions on a time series of platelet counts.

800
00
=
S a0
e
S ol
E
S
o 400
@
k=
@ 300}
=
o
200
wol i Pt i i ! i
I
?Inci'eas:e iDen:rease | Time | Increase:
Trend Abstractions ey ) ! . H
Value Abstractions LOW ! Normal ' High | Very High
i " m— — —

Figure 34: An example illustrating trend abstractions and value abstractions. The blue
dashed lines represent the 25th and 75th percentiles of the values and the red solid lines
represent the 10th and 90th percentiles of the values.

5.2.2 Multivariate State Sequences

Let a state be an abstraction for a specific variable. We denote a state S by a pair (F,V),
where F' is a temporal variable and V € X is an abstraction value. We sometimes denote S
as FF=V. Let a state interval be a state that holds during an interval. We denote a state
interval E by a 4-tuple (F,V,s,e), where F is a temporal variable, V € ¥ is an abstraction
value, and s and e are the start time and end time (respectively) of the state interval (E.s <

E.e)?. For example, assuming the time granularity is days, state interval (glucose, H,5,10)

2If E.s = E.e, state interval E corresponds to a time point.
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represents high glucose values from day 5 to day 10.
After abstracting all time series variables, each multivariate time series instance in the
data becomes a multivariate state sequence.

Definition 3. A Multivariate State Sequence (MSS) is represented as a series of state

intervals that are ordered according to their start times®:

Z=(E{,Eq,..,.E;): E;js<E;;1.s Vie{l,...,I-1}

Note that we do not require E;.e to be less than E;,1.s because the state intervals are
obtained from different temporal variables and their intervals may overlap. Let Z.end

denote the end time of the MSS.

5.2.3 Temporal Relations

Allen’s temporal logic (Section 4.4.1) describes the relations for any pair of state intervals
using 13 possible relations. However, it suffices to use the following 7 relations: before,
meets, overlaps, is-finished-by, contains, starts and equals because the other relations are
simply their inverses. Allen’s relations have been used by the majority of research on mining
time interval data [Kam and Fu, 2000, Hoppner, 2003, Papapetrou et al., 2005, Winarko and
Roddick, 2007, Patel et al., 2008, Moskovitch and Shahar, 2009].

Most of Allen’s relations require equality of one or two of the intervals end points. That
is, there is only a slight difference between overlaps, is-finished-by, contains, starts and
equals relations (see Figure 23 in Section 4.4.1). Hence, when the time information in the
data is noisy (not very precise), which is the case for EHR data, using Allen’s relations may
cause the problem of pattern fragmentation* [Moerchen, 2006b].

Therefore, we opt to use only two temporal relations, namely before (b) and co-occurs
(e), which we define as follows:

Given two state intervals E; and E;:

3If two state intervals have the same start time, we sort them by their end time. If they also have the same
end time, we sort them by lexical order (see [Hoppner, 2003]).

4Pattern fragmentation refers to the problem of having many different temporal patterns that describe a
very similar situation in the data.
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* E; is before E j, denoted as b(E;,E ), if E;.e <E;.s (same as Allen’s before).

* E; co-occurs with E j, denoted as ¢(E;,E ), if E;.s <E;s<E;.e. Thatis, E; starts be-
fore E j and there is a nonempty time period where both E; and E; occur. Note that this
relation covers the following Allen’s relations: meets, overlaps, is-finished-by, contains,

starts and equals.

5.2.4 Temporal Patterns

In order to obtain temporal descriptions of the data, basic states are combined using tempo-
ral relations to form temporal patterns (time interval patterns). In the previous section, we
defined the relation between two states to be either before (b) or co-occurs (¢). In order to
define relations between % states, we adopt Hoppner’s representation of temporal patterns

(see Section 4.4.3).

Definition 4. A temporal pattern is defined as P = ({S1,...,S;),R) where S; is the it
state of the pattern and R is an upper triangular matrix that defines the temporal relations

between each state and all of its following states:

ie{l,..,k-1}njeli+1,...,k} : R; ; €{b,c} specifies the relation between S; and S;.

The size of a temporal pattern P is the number of states it contains. If P contains &
states, we say that P is a k-pattern. Hence, a single state is a 1-pattern (a singleton). When
a pattern contains only 2 states: ((S1,S2),R1,2), we sometimes write it simply as S1 R12 S»
because it is easier to read.

Figure 35 shows a graphical representation of a 4-pattern ( S1=(F1,B), So=(F3,A), Sg=
(F9,C), S4=(F3,B) ), where the states are abstractions of temporal variables F';, Fo and
F5 using abstraction alphabet ~ ={A,B,C}. The half matrix on the right represents the
temporal relations between every state and the states that follow it. For example, the second

state (F'3,A) co-occurs with the third state (F3,C): R2 3 =c.

Definition 5. Given an MSS Z =( E1,Es,...,E; ) and a temporal pattern P =({S1,...,Sp),R),

we say that Z contains P, denoted as P€Z, if there is an injective mapping 7w from the states
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Figure 35: A temporal pattern with states ( (F1,B), (F3,A), (Fg,C), (F3,B) ) and temporal

relations R12=c, R13=0,R14=b,R33=c,Ra4=band R34 =c.

of P to the state intervals of Z such that:

Vie{l,...,k}: S;. F=E,;.F N S;.V=E,;.V

Vie {1,...,k —1}/\j€ {i-l-].,...,k}: Ri,j (En(i), En(j))

The definition says that checking whether an MSS contains a k-pattern requires: 1)
matching all £ states of the pattern and 2) checking that all £(% —1)/2 temporal relations are
satisfied.

5.3 RECENT TEMPORAL PATTERNS

As we discussed in Section 5.1, the setting for event detection applications is that each
training temporal instance x; (e.g. an electronic health record) is associated with class label
y; at time ¢; (e.g. whether or not an adverse medical event was observed). Consequently,
recent measurements of the temporal variables of x; (close to ¢;) are usually more predictive
than distant measurements, as was shown in [Valko and Hauskrecht, 2010] for clinical data.
In the following, we define the recent temporal patterns, which are patterns that occur close

to the end of the temporal instance.
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Definition 6. Given an MSS Z=( E1,Eo,..., E; ) and a maximum gap parameter g, we say
that Ej € Z is a recent state interval in Z, denoted as rg(E j,Z), if any of the following two

conditions is satisfied:

1. Zend-Eje<g.

2. AEy € Z E,. F=E;FAk>j.

The first condition is satisfied if E; is less than g time units away from the end of the
MSS (Z .end) and the second condition is satisfied if E; is the most recent state interval in
its variable (there is no state interval in variable E ;.F' that appear after E ;). Note that if

g = 0o, any state interval of Z (E; € Z) is considered to be recent.

Definition 7. Given an MSS Z=(E1,E,,...,E;) and a maximum gap parameter g, we say
that temporal pattern P = ({S1,...,S:),R) is a Recent Temporal Pattern (RTP) in Z, de-
noted as Rg(P,Z), if all of the following conditions are satisfied:

1. P € Z with a mapping 7 from the states of P to the state intervals of Z.
2. S}, matches a recent state interval in Z: r o(E yx), Z).

3. Viell,...,k—1}, S; and S;+1 match state intervals not more than g away from each other:

En(i+1).s - En(i).e =g

The definition says that in order for temporal pattern P to be an RTP in MSS Z, 1) P
should be contained in Z (Definition 5), 2) the last state of P should map to a recent state
interval in Z (Definition 6), and 3) any pair of consecutive states in P should map to state
intervals that are “close to each other”. This definition forces P to be close to the end of Z
and to have limited temporal extension in the past. Note that g is a parameter that specifies
the restrictiveness of the RTP definition. If g = co, any pattern P € Z would be considered
to be an RTP in Z. We denote an RTP that contains % states as a k-RTP.

Example 14. Let Z be the MSS in Figure 36 and let the maximum gap parameter be g=3.
Temporal pattern P = (((Fy4,A), (Fo,C), (F1,B)), R12 =b, R13=0,R23=1"5) is an RTP
in Z because Pe Z, (F1,B,15,18) is a recent state interval in Z, (F9,C,8,13) is “close to”
(F1,B,15,18) (15-13 < g) and (F4,A,1,5) is “close to” (F9,C,8,13) (8—5<g).
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Figure 36: Temporal pattern ( ( (Fy,A), (F2,C), (F'1,B)), R12=b, R13=b, R33=5b)is an
RTP in this MSS if the maximum gap paramter g = 3.

Definition 8. Given temporal patterns P = ((S1,..., Sg,),R) and P’ = ((S/ ""’S;m)’R,) with
k1< ko, we say that P is a suffix subpattern of P', denoted as Suffix(P,P’), if:

Vie{l,...,kl} N je{i+1,...,k1}: Sl :S;+k2—k1 A Rl:]:R;+k2—kl,J+k2—kl

That is, P consists of the last k1 states of P’ and satisfies among them the same temporal
relations that are satisfied in P’. For example, pattern ( ( (F3,A), (F2,C), (F3,B)), R12 =
¢, R13=05, Ry3 = c) is a suffix subpattern of the pattern in Figure 35. When P is a suffix

subpattern of P’, we say that P’ is a backward-extension superpattern of P.

Proposition 1. Given an MSS Z and temporal patterns P and P', if P' is an RTP in Z and
P is a suffix subpattern of P', then P is an RTP in Z:

R (P',Z) A Suffix(P,P') = R,(P,Z)

The proof follows directly from the Definition of RTP.
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Example 15. Assume that P =({S1,S2,S3),R12,R13,R23) is an RTP in Z. Proposition 1
says that its suffix subpattern ((S2,S3), R 3) must also be an RTP in Z. However, this does
not imply that ({(S1,S2),R12) must be an RTP (the second condition of Definition 7 may be
violated) nor that ((S1,S3),R1,3) must be an RTP (the third condition of Definition 7 may be

violated).

Definition 9. Given a dataset D of MSS and a maximum gap parameter g, we define the

support of RTP P in D as RTP-sup ,(P,D)=|{Z; : Z; €D N Rgy(P,Z)} |.

Given a user defined minimum support threshold o, temporal pattern P is a frequent
RTP in D given 0 if RTP-sup,(P,D)=o.
Note that Proposition 1 implies the following property of RTP-sup, which we will use in

our algorithm for mining frequent RTPs.

Corollary 1. If P and P’ are two temporal patterns such that Suffix(P,P’), then
RTP-sup (P,D) = RTP-supg(P’,D)

54 MINING FREQUENT RECENT TEMPORAL PATTERNS

In this section, we present the algorithm for mining frequent RTPs. For the same reasons
mentioned in Section 3.5.3, we partition the data according to the class labels and mine
frequent RTPs for each class separately using a local minimum support o, that is related to
the number of instances (MSS) from class y.

The algorithm for mining frequent RTPs for class label y takes as input the following

arguments:

1. The MSS from class y: D,.
2. The maximum gap parameter g.

3. The local minimum support threshold o,.

The algorithm outputs all temporal patterns that have an RTP-sup in D, that is larger

or equal to o :
{P1,....,.Pn, :RTP-supg(Pi,Dy) >0,}
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The algorithm explores the space of temporal patterns level by level. It first finds all
frequent 1-RTPs (recent states). Then it extends these patterns backward in time and
finds frequent 2-RTPs and so on. For each level &, the algorithm performs the following two
phases to obtain the frequent (k+1)-RTPs:

1. The candidate generation phase: Generate candidate (k+1)-patterns by extending

frequent k-RTPs backward in time.

2. The counting phase: Obtain the frequent (k+1)-RTPs by removing the candidates with
RTP-sup less than o,.

This process repeats until no more frequent RTPs can be found.
In the following, we describe in details the candidate generation algorithm. Then we

proposed techniques to improve the efficiency of candidate generation and counting.

5.4.1 Backward Candidate Generation

We generate a candidate (k+1)-pattern by appending a new state (I-pattern) to the begin-
ning of a frequent k-RTP. Let us assume that we are backward extending pattern P =
({S1,...,Sk),R) with state S .., to generate candidates (k+1)-patterns of the form ((S', ...,S}e

,R'). First of all, we set S]=S,¢, S!,;=8; forie{l,...,k} and R;+1j+1

Y
" =R;jforie{l,. k-
1}Aje{i+1,...,k}. This way, we know that every candidate P’ of this form is a backward-
extension superpattern of P: Suffix(P,P’).

In order to fully define a candidate, we still need to specify the temporal relations be-
tween the new state S| and states Sj,...,S},, i.e., we should define R’l’i forie{2,..,k+1}.
Since we have two possible temporal relations (before and co-occurs), there are 2% possible
ways to specify the missing relations, which results in 2k different candidates. If we denote
the set of all possible states by L and the set of all frequent £-RTPs by Fy, generating the
(k+1)-candidates naively in this fashion results in 2k x |L| x |Fk| candidate (B+1 )-patterns.

This large number of candidates makes the mining algorithm computationally very ex-

pensive and greatly limits its scalability. Below, we describe the concept of incoherent pat-

terns and introduce a method that generates fewer candidates without missing any real
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pattern from the mining results.

5.4.2 Improving the Efficiency of Candidate Generation

Definition 10. A temporal pattern P is incoherent if there does not exist any valid MSS

that contains P.

Clearly, we do not have to generate and count incoherent candidates because we know
that they will have zero support in the data. We introduce the following two lemmas to
avoid generating incoherent candidates when specifying the relations R} . :i € {2,...,k+1} in

candidates of the form P’ = (¢(S7,...,S}, ), R").

Lemma 1. P'=({S3,...,S},|),R) is incoherent if Ji € {2,....,k+1}:R| , =c and S|.F = S.F.
Proof. Two state intervals that belong to the same temporal variable cannot co-occur. O
Lemma 2. P'=({S1,...,S},),R') is incoherent if Ji € {3,...,k+1} :R’Li =cATj<i :R’LJ. =b.

Proof. Assume that there exists an MSS Z = (E1,...,E;) where P’ € Z. Let n be the map-
ping from the states of P’ to the state intervals of Z. The definition of temporal patterns
(Definition 4) and the fact that state intervals in Z are ordered by their start values (Defini-
tion 3) implies that the matching state intervals (E 1), ..., E(z+1)) are also ordered by their
start times: E1).s < ... < E;441).s. Hence, Ey(;).s < E;).s since j<i. We also know that
Eq).e < Eg).s because R/l,j = b. Therefore, Ex(1).e < Ex(;).s. However, since R} ; = c, then

E (1)-e = E z(j).s, which is a contradiction. Therefore, there is no MSS that contains P’'. O

Example 16. Assume we want to extend P = ((S1=F1,B), So=(Fg,A), S3=(F9,C), Sy =
(F3,B)), R12=c, R13=b, R14=b, Rag=c, Ro4=b, R34=c ) in Figure 35 with state Spe, =
(F2,B) to generate candidates of the form ((S|=(Fe,B), S;,=(F1,B), S;=(F3,A), S, =(F3,C),
Si =(F3,B)), R"). We have to specify relations R/l,i 11 €1{2,....,k+1}. R’L2 is allowed to be
either before (R,1,2 =b) or co-occurs (R,1,2 =c). If R,1,2 =b, then all the following relations
must be before according to Lemma 2, resulting in the candidate shown in Figure 37:a. If
R,1,2 =c, then R’1’3 is allowed to be either before (R’173 =b) or co-occurs (R/1,3 =c), resulting in

the candidates shown in Figure 37:b and Figure 37:c, respectively. Now, according to Lemma
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1, Rl1, 4 7 ¢ because both S’1 and Sﬁl belong to the same temporal variable (F9). As we see, we

reduce the number of candidates that result from adding (Fo,B) to 4-RTP P from 2*=16 in

the naive way to only 3.

F1 B S, S§; S, S5
—— AN
F2 |B:| Iil S cf{b]b
A B s c|b
Fa —— —— s, c
(a)
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Figure 37: The coherent candidates that result from extending the temporal pattern in

Figure 35 backward in time with state (Fg,B).

Theorem 1. There are at most k+1 coherent candidates that result from backward extending

a single k-RTP with a new state.

Proof. We know that every candidate P'=((S},...,S} ), R’) corresponds to a specific assign-
ment of R ,1,i e {b,c} for i € {2,...k+1}. When we assign the temporal relations, once a relation
becomes before, all the following relations have to be before as well according to Lemma 2.
We can see that the relations can be co-occurs in the beginning of the pattern, but once we

have a before relation at point g € {2,...,k+1} in the pattern, all subsequent relations (i >q)
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should be before as well:
gl,i =c:lE€ {2""1(1_1}; R/l,i =b:ie {q,...,k+1}

Therefore, the total number of coherent candidates cannot be more than k+1, which
is the total number of different combinations of consecutive co-occurs relations followed by

consecutive before relations. O

In some cases, the number of coherent candidates is less than £ + 1. Assume that there
are some states in P’ that belong to the same variable as state S|. Let S ; be the first such
state (j < £+ 1). According to Lemma 1, R’Lj # c¢. In this case, the number of coherent
candidates is j—1 < k+1.

Algorithm 1 illustrates how to extend a k-RTP P with a new state S,., to generate

coherent candidates (without violating Lemmas 1 and 2).

Algorithm 1: Extend backward a k-RTP P with a state S,.y.
Input: A k-RTP: P =({S4,...,S%),R); a new state: S,

Output: Coherent candidates: C

18] =8new; S;,;=8i:i€{l,...,k};

2RI, o =Rijrie(lok—1)/€li+1,..k)

3 R;.,i =b:i€f2,..,k+1}; P'=(S},..,S,,)R);
1 C={P;

5 for i=2 to k+1 do

6 | if (S|.F =S!.F) then

7 break;

8 | else

9 R} ;=c; P'=((S},....8;, R
10 C=Cu{P’};

11 | end

12 end

13 return C
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Corollary 2. Let L denote the set of all possible states and let Fy denote the set of all frequent
k-RTPs. The number of coherent (k+1)-candidates is always less or equal to (k+1) x |L| x |F|.

5.4.3 Improving the Efficiency of Counting

Even after eliminating incoherent candidates, the mining algorithm is still computationally
expensive because for every candidate, we need to scan the entire database in the counting
phase to compute its RTP-sup. The question we try to answer in this section is whether
we can omit portions of the database that are guaranteed not to contain the candidate we
want to count. The proposed solution is inspired by [Zaki, 2000] that introduced the vertical
format for itemset mining (see Section 2.2.3) and later applied it for sequential pattern
mining [Zaki, 2001].

Let us associate every frequent RTP P with a list of identifiers for all MSS in D, that
have P as an RTP (Definition 7):

P.RTP-list = (i1,iz,....in): Zi; €Dy NRg(P,Z; )

Clearly, RTP-sup,(P,D ) = |P.RTP-list|.
Let us also associate every state S with a list of identifiers for all MSS that contain S
(Definition 5):

S.list=4q1,92,.--,qm) :qu eD,AS€ qu

Now, when we generate candidate P’ by backward extending RTP P with state S, we
define the potential list (p-RTP-list) of P’ as follows:

P'p-RTP-list =P.RTP-list n S.list

Proposition 2. Let P’ be a backward-extension superpattern of RTP P with state S: P RTP-list
P'p-RTP-list
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Proof. Assume Z; is an MSS such that R (P',Z;). By definition, i € P"RTP-list. We know
that R,(P',Z;) = P'eZ; = Se€Z; = ieS.list. Also, we know that Suffix(P,P') (Defini-
tion 8) = R4(P,Z;) (Proposition 1) = i€ P.RTP-list. Therefore, i € P.RTP-listNS.list =
P'p-RTP-list O

Putting it all together, we compute the RTP-lists in the counting phase (based on the
true matches) and the p-RTP-lists in the candidate generation phase. The key idea is that
when we count candidate P’, we only need to check the instances in its p-RTP-list because
according to Proposition 2: i ¢ P'.p-RTP-list — i ¢ P'"RTP-list — P’ is not an RTP in Z,.
This offers a lot of computational savings because the p-RTP-lists get smaller as the size of
the patterns increases, making the counting phase much faster.

Algorithm 2 outlines the candidate generation. Line 4 generates coherent candidates
using Algorithm 1. Line 6 computes the p-RTP-list for each candidate. Note that the cost
of the intersection is linear because the lists are always sorted according to the order of the
instances in the data. Line 7 applies an additional pruning to remove candidates that are

guaranteed not to be frequent according to the following implication of Proposition 2:

|P'p-RTP-list| < oy = |P' RTP-list| =RTP-sup4(P,Dy)<0y

5.5 MINING MINIMAL PREDICTIVE RECENT TEMPORAL PATTERNS

Although the RTP framework focuses the search on temporal patterns that are potentially
important for predicting the class variable, not all frequent RTPs are important for clas-
sification. Besides, many RTPs may be spurious (see Section 3.4) as we illustrate in the

following example.

Example 17. Assume that having elevated creatinine level (creatinine=High) is an impor-
tant indicator of renal failure. If we denote this pattern by P, we expect conflP = renal-

failure) to be much higher than the renal-failure prior in the entire population of patients.
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Algorithm 2: A high-level description of candidate generation.
Input: All frequent 2-RTPs: F; all frequent states: L

Output: Candidate (k+1)-patterns: Cand, with their p-RTP-lists

1 Cand = ®;

2 foreach P € Fy do

3 | foreach S € L do

4 C = extend_backward(P, S); (Algorithm 1)
5 forg=1t0|C | do

6 Clql.p-RTP-list = P.RTP-listnS.list;
7 if (| Clql.p-RTP-list |=0, ) then

8 Cand =Cand U{Clql};

9 end
10 end
11 | end
12 end

13 return Cand

Now consider pattern P’ that extends P backward with a state indicating a normal value
for white blood cell counts: P': WBC=Normal before creatinine=High. Assume that observing
P’ does not change our belief about the presence of renal failure compared to observing P. As
we discussed in Section 3.4, confiP' = renal-failure) ~ confiP = renal-failure). Intuitively,
the instances covered by P' can be seen as a random sample of the instances covered by P.
So if the proportion of renal failure for P is relatively high, we expect the proportion of renal
failure for P’ to be high as well. The problem is that if we evaluate P’ by itself, we may falsely
think that it is an important pattern for predicting renal failure, where in fact this happens

only because P’ contains the real predictive pattern P.

In general, spurious RTPs are formed by adding irrelevant states to other simpler pre-
dictive RTPs. Having spurious RTPs in the result is undesirable because they overwhelm

the user and prevent him/her from understanding the important patterns in data. In order
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to filter out such spurious patterns, we extend the minimal predictive patterns framework

(Section 3.5.2) to the temporal domain.

Definition 11. A temporal pattern P is a Minimal Predictive Recent Temporal Pattern
(MPRTP) with respect to class label y if P predicts y significantly better than all of its suffix

subpatterns.
VS such that Suffix(S,P): BS(P = y,Gg)=0d

Where BS is the Bayesian score we defined in Section 3.5.1.2, Gg is the group of MSS in the

data where S is an RTP and § is a user specified significance parameter.

The algorithm in Section 5.4 describes how to mine all frequent RTPs from data D,. In
order to mine MPRTPs, the algorithm requires another input: D-,, the MSS in the data
that do not belong to class y. Mining MPRTPs is integrated with frequent RTP mining
using an algorithm similar to the one described in Section 3.5.3 for mining MPPs. The
algorithm utilizes the predictiveness of RTPs to prune the search space using a lossless
pruning technique and a lossy pruning technique.

lossless pruning: This technique is similar to the lossless pruning used for MPP min-
ing (Section 3.5.4.1). The idea is to prune a frequent RTP P if we guarantee that none
of its backward-extension superpatterns is going to be an MPRTP. We know that for any

backward-extension superpattern P’, the following holds according to Corollary 1:
RTP-supg(P',Dy) <RTP-supy,(P,Dy) A RTP-supg(P',D-‘y) <RTP-sup 4 (P,D-y)

We now define the optimal backward-extension superpattern of P with respect to class y,

denoted as P*, to be a hypothetical temporal pattern that is an RTP in all instances from y,

but not in any instance from from the other classes:
RTP-sup,(P*,Dy) = RTP-sup,(P,Dy) A RTP-sup,(P*,D-,)=0

P* is the best possible backward-extension superpattern for predicting y that P can gener-
ate. Now, we safely prune P if P* does not satisfy the MPRTP definition.

lossy pruning: This technique is similar to the lossy pruning used for MPP mining
(Section 3.5.4.2). The idea is that if we are mining MPRTPs for class y, we prune RTP P if
we have evidence that the underlying probability of y in Gp (the group of MSS in D, where
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P is an RTP) is lower than the probability of y in the entire data. To decide whether this is
the case, we apply our Bayesian score to evaluate rule P =y compared to G and we prune
P if model M; is the most likely model (see Section 3.5.1.2).

The rationale behind this heuristic is that if the probability of ¥ in the MSS covered by
P is low, we also expect the probability of y in the MSS covered by its backward-extension
superpattern P’ to be low as well. Thus, P’ is unlikely to be an MPRTP. Note that this
heuristic is lossy in the sense that it speeds up the mining, but at the risk of missing some

MPRTPs.

5.6 LEARNING THE EVENT DETECTION MODEL

In this section, we summarize our approach for learning classification models for event
detection problems. Given a training dataset {<x;,y; >}?:1, where x; is a multivariate time

series instance up to time ¢; and y; is a class label at ¢;, we apply the following steps:

1. Convert every instance x; to an MSS Z; using temporal abstraction.

2. Mine the frequent RTPs or MPRTPs from the MSS of each class label separately and
combine the class-specific patterns to obtain the final result Q.

3. Convert every MSS Z; into a binary vector x; of size equal to |Q|, where x;J corresponds

to a specific pattern P; € ) and its value is 1 if R4(P;,Z;); and 0 otherwise.
4. Learn the classification model on the transformed binary representation of the training

/
data {<x},y; >} ;.

5.7 EXPERIMENTAL EVALUATION

5.7.1 Temporal Datasets

In our experiments, we evaluate our RTP and MPRTP frameworks first on a synthetic

dataset and then on two real-world EHR dataset.
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5.7.1.1 Synthetic Dataset This data consist of multivariate symbolic sequences (time-
point states). Each instance has 6 temporal variables (¥ to Fig) and each temporal variable
is a sequence of exactly 4 states. All states are regularly sampled in time and belong to
alphabet ~={A,B,C} (see Figure 38).

We define two class labels, y; and y9, and generate 250 instances from each class as

follows:

e Step I: We randomly generate the instances of both classes by sampling each state in
each variable from alphabet X ={A,B,C} according to a multinomial distribution with
probabilities: Pr(A)=0.25, Pr(B)=0.25 and Pr(C)=0.5.

¢ Step II: For the instances from class y1, we inject RTP P: <F1 =B, F{ = A > (the last
two states of F'; are B followed by A as in Figure 38:a) with probability 0.6. For the
instances from class yq, we inject RTP Py: < Fo =C, F3=C, Fy = C > (the second state
of Fy is C, the third state of F3 is C and the fourth state of F9 is C as in Figure 38:b)
with probability 0.45.

Note that the probability of observing RTP P; (by chance) in an instance from class yo
is 0.0625. The reason is that the probability that third state of F'; is B and the fourth state
of F'1 is A in class yg is 0.25 x 0.25 = 0.0625. On the other hand, the probability of observing
RTP P, in an instance from class y; is 0.625. The reason is that P is injected in 60% of
the instances of y; and can occur by chance with probability 0.0625 in the remaining 40%
of the instances (0.6 + 0.4 x 0.0625 = 0.625). Using a similar reasoning, we can see that the
probability of observing RTP Py in an instance from class y; is 0.125 and in an instance
from class ys is 0.519. Both of these RTPs are important for discriminating the two classes

and we would like our mining algorithm to be able to recover them.

5.7.1.2 HIT Dataset This data are acquired from a database that contains electronic
health records of post cardiac surgical patients [Hauskrecht et al., 2010]. Our task is to learn
a classifier that can detect the onset of Heparin Induced Thrombocytopenia (HIT), which is
a pro-thrombotic disorder induced by heparin exposure with subsequent thrombocytopenia

(low platelet in the blood) and associated thrombosis (blood clot). HIT is a life-threatening
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Figure 38: The synthetic temporal data: on the left we show RTP < F;{ =B, F; = A > that is
injected in the instances of class y; and on the right we show RTP < Fy=C, Fs=C, Fo=C >

that is injected in the instances of class ys.

condition if it is not detected and managed properly. Hence, it is very important to detect its

onset.

We select 220 patients who were considered by physicians to be at risk of HIT and 220
patients without the risk of HIT. Patients who are at risk of HIT were selected using in-
formation about the Heparin Platelet Factor 4 antibody (HPF4) test, which is ordered for
a patient when the physician suspects that he is developing HIT. Therefore, an HPF4 test
order is a good surrogate of the HIT-risk label. The positive instances (HIT-risk) include clin-
ical information up to the time HFP4 was first ordered. The negative instances (no HIT-risk)
were selected randomly from the remaining patients and they include clinical information

up to some randomly selected time point in the patient’s record.

For each instance, we consider the following 5 clinical variables: platelet counts (PLT),
activated partial thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin
(Hgb) and heparin orders. PLT, APTT, WBC and Hgb are numeric time series, so we con-
vert them into time-interval sequences using both trend abstractions and value abstractions

(Section 5.2.1). Heparin orders are already in an interval-based format that specify the
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time period during which the patient was taking heparin. For this variable, we simply use

abstractions that indicate whether the patient is on heparin.

5.7.1.3 Diabetes Dataset This data consist of 13,558 electronic health records of adult
diabetic patients (both type I and type II diabetes). Our task is to learn classifiers that can
detect various types of disorders that are frequently associated with diabetes.

Each patient’s record consists of time series of 19 different lab values, including blood
glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen, liver function tests, choles-
terol, etc. In addition, we have access to time series of ICD-9 diagnosis codes reflecting the
diagnoses made for the patient over time. Overall, the database contains 602 different ICD-
9 codes. These codes were grouped by our medical expert into the following eight major
diagnosis categories (diseases):

¢ Cardiovascular disease (CARDI).
* Renal disease (RENAL).
* Peripheral vascular disease (PERIP).
* Neurological disease (NEURO).
* Metabolic disease (METAB).
¢ Inflammatory (infectious) disease (INFLM).
® QOcular (ophthalmologic) disease (OCULR).
* Cerebrovascular disease (CEREB).
Our objective is to learn models that are able to accurately diagnose each of these major

diseases. For each disease, we divide the data into positive instances and negative instances

as follows:

* The positives are records of patients with the target disease and they include clinical

information up to the time the disease was first diagnosed.

* The negatives are records of patients without the target disease and they include clinical

information up to a randomly selected time point in the patient’s record.
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To avoid having uninformative data, we discard instances that contain less than 10
lab measurements or that span less than 3 months (short instances). We choose the same
number of controls as the number of cases for each category to make the datasets balanced.

For each instance, we consider both the laboratory tests and the disease categories. Note
that the diagnosis of one or more disease categories may be predictive of the (first) occur-
rence of another disease, so it is important to include them as features. Laboratory tests
are numeric time series, so we convert them into time-interval sequences using value ab-
stractions (see Section 5.2.1). Disease categories, when used as features, are represented
as intervals that start at the time of the diagnosis and extend until the end of the record.
For these variables, we simply use abstractions that indicate whether the patient has been

diagnoses with the disease.

5.7.1.4 Datasets Summary Table 10 summaries the three temporal datasets we use
in our experimental evaluation. For each dataset, we show its type (whether the states
are time-points or time-intervals), the number of data instances it contains, the number of
temporal variables per instance, the alphabet size (the number of permitted abstractions)
and the total number of states in the data.

For the synthetic dataset, we have 500 instances (250 instances from each class) and 6
temporal variables per instance. The alphabet size is 3 because Z ={A,B,C}. Since there
are 4 states per variable, the number of states per instance is 6x4 =24 and the total number
of states in the data is 24 x500=12,000.

For the HIT dataset, we have 440 instances (220 HIT-risk instances and 220 no HIT'risk
instances). We use both trend abstractions (decreasing, steady and increasing) and value
abstractions (very low, low, normal, high and very high) for the laboratory variables and one
abstraction for the heparin variable. Hence, the alphabet size is 9. Since we consider two
types of temporal abstractions for each of the 4 laboratory variables (PLT, APTT, WBC and
Hgb) and one abstraction for the heparin variable, we have a total of 9 temporal variables
per instance.

For the diabetes datasets, we define a different dataset for each of the 8 major diagnosis

diseases (see Section 5.7.1.3). For all of these datasets, we use value abstractions (very low,
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low, normal, high and very high) for the laboratory variables and one abstraction for the
disease categories. Hence, the alphabet size is 6. Since we have 19 laboratory variables and
7 disease variables (the 8 major diseases minus the one we are predicting), we have a total

of 26 temporal variables per instance.

Dataset Type # Instances | # Variables | Alphabet Size | # States
Synthetic Time-point 500 6 3 12,000
HIT Time-interval 440 9 9 9,770
Diabetes-CARDI Time-interval 5,486 26 6 235,990
Diabetes-RENAL | Time-interval 6,710 26 6 327,957
Diabetes-PERIP Time-interval 6,740 26 6 325,872
Diabetes-NEURO || Time-interval 4,386 26 6 240,572
Diabetes-METAB || Time-interval 1,936 26 6 118,378
Diabetes-INFLM | Time-interval 4,788 26 6 264,541
Diabetes-OCULR || Time-interval 4,490 26 6 227,708
Diabetes-CEREB | Time-interval 5,648 26 6 319,695

Table 10: Temporal datasets characteristics.

5.7.2 Classification

In this section, we test the performance of our RTP mining and MPRTP mining methods for

the event detection task.

5.7.2.1 Compared Methods We compare the classification performance of the following

feature construction methods:
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1. Last-abs: The features are the most recent abstractions of each clinical variable. For
example, the most recent trend abstraction for platelet counts is “decreasing”, the most
recent value abstraction for platelet counts is “/ow”, and so on.

2. TP: The features correspond to all frequent temporal patterns.

{P1,....Pm: sup(P;,D,)=0,} where sup(P,D,)=|{Z;:Z;€eD, N PeZ;}|

3. TP-IG: The features correspond to the top £ frequent temporal patterns, where the
patterns are ranked according to Information Gain (IG).

4. RTP: The features correspond to all frequent RTPs.

{P1,...,Pp: RTP-supg(Pi,Dy)zay} where RTP-supg,(P,Dy)=1{Z;: Z;€Dy A Ry(Pj,Z)} |

5. RTP-IG: The features correspond to the top £ frequent RTPs, where the patterns are
ranked according to IG.

6. MPRTP: The features correspond to the top £ frequent RTPs, where only the patterns
that satisfy the MPRTP definition (Definition 11) are retained and they are ranked ac-

cording to the Bayesian score (see Section 3.5.1.2).

The first method (Last-abs) is atemporal and only considers the most recent abstractions
for defining the classification features (a static transformation). On the other hand, methods
(2-6) use temporal patterns (built using temporal abstractions and temporal relations) as
their features (a dynamic transformation).

When defining the binary representation of an instance (MSS) Z; for methods TP and
TP-1G, the feature value is set to one if the corresponding temporal pattern occurs anywhere

in the instance (Definition 5), and is set to zero otherwise:
Z; — x; where x:J =1if PjeZ; and x;] =0 otherwise.

When defining the binary representation of an instance Z; for methods RTP, RTP-IG
and MPRTP, the feature value is set to one if the corresponding temporal pattern occurs

recently in the instance (Definition 7), and is set to zero otherwise (see Section 5.6):
Z; — x; where xij =1if Rg(P}j,Z;) and x;J =0 otherwise.

120



It is important to note that although patterns generated by TP subsume the ones gen-
erated by RTP (by definition, every frequent RTP is also a frequent temporal pattern), the
induced binary features are often different. For example, a temporal pattern that is very
discriminative when observed at the end of an instance may become less discriminative

when observed in the middle of an instance.

We use methods TP-IG, RTP-IG and MPRTP in the evaluation because we want to com-
pare the ability of TP and RTP in representing the classifier using only a limited number of
temporal patterns (a sparse classifier). In addition, we want to compare using a univariate

scoring versus our MPRTP approach for selecting RTPs that are used for classification.

We judged the quality of the different feature representations in terms of their induced
classification performance. More specifically, we use the features extracted by each method
to build a linear SVM classifier and evaluate its performance using the area under the
ROC curve (AUC) and the classification accuracy. We did not compare against other time
series classification methods because most methods [Blasiak and Rangwala, 2011, Batal
and Hauskrecht, 2009, Weng and Shen, 2008, Vail et al., 2007, Xi et al., 2006] cannot be

directly applied on multivariate irregularly sampled time series data as our EHR data.

All classification results are reported using averages obtained via 10-fold cross-validation,

where the same train/test splits are used for all compared methods.

5.7.2.2 Results on Synthetic Data For all temporal pattern mining methods (TP, TP-
IG, RTP, RTP-IG and MPRTP), we set the local minimum supports () to 10% of the num-
ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap
parameter (see Definition 7) to 1 time unit, which means that we do not allow gaps between
consecutive states of an RTP°. For TP-IG, RTP-IG and MPRTP, we select the top 10 patterns
to be used for classification.

Table 11 shows the AUC and the classification accuracy on the synthetic dataset. We
show the best performing method in boldface and we show all methods that are statistically

significantly inferior to it in grey. For the statistical test, we apply paired t tests (see chapter

5Remember that the synthetic data is regularly sampled in time.
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5 in [Mitchell, 1997]) with the commonly used 0.05 significance level®.

We can see that RTP and MPRTP are the best performing methods in terms of AUC.
Also, the AUC of MPRTP is much higher than that of RTP-IG. The reason is that RTP-I1G
evaluates the RTPs individually, hence most of the selected RTPs are spurious and do not
improve to the classification performance. For example, a spurious RTP like < F3=C, F; =
B, F{ = A >, which is a backward-extension superpattern of < F; =B, F; = A > (Figure
38:a), have a higher information gain score than < Fy =C, F3=C, Fe = C > (Figure 38:b),

which is much more important for classification.

Last-abs | TP | TP-IG | RTP | RTP-IG | MPRTP
AUC 82.51 85.93 | 82.44 | 87.06 | 81.34 88.07
Accuracy 73.8 75.8 77.8 79.3 80.4 80.6

Table 11: Synthetic dataset: The area under ROC (AUC) and the classification accuracy of
the compared feature representation methods (Section 5.7.2.1). The best performing method
is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM

is used for classification.

5.7.2.3 Results on HIT Data For all temporal pattern mining methods (TP, TP-IG,
RTP, RTP-IG and MPRTP), we set the local minimum supports (o) to 10% of the num-
ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap
parameter (see Definition 7) to 2 days. For TP-IG, RTP-IG and MPRTP, we select the top
50 patterns to be used for classification.

Table 12 shows the AUC and the classification accuracy on the HIT dataset. We can
see that features based on temporal patterns (TP, RTP and MPRTP) are beneficial for the

classification task, since they outperform features based on only most recent abstractions

6We apply statistical significance testing with k-fold cross validation. It is important to note that in this
setting, the testing sets are independent of each other, but the training sets are not independent. Hence, the
statistical models do not perfectly fit the iid assumption. Nevertheless, the significance results are still of
great help in interpreting experimental comparison of learning methods [Mitchell, 1997].
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(last-abs). For the temporal pattern mining methods, RTP and MPRTP are the best per-

forming methods.

Last-abs | TP | TP-IG | RTP | RTP-IG | MPRTP
AUC 87.18 | 90.87 | 87.79 | 91.99 | 88.58 91.57
Accuracy 79.52 80.62 82 84.3 82.46 83.61

Table 12: HIT dataset: The area under ROC (AUC) and the classification accuracy of the
compared feature representation methods (Section 5.7.2.1). The best performing method is
shown in bold and all methods that are statistically inferior to it are shown in grey. SVM is

used for classification.

5.7.24 Results on Diabetes Data For all temporal pattern mining methods (TP, TP-
IG, RTP, RTP-IG and MPRTP), we set the local minimum supports (g,) to 15% of the num-
ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap
parameter (see Definition 7) to 6 months’. For TP-IG, RTP-IG and MPRTP, we select the
top 50 patterns to be used for classification.

Table 13 and Table 14 show the AUC and the classification accuracy for each classifi-
cation task (major disease). We can see that for most classification tasks, RTP is the best
performing method. We can see that although MPRTP does not perform as well as RTP,
it mostly outperforms RTP-IG (see for example the performance on the NEURO dataset in
Table 13 and Table 14).

"Note that the diabetes data are outpatient data and have a much coarser time granularity than the inpa-
tient HIT data.
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Last-abs | TP | TP-IG | RTP | RTP-1G | MPRTP

CARDI 77.52 80.03 | 77.28 | 80.04 | 78.74 79.43

RENAL 83.28 84.97 | 73.38 | 86.27 | 83.65 84.41

PERIP 75.11 76 73.53 | 77.95 | 75.72 75.82

NEURO 72.2 74.46 | 72.03 | 76.23 | 71.89 74.33

METAB 80.8 83 80.17 | 81.65 | 80.76 82.59

INFLM 72.21 73.2 | 70.93 | 74.49 | 72.52 73.19

OCULR 73.71 76.65 | 74.92 | 75.52 | 74.74 75.23

CEREB 72.69 75.22 | 72.53 | 76.3 73.34 73.66

Table 13: Diabetes dataset: The area under ROC of the compared feature representation methods
(Section 5.7.2.1) for the eight major diabetes diseases (Section 5.7.1.3). The best performing method
is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM is used
for classification.

Last-abs | TP | TP-1G | RTP | RTP-IG | MPRTP

CARDI 69.23 72.35 | 69.14 | 71.54 | 70.61 71.25

RENAL 74.56 76.99 | 71.89 | 77.91 | 76.87 76.9

PERIP 67.22 68.4 | 66.47 | 69.58 | 68.55 68.52

NEURO 64.5 67.49 | 65.21 | 68.49 | 65.98 67.26

METAB 71.62 74.12 | 72.21 | 73.09 | 72.21 72.83

INFLM 65.31 66.06 | 63.79 | 67.19 | 65.48 66.58

OCULR 67.04 | 69.67 | 67.44 | 68.15 | 67.57 67.46

CEREB 65.64 | 67.78 | 65.49 | 68.49 | 66.08 65.65

Table 14: Diabetes dataset: The classification accuracy of the compared feature representation
methods (Section 5.7.2.1) for the eight major diabetes diseases (Section 5.7.1.3). The best performing
method is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM
is used for classification.
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5.7.3 Knowledge Discovery

In this section, we test the ability of MPRTP for mining concise predictive and non-spurious

RTPs.

5.7.3.1 Results on Synthetic Data Table 16 shows the top 3 MPRTPs according to
the Bayesian score on the synthetic data. Patterns P; and Pj3 recover the two patterns
we injected in the instances of class y; and class yy (see Figure 38). Pattern Ps is a suffix
subpattern of P;. As we discuss in Section 5.7.2.2, if we use a univariate evaluation measure

(such as IG) instead of MPRTP, many spurious backward-extension superpatterns of < F'; =

B, F1 = A > will be ranked higher than < Fy=C, F3=C, Fo=C >.

MPRTP Precision | Recall
Pi:<F1=B,F1=A> = ¥y 93.18 65.6
Py: <F1=A> = y; 74.48 71.2
P3: <Fy=C,F3=C,Fo=C> = y 76.54 49.6

Table 15: Synthetic dataset: The top 3 MPRTPs with their precision and recall.

5.7.3.2 Results on HIT Data Table 16 shows the top 5 MPRTPs according to the Bayesian
score on the HIT data. Patterns P1, P2, P3 and P4 describe the main patterns used to detect
HIT and are in agreement with the current HIT detection guidelines [Warkentin, 2000]. Ps5
relates the risk of HIT with an increasing trend of APTT (activated partial thromboplastin
time). This relation is not obvious from the HIT detection guidelines. However it has been
recently discussed in the literature [Pendelton et al., 2006]. Hence this pattern requires

further investigation.
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MPRTP Precision | Recall

Py: PLT=L = HIT-risk 78.3 84.79

Py: PLT=VL = HIT-risk 89.31 65.44

Ps: PLT=L before PLT=VL = HIT-risk 91.13 52.07

Py: PLT=D co-occurs PLT=L = HIT'risk 86.33 55.3

Ps5: APTT=I before PLT=L = HIT'risk 88.24 41.47

Table 16: HIT dataset: The top 5 MPRTPs with their precision and recall. Abbreviations:
PLT: platelet count; APTT: activated partial thromboplastin time. Trend abstractions:
PLT=D: decreasing trend in PLT; APTT=I: increasing trend in APTT. Value abstractions:
PLT=VL (Very Low): <76x10° per liter; PLT=L (Low): <118x 10 per liter.

5.7.3.3 Results on Diabetes Data Table 17 shows some of the top MPRTPs® on the
diabetes data. Patterns P1, P2 and P3 are predicting renal (kidney) disease. These patterns
relate the risk of renal problems with very high values of the BUN test (P1), an increase
in creatinine levels from normal to high (P2), and high values of BUN co-occurring with
high values of creatinine (P3). P4 shows that an increase in glucose levels from high to very
high may indicate a metabolic disease. Finally, P5 shows that patients who were previously
diagnosed with cardiovascular disease and exhibit an increase in glucose levels are prone
to develop a cerebrovascular disease. These patterns, extracted automatically from data

without prior clinical knowledge, are in accordance with the medical diagnosis guidelines.

8Most of the highest scores MPRTPs are predicting the RENAL category because it is the easiest prediction
task. So to diversify the patterns, we show the top 3 predictive MPRTPs for RENAL and the top 2 MPRTPs
for other categories.
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MPRTP Precision | Recall

Py: BUN=VH = Dx=RENAL 0.97 0.17
Py: Creat=N before Creat=H = Dx=RENAL 0.96 0.21
P3: BUN=H co-occurs Creat=H = Dx=RENAL 0.95 0.21
Py4: Gluc=H before Gluc=VH = Dx=METAB 0.79 0.24

Ps: Dx=CARDI co-occurs ( Gluc=N before Gluc=H) > Dx=CEREB 0.71 0.22

Table 17: Diabetes dataset: The top MPRTPs with their precision and recall. Abbrevia-
tions: Dx: diagnosis code (one of the 8 major categories described in Section 5.7.1.3); BUN:
Blood Urea Nitrogen; Creat: creatinine; Gluc: blood glucose. Value abstractions: BUN=VH:
>49 mg/dl; BUN=H: >34 mg/dl; Creat=H: >1.8 mg/dl; Creat=N: [0.8-1.8] mg/dl; Gluc=VH:
>243 mg/dl; Gluc=H:>191 mg/dl.

5.7.4 Mining Efficiency

In this section, we study the efficiency of different temporal pattern mining methods.

5.7.4.1 Compared Methods We compare the running time of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending the Apriori algorithm [Agrawal
and Srikant, 1994, Agrawal and Srikant, 1995] to the time interval domain. This method
applies the Apriori pruning in the candidate generation phase to prune any candidate
k-pattern that contains an infrequent (k-1)-patterns (see Section 2.2.1).

2. TP_lists: Mine frequent temporal patterns by extending the vertical format [Zaki, 2000,
Zaki, 2001] to the time interval domain as described in [Batal et al., 2011]. This method
applies the Apriori pruning in candidate generation and uses the id-list indexing to

speed up the counting.

3. RTP_no-lists: Mine frequent RTPs backward in time as described in Section 5.4, but
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without applying the technique described in Section 5.4.3 to speed up the counting. That
is, this method scans the entire dataset for each generated candidate in order to compute
its RTP-sup.

4. RTP lists: Our proposed method for mining frequent RTPs.

5. MPRTP: Our proposed method for mining MPRTPs. This method applies both the loss-
less pruning and the lossy pruning to restrict the search space of temporal patterns (see

Section 5.5).

To make the comparison fair, all methods apply the techniques we propose in Section
5.4.2 to avoid generating incoherent candidates. Note that if we do not remove incoherent
candidates, the execution time for all methods greatly increases.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon

3GHz CPU and 16GB of RAM. All methods are implemented in MATLAB.

5.7.4.2 Results on Synthetic Data Similar to the previous settings for the synthetic
data (Section 5.7.2.2), we set the local minimum supports to 10% and the maximum gap
parameter to 1 time unit.

Figure 39 shows the execution time (on logarithmic scale) of the compared methods. We

can see that RTP-lists and MPRTP are the most efficient methods.

5.7.4.3 Results on HIT Data Similar to the previous settings for the HIT data (Section
5.7.2.3), we set the local minimum supports to 10% and the maximum gap parameter to 2
days.

Figure 40 shows the execution time (on logarithmic scale) of the compared methods.
Again, we see that RTP-lists and MPRTP outperform the other temporal pattern mining

methods.
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Figure 39: Synthetic dataset: The mining time (in seconds) of the compared temporal

Execution Time (seconds)

pattern mining methods (Section 5.7.4.1). The local minimum support is 10%.
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Figure 40: HIT dataset: The mining time (in seconds) of the compared temporal pattern

Execution Time (seconds)

mining methods (Section 5.7.4.1). The local minimum support is 10%.

5.7.4.4 Results on Diabetes Data Similar to the previous settings for the diabetes data
(Section 5.7.2.4), we set the local minimum supports to 15% and the maximum gap param-

eter to 6 months (unless stated otherwise).
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Figure 41 shows the execution time (on logarithmic scale) of the compared methods on all
major diagnosis datasets. We can see that RTP_lists and MPRTP are much more efficient
than the other temporal pattern mining methods. For example, on the INFLM dataset,
RTP_lists is around 5 times faster than TP _lists, 10 times faster than RTP_no-lists and 30
times faster than TP_Apriori. Furthermore, MPRTP is more efficient than RTP _lists for all

datasets.

@TP_Apriori @TP_lists ERTP_no-lists BMRTP lists O MPRTP

100000

10000

1000

Execution Time (seconds)

100 =
CARDI RENAL PERIP NEURO METAB INFLM OCULR CEREB

Figure 41: Diabetes dataset: The mining time (in seconds) of the compared temporal
pattern mining methods (Section 5.7.4.1) for the eight major diabetes diseases. The local

minimum support is 15%.

Figure 42 compares the execution time of the different methods on the CARDI dataset
for different minimum support thresholds.

Finally, let us examine the effect of the maximum gap parameter (g) on the efficiency of
recent temporal pattern mining methods (RTP_no-lists, RTP_lists and MPRTP). Figure 43
shows the execution time on the CARDI dataset for different values of g (the execution time
of TP_Apriori and TP_lists does not depend of g).

Clearly, the execution time of RTP_no-lists, RTP_lists and MPRTP increase with g be-
cause the search space becomes larger (more temporal patterns become RTPs). We can see
that when g is more than 18 months, RTP_no-lists becomes slower than TP_Apriori. The

reason is that for large values of g, applying the Apriori pruning in candidate generation
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Figure 42: Diabetes dataset (CARDI): The mining time (in seconds) of the compared tem-
poral pattern mining methods (Section 5.7.4.1) on the CARDI diabetes dataset for different

values of the minimum support.

becomes more efficient (generates less candidates) than the backward extension of temporal
patterns (see Example 15). On the other hand, the execution time of RTP_lists and MPRTP
increase much slower with g and they maintain their efficiency advantage over TP_Apriori

and TP_lists for larger values of g.
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Figure 43: Diabetes dataset (CARDI): The mining time (in seconds) of the compared tem-
poral pattern mining methods (Section 5.7.4.1) on the CARDI diabetes dataset for different

values of the maximum gap parameter.

5.8 SUMMARY

In this chapter, we studied the problem of mining predictive temporal patterns in complex
multivariate time series data, such as electronic health records. We used temporal abstrac-

tion and temporal logic for defining and representing the temporal patterns.

It is well known that mining the entire set of frequent temporal patterns (whether se-
quential patterns or time-interval patterns) from large-scale data is computationally very
expensive. To alleviate this problem, previous research [Srikant and Agrawal, 1996, Pei
et al., 2007] introduced several temporal constraints to scale up the mining, such as re-
stricting the overall pattern duration or restricting the permitted gap between consecutive
states in a pattern. This chapter proposed a new class of temporal constraints for finding
recent temporal patterns (RTP), which we argued is appropriate for event detection prob-
lems. We presented an efficient algorithm that mines time-interval patterns backward in

time, starting from patterns related to most recent observations. We also presented the
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minimal predictive recent temporal patterns (MPRTP) framework for selecting predictive
and non-spurious RTPs.

We tested and demonstrated the usefulness of our framework on two real-world clin-
ical tasks. The first is to predict patients who are at risk of developing heparin induced
thrombocytopenia, a life threatening condition that may develop in patients treated with
heparin. The second is predict and diagnose various disorders for diabetic patients, such as
cardiological, renal or neurological disorders. Our experimental evaluation demonstrated

the following benefits of our approach:

1. RTP mining and MPRTP mining are able to learn accurate event detection classifiers
for real-world clinical tasks, which is a key step for developing intelligent clinical moni-
toring systems.

2. The MPRTP framework is effective for selecting predictive and non-spurious RTPs,
which makes it useful for knowledge discovery.

3. Mining RTPs or MPRTPs is more scalable than the existing temporal pattern mining
methods.
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6.0 DISCUSSION

In this dissertation, we studied pattern mining in the supervised setting, where the objective
is to find patterns (defining subpopulations of the data) that are important for predicting
the class labels. We have presented several methods for mining predictive patterns for both
atemporal and temporal data. The main contributions of this dissertation are summarized

below.

* We presented the minimal predictive patterns (MPP) framework for supervised pattern
mining in static (atemporal) data. This framework applies a novel Bayesian score to
evaluate the predictiveness of patterns. It also considers the structure of patterns to
assure that every pattern is not only predictive compared to the entire data, but also
compared to the data matching any of its subpatterns. We showed that the MPP frame-
work is able to explain and summarize the data using fewer patterns that the existing
methods. We also showed that using MPPs as features can greatly improve the classifi-

cation performance.

* We presented an efficient algorithm for mining MPPs, which integrates pattern evalu-
ation with frequent pattern mining and applies supervised pruning strategies to speed
up the mining. We showed that our algorithm is more efficient than standard frequent

pattern mining algorithms.

* We also studied the problem of supervised pattern mining in multivariate temporal data.
We presented a novel method for mining recent temporal patterns (RTP), which we ar-
gued is appropriate for event detection problems. We showed that the RTP framework is
able to learn accurate event detection models for real-world clinical tasks. In addition,

we showed that it is much more efficient and scalable than existing temporal pattern
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mining methods.

¢ We extended the MPP framework to the temporal domain and presented the minimal
predictive recent temporal patterns (MPRTP). We showed that MPRTP is effective for

selecting predictive and non-spurious RTPs.

There are however some limitations of pattern mining techniques, which our proposed

methods inherit:

¢ Pattern mining suffers when applied on high-dimensional data. The reason is that when
the dimensionality of the data is large, the space of patterns becomes very large, which
in turn makes the mining computationally very expensive and increases the risk of false

discoveries.

¢ Pattern mining requires a prior discretization of the data in order to convert numeric
values to a finite number of categories. This may result in loosing some predictive in-
formation in the numeric attributes. Besides, pattern mining treats these discretized

categories as being independent and disregards their ordinal relations.

We now outline some related open questions and research opportunities.

* Mining Association Rules: This is an unsupervised pattern mining task which aims
to extract interesting correlations, associations and casual relations between items in
the data!. Association rules are usually obtained by first applying a frequent pattern
mining method and then generating rules that have coverage and confidence higher
than user-specified thresholds [Han et al., 2006]. However, using a similar argument
to the one in Section 3.4, we can see that this approach usually leads to many spurious
association rules. For example, if rule chips = salsa has a high confidence, many of its
spurious rules, such as chips A banana = salsa, are expected to have high confidences

as well.

The MPP framework we proposed for supervised pattern mining can also be used to

filter out spurious association rules. That is, we can apply it as a postprocessing step to

In contrast to our work, where we restrict the consequent of rules to be a class label (supervised), the
consequent of rules for association rule mining can be any item (unsupervised).
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assure that every association rule in the result offers a significant predictive advantage
over all of its subrules.

* Comparing and Contrasting Datasets: Identifying and explaining the similarities
and differences between two datasets can be very valuable. For example, suppose we
have data about patients in two different intensive care units (ICUs), or within the same
ICU during two different periods. If the two ICUs experience different outcomes (e.g.,
different mortality rates), we may wish to understand and gain insights on the reasons
they differ?. An important research problem is to extend our method to search for pat-
terns that most contribute to the differences between datasets and provide explanations
on how they account for the differences.

* Detecting Patterns in Spatio-Temporal Data: The aim of this task is to find pat-
terns that describe the temporal changes in the relations between spatially related ob-
jects. For example, assume we have a temporal sequence of medical images and an
object detection algorithm. Assume we detected two neighboring objects A and B and
defined their relations using the intensity gradient. It would be interesting to study
patterns that describe how this relation changes over time. An example of such patterns
is Intensity_gradient(A,B)=low proceeds Intensity_gradient(A,B)=high.

* Mining Pattern Sets: Traditional pattern mining methods are based on the idea of
evaluating the quality of individual patterns and choosing the top quality ones. In this
thesis, we proposed a method that considers the relations between patterns (the partial
order defined on the lattice of patterns) when evaluating their quality. An alternative
(and more general) approach is to cast pattern mining as an optimization problem. This
can be done by specifying a function that evaluates the quality of an entire set of patterns
and finding a set that optimizes (or satisfies constraints on) that function. An example
of such task is to find the smallest set of patterns that collectively cover at least 90% of
the data and predict the class label with accuracy at least 80%. This general formulation
appears to be hard to solve. An interesting research direction is to investigate specific

forms of quality functions that make the problem computationally more tractable.

2For example, the higher mortality in hospital A compared to hospital B may be simply because patients in
A were in worse conditions than patients in B, not because of worse patient management.
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APPENDIX

MATHEMATICAL DERIVATION AND COMPUTATIONAL COMPLEXITY OF THE
BAYESIAN SCORE

This appendix explains in details the mathematical derivations and the computational com-
plexity of the Bayesian score described in Section 3.5.1.2. Section A.2 derives the closed
form solution for the marginal likelihood of model My: P(G|M}). Section A.3 shows the
four equivalent formulas for solving P(G|M}). Section A.4 illustrates how to obtain the
marginal likelihood of model M; from the solution to the marginal likelihood of model
Mj,. Finally, Section A.5 analyzes the overall computational complexity for computing the

Bayesian score.

A.1 DEFINITION AND NOTATIONS

We want to evaluate rule P = y with respect to a group of instances G where Gp<G. Let Y
denote the class variable (the outcome). Let 6 denote the probability of class Y =y in G, let
01 denote the probability of =y in Gp and let 65 denote the probability of =y in the instances
of G not covered by P (G \ Gp).

We define the following three models:

1. M, is the model that conjectures that 61 is the same as 6.

2. My, is the model that conjectures that 8 is higher than 65.
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3. M is the model that conjectures that 61 is lower than 6.

Let @ and B be the beta parameters for the prior distribution on 8. Let a; and f; be the
beta parameters for the prior distribution on 6. Let a2 and B2 be the beta parameters for
the prior distribution on 69. Let N.; and N.o be the number of instances in G with Y =y
and with Y #y, respectively. Let N1; and N2 be the number of instances in Gp with Y =y
and with Y #y, respectively. Let No; and N9y be the number of instances in G \ Gp with
Y =y and with Y #y, respectively.

We define the Bayesian score of rule P = y with respect to group G as follows:

Pr(G|My)-Pr(Mp) (1)

BSWP=y,()=PriMalt) = 5 e Br(M.)+ Pr(G My - Prdy) + PrGIM) - Prad)

Evaluating Equation .1 requires evaluating the marginal likelihood for models M., M,
and M;. Evaluating the marginal likelihood of M, is easy and is given by the following well

known closed-form solution [Heckerman et al., 1995]:

r(a+ﬁ) ) I'(a+N.1) ) r(ﬁ+N*2)

Pr(GIM,) =
I'(@+Ns1+pB+N.2) I'(a) ')

(.2)

where I is the gamma function.
In the rest of this appendix, we describe how to obtain closed-form solutions for the
marginal likelihood of Mj and M; and then analyse the overall computational complexity of

the Bayesian score (evaluating Equation .1).

A.2 DERIVATION OF THE CLOSED-FORM SOLUTION FOR MODEL My

The marginal likelihood of model M;, (Pr(G|M})) is defined as follows:
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We first show how to solve the integral over 85 in closed form, which is denoted by f3 in
Equation .3. We then expand the function denoted by f1, multiply it by the solution to fo,
and solve the integral over 0; in closed form to complete the integration.
We use the regularized incomplete beta function [Abramowitz and Stegun, 1964] to solve
the integral given by f2. Using the notation in the expression denoted by f5, the incomplete

beta function is as follows:

% gan _ I(a) T() *&E1  Ta+b) . L
el (1- b-1 = 0l .(1_ a+b-1-j
fezzoez (10000 = 5 R Y e sy A0 (4)

where a and b should be natural numbers.

Note that when 0; = 1 in Equation .4, the solution to the integral in that equation is

simply the following:
1 I'(a)-T'(b)
02271 (1-09)° 7 1dfy = ——— 5
fezzo 2 ( 2) 2= Tt b (.5)

We now solve the integral given by f2 in Equation .3 as follows:

01
f2=[ 02721 - (1 - 02)V22 - beta(Os; az, B2)d 02
0

=0
01 ['(ag + B2) _
= o2t (1 - )Nz =2 g2l (1 _g,)f2-1dg
fezzo ? * T(ap)T(By) 2 ? ?

_ TIlag+B2) 01

— 0 N21+a2—1 (1 _0 )N22+,32—1d9
T(az) T(B2) Jo,=0 ? ?

_ Tag+p2) [

=_—-c D47 0% 1.(1-69)°"1do
T(az) T(Ba) Jg, o2 17020 b
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where a = N9 + ag and b = Nag + fo.

Using Equation .4, we get the following:

f T(as+B2) T(a)-T(b) b1 T(a+b)
) = )

= : .pl (1 _p.a+tb-1-j
[(a2)-I'(B2) T(a+b) J; TG+1)-T@+b—)) 61-(1-61)

We now turn to f1, which can be expanded as follows:

1
fl:f 0, M1 . (1-601)N2 - beta(dy1; a1, 1)
0

1=0
1 (a1 + B1) -1 -
= 0,V (1 -0V ——— g9t (1-gp)P1] 7
falzo R T ETT  a 7
_ Tlai+py) L

= - - 0 c-1, 1-0 d-1
Tan) T Joyo?t A7

where ¢ = N1 +a1 and d = N1g + 1.

Now we combine Equations .6 and .7 to solve Equation .3:

1
Pr(GIMh)ZE'fl'fz do,

:EM ! 2] C—l,(l_g )d—l. r(a2+:62) r(a)r(b)
k T(a1)-T(B1) Jo,=o0 ! 1 T(az) T(B2) T(a+b)
N I'a +b) J a+b-1-j
' E TG+ Tarby 11-0 dby
_1 T@tpy  T@+fe) T@TO) (1 ooy (oo
"k T(a)-T(B) T(a) T(B2) Tla+b) Jo=o - 1
N I'(a +b) J a+b—1-j
' Ea r(j+1)-r(a+b—j)'61'(1_91) 61
:1. I'(a1+p1)  Tlag+p2) Ila)-I'(b)
k T(a1)-T'(B1) T'(a2)-I'(f2) TI'(a+b)
a+b-1 I'(a+b) (c+/)-1 (@brd-1-)-1
' J;a F(j+1)-l"(a+b—j)' 91:091 +(1-61) doy

Which by Equation .5 is
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(a1 + B1) . I'(ag + B2) .F(a)-l—‘(b)

1
Pr(GIM) =~
M = Ty T(h) Tan) T(h) T+
'Mfl I'(a+b) T(c+j)-Ta+b+d-1-)
ia IGg+1-I'la+b-) IlNa+b+c+d-1)
(a1 +p1)  Tag+pB2) atbl ['(a)-T(b) I'c+j)-T@a+b+d-1-j)

1
Tk

T(a1)-T(B1) T(asg)-T(Bs) TG+1)-T@+b-j)  T(@a+b+c+d—1)

j=a
(.8)

where @ = Noj + a9, b =Naog+ 2, c=Nj1+a; and d = Ny2 + f1.
We can solve for & (the normalization constant for the parameter prior) by solving Equa-
tion .3 (without the & term) with Ni; = Nig = No1 = Nog = 0. Doing so is equivalent to
applying Equation .8 (without the k& term) with a = a2, b = 2, ¢ = @1 and d = ;. Note that

k= % if we use uniform priors on both parameters by setting a; = 81 =ag =2 =1.

A.3 FOUR EQUIVALENT SOLUTIONS FOR MODEL My

In the previous section, we showed the full derivation of the closed-form solution to the
marginal likelihood of model M. It turned out that there are four equivalent solutions to
Equation .3. These solutions are derived by redefining which class map to the values 1 and
2 and by redefining which regions map to 8; and 6.

Let us use the notations introduced in the previous section: a = Noj + @2, b = Nog + f2,
¢ =Ni1+a; and d = Nig + B;. Also, let us define C as follows:

CTai+p1)  Tlag+pP2)
I'(a1)-T(B1) I'(ag)-T'(B2)

1
C= Z (.9)

The marginal likelihood of M; (Equation .3) can be obtained by solving any of the fol-

lowing four equations:

a+b-1 I'(a)-T(b) I'c+j) Ta+b+d—-j-1)
c ]; F(j+1)-1*(a+b—j)' I'a+b+c+d-1) (10)
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Which is the solution we derived in the previous section.

d+c—1 . N o
C. Z ' I'(c)-T'(d) ' 'F(b+J) I'(c+d+a—-j—-1) (11)
= TG+ -T(e+d—-)) I'la+b+c+d-1)
. l“(a)-lﬂ(b)}“(c)-l“(d)_‘”b_1 I'(a)-T'(b) .F(d+j)-l“(a+b+c—j—1) (12)
I@+b) T(+d) Z TG+D-Ta+b-j) INa+b+c+d-1) '
. 1“(a)-l“(b).l“(c)-l"(ol)_‘”r‘]l_1 I'(c)-T'(d) .l"(a+j)-l“(c+d+b—j—1) (13)
I@+b) T+d) = TG+D-Tc+d-j) INa+b+c+d-1) '

A.4 DERIVATION OF THE CLOSED-FORM SOLUTION FOR MODEL M},

The marginal likelihood of model M; (Pr(G|M;)) is defined as follows:

1 1

02
== 05721 . (1 - 09)V22 - beta(Oy; ag, B2) f 0, M1 . (1 -0 - beta(01; a1, B1)d01 dOy
02=0 0:1=0

)

-~ -~

f1 fo
(.14)

By solving the integral given by f2, we get:

T(ai+p1) (%2 | .4 d-1
= 0 (1-0 do
P T T oo™ OO

_ Tlai+B) T(e)-I(d) *&! I'(c+d)

" T(aD T(B) Tlc+d) JZ TG+ Tc+d—))

Hé (1 _02)c+d—1—j

where, as before, c = N1; + a; and d = N12 + f1.

By solving f1, we get:

£ = [(ag+B2) (1
'™ Taz) T(B2) Joy=o

Now we can solve Equation .14:

92(1—1 . (1 _ ez)b—l
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ctd-1  T(c)-T(d) T(a+j) Tc+d+b—1-j)

PrGIM)=C- Jg TG+1) Tc+d—j)  T@+btctd—1)

(.15)

Where C is the constant we defined by Equation .9 in the previous section.

Notice that Equation .15 (the solution to Pr(G|M;)) can be obtained from Equation .13

(one of the four solutions to Pr(G|Mj})) as follows:

I'(@) - TB)(c)- T'(d)

PrGIM)=C T e+ d)

- Pr(G|My,) (.16)

It turned out that no matter which formula we used to solve Pr(G|M}), we can use

Equation .16 to obtain Pr(G|M;).

A.5 COMPUTATIONAL COMPLEXITY

Since we require that N11, N12, No1, Nog, a1, f1, a2 and B9 be natural numbers, the gamma
function simply becomes a factorial function: I'(x) = (x — 1)!. Since such numbers can be-
come very large, it is convenient to use the logarithm of the gamma function and express
Equations .2, .10, .11, .12, .13 and .16 in logarithmic form in order to preserve numerical
precision. The logarithm of the integer gamma function can be pre-computed and efficiently
stored in an array as follows:

InGammall]=0

Fori=2ton

InGammalil=InGammali -1]+In(i-1)

We then can use InGamma in solving the above equations. However, Equations .10,
.11, .12 and .13 include a sum, which makes the use of the logarithmic form more involved.
To deal with this issue, we can define function /nAdd, which takes two arguments x and
y that are in logarithmic form and returns In(e* +e”). It does so in a way that preserves a

good deal of numerical precision that could be lost if In(e* + e¥) were calculated in a direct
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manner. This is done by using the following formula:

InAdd(x,y)=x+In(1+eY™)

Now that we introduced functions [nGamma and [nAdd, it is straightforward to eval-
uate Equations .2, .10, .11, .12, .13 and .16 in logarithmic form.

Let us now analyze the overall computational complexity for computing the Bayesian
score for a specific rule (solving Equation .1). Doing so requires computing Pr(M,.|G),
Pr(My|G) and Pr(M;|G). Pr(M.|G) can be computed in O(1) using Equation .2. Pr(M;|G)
can be computed by applying Equation .10, Equation .11, Equation .12 or Equation .13. The
computational complexity of these equations are O(Nag + fB2), O(N11 + a1), O(N21 + a2) and
O(N12 + B1), respectively. Therefore, Pr(Mj|G) can be computed in O(min(N1; + a@1,N12 +
B1,N21 + ag,Naog + f2). Pr(M;|G) can be computed from Pr(M|G) in O(1) using Equation
.16. By assuming that ai, B1, a2, B2 are bounded from above, the overall complexity for

computing the Bayesian score is O(min(N11,N12,N21,N22).
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