
MINING PREDICTIVE PATTERNS AND EXTENSION

TO MULTIVARIATE TEMPORAL DATA

by

Iyad Batal

BS, University of Damascus, 2005

MS, University of Pittsburgh, 2008

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy in Computer Science

University of Pittsburgh

2012

UNIVERSITY OF PITTSBURGH

COMPUTER SCIENCE DEPARTMENT

This dissertation was presented

by

Iyad Batal

It was defended on

October 29, 2012

and approved by

Milos Hauskrecht, PhD, Associate Professor, Computer Science

Rebecca Hwa, PhD, Associate Professor, Computer Science

G. Elisabeta Marai, PhD, Assistant Professor, Computer Science

Jeff Schneider, PhD, Associate Research Professor, Computer Science (Carnegie Mellon

University)

Dissertation Director: Milos Hauskrecht, PhD, Associate Professor, Computer Science

ii

Copyright © by Iyad Batal

2012

iii

MINING PREDICTIVE PATTERNS AND EXTENSION TO MULTIVARIATE

TEMPORAL DATA

Iyad Batal, PhD

University of Pittsburgh, 2012

An important goal of knowledge discovery is the search for patterns in the data that can

help explaining its underlying structure. To be practically useful, the discovered patterns

should be novel (unexpected) and easy to understand by humans. In this thesis, we study

the problem of mining patterns (defining subpopulations of data instances) that are impor-

tant for predicting and explaining a specific outcome variable. An example is the task of

identifying groups of patients that respond better to a certain treatment than the rest of the

patients.

We propose and present efficient methods for mining predictive patterns for both atem-

poral and temporal (time series) data. Our first method relies on frequent pattern mining

to explore the search space. It applies a novel evaluation technique for extracting a small

set of frequent patterns that are highly predictive and have low redundancy. We show the

benefits of this method on several synthetic and public datasets.

Our temporal pattern mining method works on complex multivariate temporal data,

such as electronic health records, for the event detection task. It first converts time series

into time-interval sequences of temporal abstractions and then mines temporal patterns

backwards in time, starting from patterns related to the most recent observations. We show

the benefits of our temporal pattern mining method on two real-world clinical tasks.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Supervised Pattern Mining . 1

1.2 Temporal Pattern Mining . 3

1.3 Main Contributions . 4

1.4 Outline of the Thesis . 5

2.0 FREQUENT PATTERN MINING . 6

2.1 Definitions . 7

2.2 Mining Algorithms . 9

2.2.1 The Apriori Approach . 10

2.2.2 The Pattern Growth Approach . 11

2.2.3 The Vertical Data Approach . 12

2.3 Concise Representations . 13

2.3.1 Lossless Compression . 13

2.3.2 Lossy Compression . 14

2.3.3 Constraint-based Compression . 15

2.4 Pattern Mining for Supervised Learning . 16

2.4.1 Concept Learning . 17

2.4.2 Decision Tree Induction . 19

2.4.3 Sequential Covering . 20

2.4.4 Frequent Patterns for Classification . 21

2.5 Summary . 23

3.0 MINING PREDICTIVE PATTERNS . 25

v

3.1 Definitions . 26

3.2 Supervised Descriptive Rule Discovery . 28

3.3 Pattern-based Classification . 31

3.4 The Spurious Patterns Problem . 33

3.5 Mining Minimal Predictive Patterns . 34

3.5.1 Evaluating Patterns using the Bayesian Score 35

3.5.1.1 Classical Evaluation Measures 35

3.5.1.2 The Bayesian Score . 35

3.5.2 Minimal Predictive Patterns . 39

3.5.3 The Mining Algorithm . 42

3.5.4 Pruning the Search Space . 45

3.5.4.1 Lossless pruning . 45

3.5.4.2 Lossy pruning . 46

3.6 Experimental Evaluation . 48

3.6.1 UCI Datasets . 48

3.6.2 Quality of Top-K Rules . 48

3.6.2.1 Compared Methods . 48

3.6.2.2 Performance Measures . 51

3.6.2.3 Results on Synthetic Data . 52

3.6.2.4 Results on UCI Datasets . 55

3.6.3 Pattern-based Classification . 59

3.6.3.1 Compared Methods . 60

3.6.3.2 Results on Synthetic Data . 61

3.6.3.3 Results on UCI Datasets . 63

3.6.4 Mining Efficiency . 64

3.6.4.1 Compared Methods . 65

3.6.4.2 Results on UCI Datasets . 66

3.7 Summary . 69

4.0 TEMPORAL PATTERN MINING . 70

4.1 Temporal Data Models . 70

vi

4.2 Temporal Data Classification . 73

4.2.1 The Transformation-based Approach 74

4.2.2 The Instance-based Approach . 74

4.2.3 The Model-based Approach . 75

4.2.4 The Pattern-based Approach . 76

4.3 Temporal Patterns for Time Point Data . 76

4.3.1 Substring Patterns . 77

4.3.2 Sequential Patterns . 77

4.3.3 Episode Patterns . 79

4.4 Temporal Patterns for Time Interval Data . 80

4.4.1 Allen’s Temporal Relations . 80

4.4.2 Early Approaches . 82

4.4.3 Höppner Representation . 82

4.4.4 Other Representations . 84

4.5 Temporal Abstraction . 88

4.5.1 Abstraction by Clustering . 88

4.5.2 Trend Abstractions . 89

4.5.3 Value Abstractions . 91

4.6 Summary . 92

5.0 MINING PREDICTIVE TEMPORAL PATTERNS 94

5.1 Problem Definition . 97

5.2 Temporal Abstraction Patterns . 98

5.2.1 Temporal Abstraction . 98

5.2.2 Multivariate State Sequences . 99

5.2.3 Temporal Relations . 100

5.2.4 Temporal Patterns . 101

5.3 Recent Temporal Patterns . 102

5.4 Mining Frequent Recent Temporal Patterns 105

5.4.1 Backward Candidate Generation . 106

5.4.2 Improving the Efficiency of Candidate Generation 107

vii

5.4.3 Improving the Efficiency of Counting 110

5.5 Mining Minimal Predictive Recent Temporal Patterns 111

5.6 Learning the Event Detection Model . 114

5.7 Experimental Evaluation . 114

5.7.1 Temporal Datasets . 114

5.7.1.1 Synthetic Dataset . 115

5.7.1.2 HIT Dataset . 115

5.7.1.3 Diabetes Dataset . 117

5.7.1.4 Datasets Summary . 118

5.7.2 Classification . 119

5.7.2.1 Compared Methods . 119

5.7.2.2 Results on Synthetic Data . 121

5.7.2.3 Results on HIT Data . 122

5.7.2.4 Results on Diabetes Data . 123

5.7.3 Knowledge Discovery . 125

5.7.3.1 Results on Synthetic Data . 125

5.7.3.2 Results on HIT Data . 125

5.7.3.3 Results on Diabetes Data . 126

5.7.4 Mining Efficiency . 127

5.7.4.1 Compared Methods . 127

5.7.4.2 Results on Synthetic Data . 128

5.7.4.3 Results on HIT Data . 128

5.7.4.4 Results on Diabetes Data . 129

5.8 Summary . 132

6.0 DISCUSSION . 134

APPENDIX. MATHEMATICAL DERIVATION AND COMPUTATIONAL COM-

PLEXITY OF THE BAYESIAN SCORE . 137

A.1 Definition and Notations . 137

A.2 Derivation of the Closed-form Solution for Model Mh 138

A.3 Four Equivalent Solutions for Model Mh . 141

viii

A.4 Derivation of the Closed-form Solution for Model Ml 142

A.5 Computational Complexity . 143

BIBLIOGRAPHY . 145

ix

LIST OF TABLES

1 An example of transaction data . 8

2 An example of attribute-value data . 8

3 Transforming attribute-value data into transaction data 9

4 The vertical data format . 12

5 The UCI datasets . 49

6 AUC of the ROC space representation on the UCI data 59

7 Classification performance on the UCI data . 64

8 The mining time on the UCI data . 67

9 An example of sequence data . 78

10 Summary of the temporal datasets . 119

11 Classification performance on the synthetic data 122

12 Classification performance on the HIT data . 123

13 Area under ROC on the diabetes data . 124

14 Classification accuracy on the diabetes data . 124

15 Top MPRTPs on the synthetic data . 125

16 Top MPRTPs on the HIT data . 126

17 Top MPRTPs on the diabetes data . 127

x

LIST OF FIGURES

1 The lattice of itemset patterns . 10

2 An example of a decision tree . 19

3 The space of patterns versus the space of instances 27

4 Pattern-based classification . 32

5 Spurious patterns . 34

6 Model Mh of the Bayesian score . 37

7 The Bayesian score as a function of the true positives and the false positives . 39

8 The class-specific MPP mining . 42

9 MPP mining on a small lattice . 44

10 Illustrating the lossy pruning . 47

11 Rules in the ROC space . 53

12 The synthetic data for the rule mining experiments 54

13 Comparing rule evaluation measures on the synthetic data 54

14 Illustrating the deficiency of the ROC space representation 55

15 Comparing rule evaluation measures on the UCI data 58

16 The synthetic data for the classification experiments 62

17 Classification performance on the synthetic data 63

18 A graphical representation of the classification performance on the UCI data . 65

19 The mining time using different minimum support thresholds 68

20 Illustrating several temporal data models . 72

21 Substring patterns . 77

22 Episode patterns . 80

xi

23 Allen’s temporal relations . 81

24 A1 patterns . 82

25 Höppner’s patterns . 83

26 TSKR patterns . 84

27 The precedes temporal relation . 85

28 Representing patterns by state boundaries . 86

29 SISP patterns . 87

30 Piecewise linear representation . 89

31 SAX representation . 92

32 Temporal classification versus event detection 95

33 An example of an EHR instance . 97

34 Trend abstractions and value abstractions . 99

35 An example of a temporal pattern . 102

36 An example of an RTP . 104

37 Illustrating candidate generation . 108

38 The synthetic data for temporal pattern mining 116

39 The mining time on the synthetic data . 129

40 The mining time on the HIT data . 129

41 The mining time on the diabetes data . 130

42 The mining time using different minimum support thresholds 131

43 The mining time using different maximum gap values 132

xii

LIST OF ALGORITHMS

1 Extending a temporal pattern backward with a new state 109

2 Candidate Generation for RTP . 112

xiii

PREFACE

During my Ph.D, I have received support from a number of people without whom the com-

pletion of this thesis would not be possible.

First of all, I would like to express my deepest gratitude to my advisor, Dr. Milos

Hauskrecht, who introduced me to the fields of machine learning and data mining and

taught me how to conduct high-quality research. I was privileged to work with Dr Greg

Cooper, who always provided me with useful critiques to my research ideas. I would also

like to thank my thesis committee, Dr. Rebecca Hwa, Dr Liz Marai and Dr Jeff Schneider

for their valuable feedback and discussions during my thesis defense.

I want to thank our post-doc Hamed Valizadegan, with whom I worked during my last

year of PhD. Also I want to thank the other members of Milos’ machine learning lab: Saeed

Amizadeh, Michal Valko, Quang Nguyen, Charmgill Hong and Shuguang Wang. Besides

my studies, I am grateful for having nice friends in Pittsburgh, who made my stay very

enjoyable. In particular, I want to mention Carolynne Ricardo, Rakan Maddah, John Fegali

and Wissam Baino. I would also like to thank my dear friends from Syria, especially Fareed

Hanna, Feras Meshal, Joseph Ayoub, Feras Deeb, Faten Fayad, Kinda Ghanem and Rami

Batal.

Finally, I am indebted to my family for their unlimited and unconditional encourage-

ment, support, and love. In particular, I’m very thankful to my loving parents George and

May, my brother Ibrahim, my sister in law Hanady and my lovely niece Yara.

Thank you all!

xiv

1.0 INTRODUCTION

The large amounts of data collected today provide us with an opportunity to better under-

stand the behavior and structure of many natural and man-made systems. However, the

understanding of these systems may not be possible without automated tools that enable

us to explore, explain and summarize the data in a concise and easy to understand form.

Pattern mining is the field of research that attempts to discover patterns that describe im-

portant structures and regularities in data and present them in an understandable form for

further use.

1.1 SUPERVISED PATTERN MINING

In this thesis, we study the application of pattern mining in the supervised setting, where we

have a specific class variable (the outcome) and we want to find patterns (defining subpop-

ulations of data instances) that are important for explaining and predicting this variable.

Examples of such patterns are: “subpopulation of patients who smoke and have a positive

family history are at a significantly higher risk for coronary heart disease than the rest of

the patients”, or “the unemployment rate for young men who live in rural areas is above the

national average”.

Finding predictive patterns is practically important for discovering “knowledge nuggets”

from data. For example, finding a pattern that clearly and concisely defines a subpopula-

tion of patients that respond better (or worse) to a certain treatment than the rest of the

patients can speed up the validation process of this finding and its future utilization in

patient-management. Finding predictive patterns is also important for the classification

1

task because the mined patterns can be very useful to predict the class labels for future

instances.

In order to develop an algorithm for mining predictive patterns from data, we need to

define a search algorithm for exploring the space of potential patterns and a pattern selection

algorithm for choosing the “most important” patterns.

To search for predictive patterns, we use frequent pattern mining, which examines all

patterns that occur frequently in the data. The key advantage of frequent pattern mining

is that it performs a more complete search than other greedy search approaches, such as

sequential covering [Cohen, 1995, Cohen and Singer, 1999, Yin and Han, 2003] and decision

tree [Quinlan, 1993]. Consequently, it is less likely to miss important patterns. However,

this advantage comes with the following disadvantages: 1) frequent pattern mining often

produces a very large number of patterns, 2) many patterns are not important for predicting

the class labels and 3) many patterns are redundant because they are only small variations

of each other. These disadvantages greatly hinder the discovery process and the utilization

of the results. Therefore, it is crucial to devise an effective method for selecting a small set

of predictive and non-redundant patterns from a large pool of frequent patterns.

Most existing approaches for selecting predictive patterns rely on a quality measure

(cf [Geng and Hamilton, 2006]) to score each pattern individually and then select the top

scoring patterns [Nijssen et al., 2009, Bay and Pazzani, 2001, Li et al., 2001b, Brin et al.,

1997a, Morishita and Sese, 2000]. In this thesis, we argue that this approach is ineffective

and can lead to many spurious patterns. To overcome this shortcoming, we propose the

Minimal Predictive Patterns (MPP) framework. This framework applies Bayesian statistical

inference to evaluate the quality of the patterns. In addition, it considers the relations

between patterns in order to assure that every pattern in the result offers a significant

predictive advantage over all of its generalizations (simplifications).

We present an efficient algorithm for mining MPPs. As opposed to the commonly used

approach, which first mines all frequent patterns and then selects the predictive patterns

[Exarchos et al., 2008, Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrač,

2006, Deshpande et al., 2005, Li et al., 2001b], our algorithm integrates pattern selection

with frequent pattern mining. This allows us to perform several strategies to prune the

2

search space and achieve a better efficiency.

1.2 TEMPORAL PATTERN MINING

Advances in data collection and data storage technologies have led to the emergence of com-

plex multivariate temporal datasets, where data instances are traces of complex behaviors

characterized by multiple time series. Such data appear in a wide variety of domains, such

as health care [Hauskrecht et al., 2010, Sacchi et al., 2007, Ho et al., 2003], sensor mea-

surements [Jain et al., 2004], intrusion detection [Lee et al., 2000], motion capture [Li et al.,

2009], environmental monitoring [Papadimitriou et al., 2005] and many more. Designing

algorithms capable of mining useful patterns in such complex data is one of the most chal-

lenging topics of data mining research.

In the second part of the thesis, we study techniques for mining multivariate tempo-

ral data. This task is more challenging than mining atemporal data because defining and

representing temporal patterns that can describe such data is not an obvious design choice.

Our approach relies on temporal abstractions [Shahar, 1997] to convert time series variables

into time-interval sequences of abstract states and temporal logic [Allen, 1984] to represent

temporal interactions among multiple states. This representation allows us to define and

construct complex temporal patterns (time-interval patterns) in a systematic way. For ex-

ample, in the clinical domain, we can express a concept like “the administration of heparin

precedes a decreasing trend in platelet counts”.

Our research work focuses primarily on mining predictive temporal patterns for event

detection and its application to Electronic Health Records (EHR) data. For EHR data, each

record (data instance) consists of multiple time series of clinical variables collected for a

specific patient, such as laboratory test results and medication orders. The data also pro-

vide temporal information about the incidence of several adverse medical events, such as

diseases or drug toxicities. Our objective is to mine patterns that can accurately predict

adverse medical events and apply them to monitor future patients. This task is extremely

used for intelligent patient monitoring, outcome prediction and decision support.

3

Mining predictive patterns in abstract time-interval data is very challenging mainly

because the search space that the algorithm has to explore is extremely large and complex.

All existing methods in this area have been applied in an unsupervised setting for mining

temporal association rules [Moskovitch and Shahar, 2009, Wu and Chen, 2007, Winarko and

Roddick, 2007, Papapetrou et al., 2005, Moerchen, 2006b, Höppner, 2003]. These methods

are known to have a high computational cost and they do not scale up to large data.

In contrast to the existing methods, our work applies temporal pattern mining in the

supervised setting to find patterns that are important for the event detection task. To ef-

ficiently mine such patterns, we propose the Recent Temporal Patterns (RTP) framework.

This framework focuses the mining on temporal patterns that are related to most recent

temporal behavior of the time series instances, which we argue are more predictive for event

detection1. We present an efficient algorithm that mines time-interval patterns backward

in time, starting from patterns related to the most recent observations. Finally, we extend

the minimal predictive patterns framework to the temporal domain for mining predictive

and non-spurious RTPs.

1.3 MAIN CONTRIBUTIONS

The main contributions of this thesis can be summarized as follows:

• Supervised Pattern Mining:

– We propose the minimal predictive patterns framework for mining predictive and

non-spurious patterns.

– We show that our framework is able to explain and cover the data using fewer pat-

terns than existing methods, which is beneficial for knowledge discovery.

– We show that our mining algorithm improves the efficiency compared to standard

frequent pattern mining methods.

1In the clinical domain, the most recent clinical measurements of a patient are usually more informative
about his health state than distant measurements

4

• Temporal Pattern Mining:

– We propose the recent temporal patterns framework to mine predictive patterns for

event detection in multivariate temporal data.

– We show that our framework is able to learn accurate event detection classifiers

for real-world clinical tasks, which is a key step for developing intelligent clinical

monitoring systems.

– We show that our mining algorithm scales up much better than the existing tempo-

ral pattern mining methods.

– We present the minimal predictive recent temporal patterns framework, which ex-

tends the idea of minimal predictive patterns to the temporal domain.

1.4 OUTLINE OF THE THESIS

This thesis is organized as follows. Chapter 2 outlines the related research in frequent

pattern mining. Chapter 3 presents our approach for mining minimal predictive patterns.

It also presents our experimental evaluations on several synthetic and benchmark datasets.

Chapter 4 outlines the related research in temporal data mining. Chapter 5 presents our

approach for mining predictive patterns in multivariate temporal data. It also presents

our experimental evaluations on a synthetic dataset and on two real-world EHR datasets.

Finally, Chapter 6 concludes the thesis.

Parts of this dissertation and closely related work were published in [Batal et al., 2012b,

Batal et al., 2012a, Batal et al., 2012c, Batal et al., 2011, Batal and Hauskrecht, 2010b,

Batal and Hauskrecht, 2010a, Batal et al., 2009, Batal and Hauskrecht, 2009]

5

2.0 FREQUENT PATTERN MINING

Frequent patterns are simply patterns that appear frequently in a dataset. These patterns

can take a variety of forms such as:

1. Itemset patterns: Represent set of items [Agrawal et al., 1993, Yan et al., 2005, Cheng

et al., 2007, Batal and Hauskrecht, 2010b, Mampaey et al., 2011].

2. Sequential patterns: Represent temporal order among items [Srikant and Agrawal,

1996, Zaki, 2001, Pei et al., 2001, Wang and Han, 2004].

3. Time interval patterns: Represent temporal relations among states with time dura-

tions [Höppner, 2003, Papapetrou et al., 2005, Winarko and Roddick, 2007, Moerchen,

2006a, Batal et al., 2009, Moerchen and Fradkin, 2010, Batal et al., 2011].

4. Graph patterns: Represent structured and semi-structured data such as chemical com-

pounds [Kuramochi and Karypis, 2001, Vanetik et al., 2002, Yan and Han, 2002, Desh-

pande et al., 2005].

Frequent pattern mining plays an essential role for discovering interesting regularities

that hold in data. Moreover, it has been extensively used to support other data mining tasks,

such as classification [Wang and Karypis, 2005, Deshpande et al., 2005, Cheng et al., 2007,

Batal and Hauskrecht, 2010b, Batal et al., 2011] and clustering [Agrawal et al., 1998, Beil

et al., 2002].

Frequent pattern mining was first introduced by [Agrawal et al., 1993] to mine associ-

ation rules for market basket data. Since then, abundant literature has been dedicated to

this research and tremendous progress has been made.

6

In this chapter, we attempt to review the most prominent research on frequent pat-

tern mining and focus mainly on mining itemset patterns1. Incorporating the temporal

dimension in pattern mining is deferred to chapters 4 and 5.

The rest of this chapter is organized as follows. Section 2.1 provides some definitions

that will be used throughout the chapter. Section 2.2 describes the most common frequent

pattern mining algorithms. Section 2.3 reviews methods that attempt to reduce the number

of frequent patterns (compress the results). Section 2.4 reviews methods that use patterns

for supervised learning, where the objective is to mine patterns that predict well the class

labels. Finally, Section 2.5 summarizes the chapter.

2.1 DEFINITIONS

Frequent pattern mining was first introduced by [Agrawal et al., 1993] for mining market

basket data that are in transactional form. The goal was to analyze customer buying

habits by finding associations between items that customers frequently buy together. For

example, if a customer buys cereal, he is also likely to buy milk on the same trip to the

supermarket. In this example, cereal and milk are called items and the customer’s trip to

the supermarket is called a transaction.

Formally, let Σ = I1, I2, ..., In denotes the set of all items, which is also called the al-

phabet. An itemset pattern is a conjunction of items: P = Iq1 ∧ ...∧ Iqk where Iq j ∈Σ. If a

pattern contains k items, we call it a k-pattern (an item is a 1-pattern). We say that pattern

P is a subpattern of pattern P ′ (P ′ is a superpattern of P), denoted as P ⊂ P ′, if every

item in P is contained in P ′. The support of pattern P in database D, denoted as sup(P,D),

is the number of instances in D that contain P. Given a user specified minimum support

threshold σ, we say that P is frequent pattern if sup(P,D)≥σ.

Example 1. Consider the transaction data in Table 1, where the alphabet of items is Σ =
{A,B,C,D,E} and there are 5 transactions T1 to T5 (each represents a customer visit to the

1Note that many of the techniques described in this chapter for itemset patterns are also applicable to more
complex types of patterns.

7

supermarket). We can see that pattern P = A ∧C appears in transactions T1, T2 and T4,

hence the support of P is 3. If we set the minimum support σ= 2, then the frequent patterns

for this example are: {A,C,D,E, A∧C, A∧D}.

Transaction List of items

T1 A,C,D

T2 A,B,C

T3 A,D,E

T4 A,C

T5 E

Table 1: An example of transaction data.

The original pattern mining framework was proposed to mine transaction data. How-

ever, the same concepts can be applied to relational attribute-value data, where each in-

stance is described by a fixed number of attributes such as the data in Table 2.

Age Education Marital Status Income

Young (< 30) Bachelor Single Low (< 50K)

Middle age (30-60) HS-grad Married Low (< 50K)

Middle age (30-60) Bachelor Married Medium (50K-100K)

Senior (> 60) PhD Married High (> 100K)

Table 2: An example of relational attribute-value data.

Attribute-value data can be converted into an equivalent transaction data if the data

is discrete, which means the data contain only categorical attributes. In this case, we map

each attribute-value pair to a distinct item. When the data contain numerical (continuous)

attributes, these attributes should be discretized [Yang et al., 2005]. For example, the age

attribute in Table 2 has been converted into three discrete values: Young, Middle age and

Senior.

8

Table 3 shows the data in Table 2 in transaction format. Note that converting an

attribute-value data into a transaction data ensures that all transactions have the same

number of items (unless the original data contain missing values). After this transforma-

tion, we can apply pattern mining algorithms on the equivalent transaction data.

Transaction List of items

T1 Age=Young, Education=Bachelor, Marital Status=Single, Income=Low

T2 Age=Middle age, Education=HS-grad, Marital Status=Married, Income=Low

T3 Age=Middle age, Education=Bachelor, Marital Status=Married, Income=Medium

T4 Age=Senior, Education=PhD, Marital Status=Married, Income=High

Table 3: The data in Table 2 in transaction format.

2.2 MINING ALGORITHMS

The task of pattern mining is challenging because the search space is very large. For in-

stance, the search space of all possible itemset patterns for transaction data is exponential

in the number of items. So if Σ is the alphabet of items, there are 2|Σ| possible itemsets (all

possible subsets of items). This search space can be represented by a lattice structure with

the empty set at the bottom and the set containing all items at the top. Figure 1 shows the

itemset lattice for alphabet Σ= {A,B,C}.

The search space of itemset patterns for attribute-value data is exponential in the num-

ber of attributes. So if there are d attributes and each attribute takes V possible values,

there are (V +1)d valid itemsets. Note that the search space for more complex patterns,

such as sequential patterns, time interval patterns or graph patterns, is even larger than

the search space for itemsets.

Clearly, the naive approach to generate and count all possible patterns is infeasible.

Frequent pattern mining algorithms make use of the minimum support threshold to restrict

9

the search space to a hopefully reasonable subspace that can be explored more efficiently.

In the following, we describe the three main frequent pattern mining approaches: Apriori,

pattern growth and vertical format.

Figure 1: The itemset lattice for alphabet Σ= {A,B,C}.

2.2.1 The Apriori Approach

[Agrawal and Srikant, 1994] observed an interesting downward closure property among

frequent patterns: A pattern can be frequent only if all of its subpatterns are frequent. This

property is called the Apriori property and it belongs to a category of properties called

anti-monotone, which means that if a pattern fail to pass a test, all of its superpatterns will

fail the same test as well.

The Apriori algorithm employs an iterative level-wise search and uses the Apriori prop-

erty to prune the space. It first finds all frequent items (1-patterns) by scanning the database

and keeping only the items that satisfy the minimum support. Then, it performs the follow-

ing two phases to obtain the frequent k-patterns using the frequent (k-1)-patterns:

1. Candidate generation: Generate candidate k-patterns using the frequent (k-1)-patterns.

Remove any candidate that contains an infrequent (k-1)-subpattern because it is guar-

10

anteed not to be frequent according to the Apriori property.

2. Counting: Count the generated candidates and remove the ones that do not satisfy the

minimum support.

This process repeats until no more frequent patterns can be found.

Example 2. This example illustrates the candidate generation phase for itemset mining.

Assume the algorithm found the following frequent 2-patterns: F2 = {A ∧ B, A ∧ C, B ∧
C, B ∧ D}. One way to generate candidate k-patterns for itemset mining is by joining two

(k-1)-patterns if they share the same k−2 prefix [Agrawal and Srikant, 1994]. Following this

strategy, we join A ∧ B with A ∧ C to generate candidate A ∧ B ∧ C. Similarly, we join

B ∧ C with B ∧ D to generate candidate B ∧ C ∧ D. However, B ∧ C ∧ D is guaranteed

not to be frequent because it contains an infrequent 2-subpattern: C ∧ D 6∈ F2. Therefore,

A ∧ B ∧ C is the only candidate that survives the pruning.

Since the Apriori algorithm was proposed, there have been extensive research on im-

proving its efficiency when applied on very large data. These techniques include partition-

ing [Savasere et al., 1995], sampling [Toivonen, 1996], dynamic counting [Brin et al., 1997b]

and distributed mining [Agrawal and Shafer, 1996]. Besides, Apriori has been extended to

mine more complex patterns such as sequential patterns [Srikant and Agrawal, 1996, Man-

nila et al., 1997], graph patterns [Kuramochi and Karypis, 2001, Vanetik et al., 2002] and

time interval patterns [Höppner, 2003, Moskovitch and Shahar, 2009, Batal et al., 2009].

2.2.2 The Pattern Growth Approach

Although the Apriori algorithm uses the Apriori property to reduce the number of candi-

dates, it can still suffer from the following two nontrivial costs: 1) generating a large number

of candidates, and 2) repeatedly scanning the database to count the candidates.

[Han et al., 2000] devised the Frequent Pattern growth (FP-growth) algorithm,

which adopts a divide and conquer strategy and mines the complete set of frequent itemsets

without candidate generation. The algorithm works by first building a compressed repre-

sentation of the database called the Frequent Pattern tree (FP-tree). The problem of mining

the database is transformed to that of mining the FP-tree.

11

Similar to Apriori, the algorithm starts by finding all frequent items. For each frequent

item, the algorithm performs the following steps:

1. Extract the item conditional database.

2. Build the item conditional FP-tree.

3. Recursively mine the conditional FP-tree.

Pattern growth is achieved by the concatenation of the suffix pattern with the frequent

patterns generated from the conditional FP-tree.

[Han et al., 2000] showed that FP-growth is usually more efficient than Apriori. FP-

growth has been extended to mine sequential patterns [Pei et al., 2001, Pei et al., 2007] and

graph patterns [Yan and Han, 2002].

2.2.3 The Vertical Data Approach

Both Apriori and FP-growth mine frequent patterns from data represented in horizontal

format, where every data instance represents a transaction and is associated with a list of

items, such as the data in Table 1. Alternatively, the mining can be performed when the data

is presented in vertical format, where every data instance is an item and is associated with

a list of transactions, which is often called the id-list. Table 4 shows the vertical format of

the transaction data in Table 1. For example, the id-list of item C is {T1,T2,T4}. Clearly, the

support of an item is simply the length of its id-list.

Item List of transactions

A T1,T2,T3,T4

B T2

C T1,T2,T4

D T1,T3

E T3,T5

Table 4: The vertical data format of transaction data of Table 1.

12

[Zaki, 2000] proposed the ECLAT algorithm for mining frequent patterns using the ver-

tical data format. Similar to Apriori, candidate k-patterns are generated from the frequent

(k-1)-patterns using the Apriori property. However, instead of scanning the database to

count every candidate, the algorithm computes the candidate’s id-list by simply intersect-

ing the id-lists of its (k-1)-patterns. For example, the id-list of pattern A ∧E in Table 4 is

{T1,T2,T3,T4}
⋂

{T3,T5} = {T3}, hence the support of A ∧E is 1. As we can see, the merit

of this approach is that it does not have to scan the data to calculate the support of the

candidates.

The vertical format approach has been extended to mine sequential patterns [Zaki, 2001]

and time interval patterns [Batal et al., 2011].

2.3 CONCISE REPRESENTATIONS

One of the most serious disadvantages of frequent pattern mining is that it often produces

a very large number of patterns. This greatly hinders the knowledge discovery process be-

cause the result is often overwhelming the user. Therefore, it is crucial to develop methods

that can summarize (compress) the result in order to retain only the most “interesting” pat-

terns. This section reviews some of the common techniques that aim to reduce the number

of frequent patterns.

2.3.1 Lossless Compression

Lossless compression ensures that the result contains all information about the entire

set of frequent patterns. A popular lossless representation is the closed frequent patterns

[Pasquier et al., 1999], where a pattern P is a closed frequent pattern in dataset D if P is

frequent in D and there is no proper superpattern P ′ such that P ′ has the same support as

P. Several efficient algorithms have been proposed to mine frequent closed patterns [Zaki

and Hsiao, 2002, Wang et al., 2003a].

Another lossless representation is the non-derivable frequent patterns [Calders and Goethals,

13

2002]. The idea is to derive a lower bound and an upper bound on the support of a pattern

using the support of its subpatterns. When these bounds are equal, the pattern is called

derivable. Therefore, we can mine only non-derivable patterns because they are sufficient

to compute the support information for any frequent pattern. This idea was later extended

to mine non-derivable association rules [Goethals et al., 2005].

2.3.2 Lossy Compression

Lossy compression usually provides greater compression rates than lossless compression,

but looses some information about the frequent patterns. One of the earliest lossy represen-

tations is the maximal frequent patterns [Bayardo, 1998] [Yang, 2004], where a pattern P

is a maximal frequent pattern in dataset D if P is frequent in D and there exists no proper

superpattern of P that is also frequent in D. Note that by keeping only maximal frequent

patterns, we can know the set of all frequent patterns. However, we loose the information

about their exact support2.

Another branch of lossless compression takes a summarization approach, where the

aim is to derive k representatives that approximate well the entire set of frequent patterns.

[Yan et al., 2005] proposed the profile-based approach to summarize a set of frequent pat-

terns using representatives that cover most of the frequent patterns and are able to accu-

rately approximate their support. These profiles are extracted using a generative model.

The Clustering-based approach summarizes the frequent patterns by clustering them and

selecting one representative pattern for each cluster. [Xin et al., 2005] defined the distance

between two patterns in terms of the transactions they cover (two patterns are considered

similar if they cover similar transactions). The patterns are clustered with a tightness

bound δ to produce what they called δ-clusters, which ensures that the distance between

the cluster representative and any pattern in the cluster is bounded by δ.

While the previous approaches [Yan et al., 2005, Xin et al., 2005] aim to find a set of

patterns that summarizes well all frequent patterns, another view of this problem is to find

a set of patterns that summarizes well the dataset. [Siebes et al., 2006] proposed a

2If we know that P is a maximal frequent pattern and we know its support, we cannot compute the exact
support of its subpatterns.

14

formulation with the Minimum Description Length (MDL) principle. The objective is to

find the set of frequent patterns that are able to compress the dataset best in terms of MDL.

The authors showed that finding the optimal set is computationally intractable (an NP-

hard problem) and proposed several heuristics to obtain an approximate solution. Recently,

[Mampaey et al., 2011] proposed summarizing the data with a collection of patterns using

a probabilistic maximum entropy model. Their method mines patterns iteratively by first

finding the most interesting pattern, then updating the model, and then finding the most

interesting pattern with respect to the updated model and so on.

2.3.3 Constraint-based Compression

A particular user may be only interested in a small subset of frequent patterns. Constraint-

based mining requires the user to provide constraints on the patterns he would like to

retrieve and tries to use these constraints to speed up the mining. Most of user constraints

can be classified using the following four categories [Pei and Han, 2000]:

1. Anti-monotone: A constraint Ca is anti-monotone if and only if for any pattern that does

not satisfy Ca, none of its superpatterns can satisfy Ca. For example, the minimum

support constraint in frequent pattern mining is anti-monotone.

2. Monotone: A constraint Cm is monotone if and only if for any pattern that satisfies Cm,

all of its superpatterns also satisfy Cm.

3. Convertible: A constraint Cc is convertible if it can be converted into an anti-monotone

constraint or a monotone constraint by reordering the items in each transaction.

4. Succinct: A constraint Cs is succinct if we can explicitly and precisely enumerate all and

only the patterns that satisfy Cs.

Example 3. Suppose each item in the supermarket has a specific price and we want to impose

constraints on the price of items in the patterns. An example of an anti-monotone constraint is

sum(P.price) ≤σ or min(P.price) ≥σ. An example of a monotone constraint is sum(P.price) ≥σ

or max(P.price) ≥σ. An example of a convertible constraint is avg(P.price) ≥σ or avg(P.price)

≤σ. An example of a succinct constraint is min(P.price) ≥σ or max(P.price) ≤σ.

These different types of constraints interact differently with the mining algorithm:

15

1. Anti-monotone constraints can be pushed deep into the mining and can greatly reduce

the search space.

2. Monotone constraints are checked for a pattern, and once satisfied, they do not have to

be rechecked for its superpatterns.

3. Convertible constraints can be converted into anti-monotone or monotone constraints by

sorting the items in each transaction according to their value in ascending or descending

order [Pei and Han, 2000].

4. Succinct constraints can be pushed into the initial data selection process at the start of

mining.

Constraint-based mining as described above considers what the user wants, i.e., con-

straints, and searches for patterns that satisfy the specified constraints. An alternative

approach is to mine unexpected patterns, which considers what the user knows, i.e.,

knowledge, and searches for patterns that surprise the user with new information. [Wang

et al., 2003b] defined a preference model which captures the notion of unexpectedness.

[Jaroszewicz and Scheffer, 2005] proposed using a Bayesian network to express prior knowl-

edge and defined the interestingness of a pattern to be the difference between its support in

data and its expected support as estimated from the Bayesian network.

2.4 PATTERN MINING FOR SUPERVISED LEARNING

So far, we have discussed the main frequent pattern mining algorithms and described sev-

eral methods for reducing the number of patterns. In this section, we turn our attention to

methods that apply pattern mining in the supervised setting, where we have labeled train-

ing data of the form D = {xi, yi}n
i=1 (yi is the class label associated with instance xi) and we

want to mine patterns that can predict well the class labels for future instances.

In the supervised setting, we are only interested in rules that have the class label in

their consequent. Hence, a rule is defined as P⇒ y, where P (the condition) is a pattern and

y is a class label. An example of a rule is sky=cloudy ∧ humidity=high⇒ play-tennis=No.

16

In the following, we review several methods for supervised pattern mining (classification

rule mining). We start by discussing methods from artificial intelligence and machine learn-

ing that try to achieve a similar goal. In particular, we discuss concept learning, decision

tree induction and sequential covering. After that, we describe methods that use frequent

pattern mining and contrast them to the other approaches.

2.4.1 Concept Learning

Concept learning is one of the most classical problems in artificial intelligence. The setting

is that the learner is presented with training data of the form D = {xi, c(xi)}n
i=1, where c(xi)

is the concept associated with instance xi. Instances for which c(xi)=1 are called positive

examples (members of the target concept) and instances for which c(xi)=0 are called nega-

tive examples (nonmembers of the target concept). Let h denote a Boolean-valued function

defined over the input space (h is called a hypothesis) and let H denote the space of all pos-

sible hypotheses the learner may consider. The problem faced by the learner is to find h ∈ H

such that h(x)=c(x) for all x.

In concept learning, the hypothesis space H is determined by the human designer choice

of hypothesis representation. Most commonly, H is restricted to include only conjunction of

attribute values. For example, assume the data contain four attributes: sky, temp, hu-

midity and wind. Hypothesis h =< sky = ?, temp = hot,humidity = high,wind = ? > means

that the target concept is true when the value of temp is hot and the value of humidity is

high (regardless of the values of sky and wind). Note that if we use conjunctive hypoth-

esis space, the definition of a hypothesis becomes equivalent to the definition of an item-

set pattern (see Section 2.1). For example, hypothesis h is exactly the same as pattern

temp= cold ∧ humidity= high. Hence, the search space for learning conjunctive description

hypotheses is the same as the search space of itemset mining for relational attribute-value

data.

A useful structure that is used for concept learning is the general-to-specific partial or-

dering of hypotheses. For example, hypothesis h1 = < sky = ?, temp = ?, humidity = high,

wind = ?> is more-general-than h2 =< sky = clear, temp = warm, humidity = high, wind = ?>.

17

Note that this is exactly the definition of subpatterns, where pattern h1 is a subpattern of

pattern h2. The general-to-specific partial ordering is used to organize the search through

the hypothesis space. In the following, we describe two common concept learning algo-

rithms: find-S and candidate elimination.

Find-S finds the most specific hypothesis in H that is consistent with (correctly classi-

fies) the training data. It starts with the most specific hypothesis (a hypothesis that does

not cover any example) and generalizes this hypothesis each time it fails to cover a pos-

itive training example. This algorithm has many serious drawbacks. First, it is unclear

whether we should prefer the most specific consistent hypothesis over, say the most general

consistent hypothesis or some other hypothesis of intermediate generality [Mitchell, 1997].

Second, there is no way to determine whether find-S has found the only hypothesis in H

consistent with the data (converged), or whether there are other hypotheses in H that are

also consistent with the data.

To overcome these shortcomings, the candidate elimination algorithm was proposed by

[Mitchell, 1982]. This algorithm outputs a description of the set of all hypotheses consistent

with the training data, which is represented by the version space. The idea is to use the

more-general-than partial order to represent the version space without explicitly enumerat-

ing all of its members. This is accomplished by storing only its most specific members (the

S-boundary) and its most general members (the G-boundary). The algorithm incrementally

refines the S-boundary and G-boundary as new training examples are encountered.

It is important to note that concept learning methods rely on two strong assumptions:

1. The hypothesis space H contains the true target concept: ∃ h ∈ H : h(x)= c(x) ∀x ∈ X .

2. The training data contain no errors (noise free).

For instance, if the hypothesis space supports only conjunctive description and the true

target concept is a disjunction of attribute values, then concept learning will fail to learn

the concept. One obvious fix to this problem is to use a hypothesis space that is capable

of representing every teachable concept (every possible Boolean function). Unfortunately,

doing so causes the concept learning method to learn a concept that exactly fits the training

data, hence totally fails to generalize to any instance beyond the training data [Mitchell,

18

1997]. In the remainder of this section, we describe methods that do not rely on these two

assumptions.

2.4.2 Decision Tree Induction

Decision tree induction is a popular machine learning technique for building classification

models. An example of a decision tree is shown in Figure 2. Each internal node in the tree

denotes a test on an attribute, each branch represents an outcome of the test, and each leaf

node holds a class label (predicts the concept play-tennis in this example). Many algorithms

exist to learn a decision tree, such as ID3 [Quinlan, 1986], CART [Breiman et al., 1984] and

C4.5 [Quinlan, 1993]. All of these algorithms build the decision tree from the root downward

in a greedy fashion.

Figure 2: An example decision tree for the concept play-tennis.

One obvious way to obtain a set of classification rules is to first learn a decision tree,

then translate the tree into an equivalent set of rules: one rule is created for each path from

the root to a leaf node. That is, each internal node along a given path is added to the rule

antecedent (with conjunction) and the leaf node becomes the rule consequent. For example,

the rules corresponding to the tree in Figure 2 are:

• R1 : sky = sunny ∧ wind = strong⇒ play-tennis = No

• R2 : sky = sunny ∧ wind = weak⇒ play-tennis = Yes

• R3 : sky = rainy⇒ play-tennis = No

19

• R4 : sky = cloudy ∧ humidity = low⇒ play-tennis = Yes

• R5 : sky = cloudy ∧ humidity = high⇒ play-tennis = No

Because every decision tree induces a partition of the input space, rules that are ex-

tracted directly from the tree are mutually exclusive and exhaustive. Mutually exclusive

means that the rules do not overlap (an instance can be covered by only one rule), while

exhaustive means that the rules cover the entire input space (every instance is cover by a

rule).

There are several drawbacks for using rules from a decision tree. First, the extracted

rules have a very restrictive form. For example, the attribute of the root note has to appear

in every rule. Second, the rules are often difficult to interpret, especially when the original

decision tree is large (the rules are often more difficult to interpret than the original tree).

Finally, since the decision tree is built greedily, the resulting rules may miss important pat-

terns in the data. To alleviate some of these problems, rules post-pruning can be applied as

follows: for each rule, remove items from its antecedent if they do not improve its estimated

performance [Quinlan, 1993]. Note that after performing rule post-pruning, the resulting

rules will no longer be mutually exclusive and exhaustive.

2.4.3 Sequential Covering

Sequential covering learns a set of rules based on the strategy of learning one rule, removing

the data it covers and then repeating the process. Sequential covering relies on the learn-

one-rule subroutine, which accepts a set of positive and negative training examples as input

and then outputs a single rule that tries to cover many of the positive examples and few of

the negative examples.

learn-one-rule works by greedily adding the item (attribute-value pair) that most im-

proves the rule’s performance (e.g. the precision) on the training data. Once this item has

been added, the process is repeated to add another item and so on until the rule achieves

an acceptable level of performance. That is, learn-one-rule performs a greedy general to

specific search by staring with the most general rule (the empty rule) and adding items to

its antecedent to make it more specific. Note that this is the opposite of the find-S concept

20

learning algorithm (Section 2.4.1), which performs a specific to general search.

Sequential covering methods invoke learn-one-rule on all available training data, re-

move the positive examples covered by the rule, and then invoke it again to learn another

rule based on the remaining training data and so on. The most common sequential cover-

ing algorithms are CN2 [Clark and Niblett, 1989], RIPPER [Cohen, 1995], SLIPPER [Cohen

and Singer, 1999] and CPAR [Yin and Han, 2003]. Sequential covering has been extended by

[Quinlan, 1990] to learn first-order rules (inductive logic programming), which are outside

the scope of this thesis.

Let us now compare sequential covering rules and decision tree rules. Both approaches

rely on a greedy search to explore the space of rules (patterns). However, the main difference

is that sequential covering learns one rule at a time, while decision tree induction learns a

set of rules simultaneously as part of a single search. To see this, notice that at each step

of the search, a decision tree method chooses among alternative attributes by comparing

the partitions of the data they generate, while a sequential covering method chooses among

alternative items (attribute-value pairs) by comparing the subset of data they cover. In other

words, the choice of a decision node in decision tree induction corresponds to choosing the

precondition for multiple rules that are associated with that node (attribute). Therefore,

decision tree usually makes fewer independent choices than sequential covering.

The main drawback of sequential covering is that it relies on many greedy choices: not

only each rule is built greedily (using the learn-one-rule subroutine), but also the set of rules

are obtained greedily (a single rule is learned at each iteration without backtracking). As

with any greedy search, there is a danger of making a suboptimal choice at any step, which

can affect the quality of the final results.

2.4.4 Frequent Patterns for Classification

As we discussed in Section 2.4.1, concept learning methods search an incomplete hypothesis

space because they totally fail when the hypothesis space is complete (the learned concept

would exactly replicate the training data). On the other hand, decision tree induction and

sequential covering search the complete hypothesis space (i.e., a space capable of expressing

21

any discrete-valued function). However, the space is searched incompletely using greedy

heuristics. In comparison, frequent pattern mining uses a complete hypothesis space and

performs a more complete search than decision tree and sequential covering. The reason is

that frequent pattern mining examines all patterns that occur frequently in the data instead

of relying on greedy choices to explore the patterns.

Frequent patterns have been demonstrated to be useful for classification. Earlier ap-

proaches focused on associative classification, where rules describing strong associations

between frequent patterns and class labels are used to build a rule-based classifier. In many

studies, associative classification has been found to outperform some traditional classifiers,

such as C4.5 decision trees [Quinlan, 1993]. Classification Based Association (CBA) [Liu

et al., 1998] is the first associative classification method. It uses frequent pattern mining to

mine a set of class association rules and uses the most confident (accurate) rule to classify

test instances. Classification based on Multiple Association Rules (CMAR) [Li et al., 2001b]

is more efficient than CBA because it applies several rule pruning strategies and uses a

tree structure for efficient storage and retrieval of rules. In addition, CMAR can be more

accurate than CBA because it considers multiple rules when making its class prediction

(weighted majority voting) as opposed to using only a single rule as in CBA. [Cong et al.,

2005] applies associative classification on gene expression profiles. Their method mines the

top k covering rule groups for each instance and use them to construct the classifier. HAR-

MONY [Wang and Karypis, 2005] uses an instance-centric approach to assure that for each

training instance, one of the highest confidence rules covering the instance is included in

the final set of rules. [Veloso et al., 2006] proposed Lazy Associative Classification (LAC),

where the mining is defer until classification time. The advantage of LAC is that it restricts

the search space by mining only rules that apply to the test instance. However, its disad-

vantage is that the mining is performed separately for each test instance, which becomes

computationally expensive when there are many testing instances.

Recently, the focus shifted from associative classification to pattern-based classifica-

tion, where discriminative frequent patterns are used to define new features in order to

improve the performance of standard classification methods. [Cheng et al., 2007] conducted

a systematic study to establish a connection between the support and several discriminative

22

measures, such as information gain and fisher score. They proposed using frequent patterns

to represent the data in a different space, in which standard classifiers like SVM and C4.5

can be used to learn the model. Pattern-based classification has also been used to classify

more complex structures, such as sequences [Tseng and Lee, 2005, Exarchos et al., 2008],

graphs [Deshpande et al., 2005] and time interval sequences [Batal et al., 2009, Batal et al.,

2011].

The most common approach for using frequent patterns for classification is to apply the

two-phase approach, which mines all frequent patterns in the first phase and then selects

the most discriminative patterns in the second phase [Cheng et al., 2007, Tseng and Lee,

2005, Exarchos et al., 2008, Deshpande et al., 2005]. In contrast, the works by [Fan et al.,

2008, Cheng et al., 2008] attempt to directly mine discriminative patterns. The Model Based

Search Tree (MBST) method [Fan et al., 2008] uses frequent pattern mining to build a deci-

sion tree. The basic idea is to partition the data in a top down manner and construct a tree

as follows: At each node of the tree, 1) invoke a frequent pattern mining algorithm, 2) select

the most discriminative pattern (according to information gain), 3) divide the data into two

subsets, one containing this pattern and the other not, and 4) repeat the process recursively

on the two subsets. The Direct Discriminative Pattern Mining (DDPMine) method [Cheng

et al., 2008] is similar to [Fan et al., 2008] in that it mines the most discriminative patterns

on progressively shrinking subsets of the data. However, DDPMine applies the sequential

covering paradigm by mining the most discriminative frequent pattern (according to infor-

mation gain), removing the instances covered by this pattern and recursively applying the

algorithm on the remaining instances. DDPMine uses an upper bound on information gain

(derived in [Cheng et al., 2007]) to prune parts of the search space that are guaranteed not

to contain patterns with higher information gain than the current best pattern.

2.5 SUMMARY

Frequent pattern mining has been a focused theme in data mining research for over a

decade. There have been hundreds of research publications, developments and application

23

activities in this domain. In this chapter, we did not attempt to provide a complete cover-

age of this topic, but we highlighted the aspects that are most relevant to this thesis. We

mostly emphasized on two important research problems in frequent pattern mining: concise

representations of frequent patterns and using pattern mining for supervised learning.

Several concise representation methods have been proposed for obtaining a compact but

high quality set of patterns that are most useful for knowledge discovery. For most methods,

the objective can be one of the following:

1. Obtain a lossless compression of all frequent patterns.

2. Obtain a “good” (but lossy) compression of all frequent patterns.

3. Obtain patterns that best summarize the data.

4. Obtain patterns that satisfy user constraints.

5. Obtain patterns that are surprising to the user (based on his prior knowledge).

Using pattern mining for supervised learning is a another interesting topic. Earlier

approaches focused on concept learning, decision tree induction and sequential covering.

In recent years, there has been a lot of research in data mining on using frequent pattern

mining to improve classification performance. An important research direction is to develop

more efficient pattern-based classification methods that can focus the search on predictive

patterns instead of exploring the entire space of frequent patterns. We will address this

issue in the next chapter.

24

3.0 MINING PREDICTIVE PATTERNS

Frequent Pattern Mining (FPM) is a very popular data mining technique for finding useful

patterns in data. Since it was introduced by [Agrawal et al., 1993], FPM has received a

great deal of attention and abundant literature has been dedicated to this research (see

[Han et al., 2007]).

In this chapter, we study the application of pattern mining in the supervised setting,

where we have a specific class variable (the outcome) and we want to find patterns (defin-

ing subpopulations of data instances) that are important for explaining and predicting this

variable. These patterns are presented to the user in terms of if-then rules that are intuitive

and easy to understand. Examples of such rules are: “If a patient smokes and has a positive

family history, then he is at a significantly higher risk for lung cancer than the rest of the

patients”. This task has a high practical relevance in many domains of science or business.

For example, finding a pattern that clearly and concisely defines a subpopulation of patients

that respond better (or worse) to a certain treatment than the rest of the patients can speed

up the validation process of this finding and its future utilization in patient-management.

We use FPM to explore the space of patterns because it performs a more systematic

search than heuristic rule induction approaches, such as greedy sequential covering [Clark

and Niblett, 1989, Cohen, 1995, Cohen and Singer, 1999, Yin and Han, 2003]. However,

the disadvantage of FPM is that it often produces a large number of patterns. Moreover,

many of these patterns are redundant because they are only small variations of each other.

This large number of patterns (rules) easily overwhelms the domain expert and hinders the

process of knowledge discovery. Therefore, it is crucial to devise an effective method for

selecting a small set of predictive and non-redundant patterns from a large pool of frequent

patterns.

25

To achieve this goal, we propose the Minimal Predictive Patterns (MPP) framework. This

framework applies Bayesian inference to evaluate the quality of the patterns. In addition,

it considers the structure of patterns to assure that every pattern in the result offers a

significant predictive advantage over all of its generalizations (simplifications). We present

an efficient algorithm for mining the MPP set. As opposed to the widely used two-phase

approach (see Section 2.4.4), our algorithm integrates pattern selection and frequent pattern

mining. This allows us to perform a lot of pruning in order to speed up the mining.

The rest of the chapter is organized as follows. Section 3.1 provides some definitions

that will be used throughout the chapter. Section 3.2 describes the problem of supervised

descriptive rule discovery. Section 3.3 describes the problem of pattern-based classification.

Section 3.4 illustrates the problem of spurious patterns. Section 3.5 presents our approach

for mining minimal predictive patterns. We start by defining a Bayesian score to evaluate

the predictiveness of a pattern compared to a more general population (Section 3.5.1). Then

we introduce the concept of minimal predictive patterns to deal with the problem of spuri-

ous patterns (Section 3.5.2). After that, we present our mining algorithm and introduce two

effective pruning techniques (Section 3.5.3). Section 3.6 presents our experimental evalua-

tion on several synthetic and publicly available datasets. Finally, Section 3.7 summarizes

the chapter.

3.1 DEFINITIONS

We are interested in applying pattern mining in the supervised setting, where we have a

special target variable Y (the class variable) and we want to find patterns that are important

for describing and predicting Y . In this chapter, we focus on supervised pattern mining for

relational attribute-value data D = {xi, yi}n
i=1, where every instance xi is described by a fixed

number of attributes and is associated with a class label yi ∈ dom(Y). We assume that all

attributes have discrete values (numeric attributes must be discretized [Fayyad and Irani,

1993, Yang et al., 2005]). As we discussed in Section 2.1, the data can be converted into an

equivalent transactional format.

26

We call every attribute-value pair an item and a conjunction of items an itemset pat-

tern, or simple a pattern. A pattern that contains k items is called a k-pattern (an item

is a 1-pattern). For example, Education = PhD ∧ Marital-status = Single is a 2-pattern.

Pattern P is a subpattern of pattern P ′, denoted as P ⊂P ′, if every item in P is con-

tained in P ′ and P 6=P ′. In this case, P ′ is a superpattern of P. For example, P1 : Education

= PhD is a subpattern of P2 : Education = PhD ∧ Marital-status = Single. The subpattern

(more-general-than) relation defines a partial ordering of patterns, i.e. a lattice structure,

as shown in Figure 3.

Figure 3: The box on the left shows the set of all patterns and the box on the right shows

the set of all instances. Each pattern is associated with a group of instances that satisfy

the pattern. The patterns are organized in a lattice structure according to the subpattern-

superpattern relation.

Instance xi satisfies pattern P, denoted as P ∈ xi, if every item in P is present in xi.

Every pattern P defines a group (subpopulation) of the instances that satisfy P: GP =
{(xi, yi) : xi ∈ D ∧ P ∈ xi}. If we denote the empty pattern by φ, Gφ represents the entire

data D. Note that P ⊂ P ′ (P is a subpattern of P ′) implies that GP ⊇GP ′ (see Figure 3).

The support of pattern P in dataset D, denoted as sup(P,D), is the number of instances

in D that satisfy P (the size of GP). Given a user defined minimum support threshold σ,

P is called a frequent pattern if sup(P,D)≥σ.

Because we apply pattern mining in the supervised setting, we are only interested in

27

mining rules that predict the class variable. Hence, a rule is defined as P⇒ y, where P (the

condition) is a pattern and y ∈ dom(Y) (the consequent) is a class label. We say that P ⇒ y

is a subrule of P ′ ⇒ y′ if P ⊂ P ′ and y= y′.

A rule is usually assessed by its coverage and confidence. The coverage of P ⇒ y, de-

noted as cov(P⇒ y), is the proportion of instances in the data that satisfy P. The confidence

of P ⇒ y, denoted as conf (P ⇒ y), is the proportion of instances from class y among all the

instances that satisfy P. By using D y to denote the instances in D that belong to class y:

conf (P⇒ y)= sup(P,D y)
sup(P,D)

We can see that the confidence of P⇒ y is the maximum likelihood estimation of Pr(Y =
y|GP). Intuitively, if pattern P is predictive of class y, we expect conf (P ⇒ y) to be larger

that the prior probability of y in the data.

3.2 SUPERVISED DESCRIPTIVE RULE DISCOVERY

Rule discovery is a very important tool for knowledge discovery because it has the advantage

of representing the knowledge in terms of if-then rules that are easy to interpret by humans.

This can facilitate the process of discovery and utilization of new practical findings.

Rule discovery using frequent pattern mining (i.e., association rule mining) has been

mostly applied in the unsupervised setting to find rules that describe strong associations

between different items.

In this work, we are interested in applying rule mining in the supervised setting. Our

aim is to find a set of comprehensible rules/patterns that are statistically interesting com-

pared to the entire data, e.g., the rules should have wide coverage and unusual distribu-

tional characteristics with respect to the class variable [Lavrač and Gamberger, 2005]. This

task appeared in the literature under a variety of different names, such as contrast set min-

ing [Bay and Pazzani, 2001], emerging pattern mining [Dong and Li, 1999, Bailey et al.,

2002, Yu et al., 2012] and subgroup discovery [Lavrač and Gamberger, 2005, Kavsek and

28

Lavrač, 2006]. Later on, [Novak et al., 2009] provided a unifying framework of this work

which is named Supervised Descriptive Rule Discovery (SDRD).

A straightforward approach to SDRD is to use a rule quality measure (cf [Geng and

Hamilton, 2006]) to score each rule by contrasting it to the general population (the entire

data) and report the top rules to the user [Nijssen et al., 2009, Bay and Pazzani, 2001, Li

et al., 2001b, Brin et al., 1997a, Morishita and Sese, 2000]. We will argue that this approach

is ineffective and can lead to many spurious rules. We start by illustrating this problem

using an example and then describe it more formally in Section 3.4.

Example 4. Assume our objective is to identify populations of patients who are at high risk

of developing Coronary Heart Disease (CHD). Assume our dataset contains 150 instances, 50

of them are CHD cases and the others are controls. That is, the CHD prior in our data is

33.3%.

Now, our task is to evaluate the following 5 rules:

• R1: Race = African American ⇒ CHD

[#cases=19, #controls=40, conf=32.2%]

• R2: Race = Caucasian ⇒ CHD

[#cases=32, #controls=58, conf=35.56%]

• R3: Family history = Yes ⇒ CHD

[#cases=30, #controls=20, conf=60%]

• R4: Race = African American ∧ Family history = Yes ⇒ CHD

[#cases=11, #controls=8, conf=57.89%]

• R5: Race = Caucasian ∧ Family history = Yes ⇒ CHD

[#cases=21, #controls=11, conf=65.63%]

For each rule, we show the number of CHD cases and the number of controls that the rule

covers. We also show the confidence of the rule.

The original association rule mining framework [Agrawal et al., 1993] outputs all rules

with higher confidence than a user specified minimum confidence threshold. For instance,

if the minimum confidence is 50%, rules R3, R4 and R5 will be returned to the user.

29

One of the commonly used approaches to filter out uninteresting rules is to apply the χ2

test to assure that there is a significant positive correlation between the condition and the

consequent of each rule [Nijssen et al., 2009, Bay and Pazzani, 2001, Li et al., 2001b, Brin

et al., 1997a, Morishita and Sese, 2000]. If we apply the χ2 test on our rules, the p-values we

get for R1, R2, R3, R4 and R5 are 0.813, 0.479, 9.6×10−7, 0.015 and 1.2×10−5, respectively.

That is, R3, R4 and R5 are all statistically significant with respect to a significance level α=
0.05. Moreover, these rules will be considered interesting using most rule quality measures

[Geng and Hamilton, 2006].

The main problem with these approaches is that they evaluate each rule individually

without considering the relations between the rules. For example, if we are given rule R4

by itself, we may think it is an important rule. However, by looking at the other rules,

we can see that R4 is not interesting because it is more specific than R3 (covers a smaller

population) and has a lower confidence.

To tackle this problem, [Bayardo, 1999] proposed the confidence improvement constraint,

which says that each rule in the result should have a higher confidence than all of its sub-

rules:

conf (P⇒ y)− max
S ⊂ P

{ conf (S⇒ y) }> 0

This filter have been used quite often in the rule mining literature [Grosskreutz et al., 2010,

Webb, 2007, Li et al., 2001b, Li et al., 2001a]. If we applied the confidence improvement

constraint to our working example, R2, R3 and R5 will be retained.

As we can see, both the χ2 test and the confidence improvement constraint agree that

R5 is an interesting rule. However, this may not be true and the observed improvement in

the confidence of R5 (65.63%) compared to the confidence of R3 (60%) can be due to chance

rather than actual causality. In fact, there is a high chance that refining a rule by adding

random items to its condition leads to a higher confidence (we will elaborate on this later

in Section 3.4). So should we consider R5 to be interesting or spurious? We will revisit this

question after the introducing minimal predictive patterns.

30

3.3 PATTERN-BASED CLASSIFICATION

In the previous section, we discussed using pattern mining for finding rules that may help

in knowledge discovery. In this section, we discuss using pattern mining for building classi-

fication models.

Earlier approaches in using patterns for classification focused on associative classifi-

cation, which builds a rule-based classifier [Liu et al., 1998, Li et al., 2001b, Cong et al.,

2005, Wang and Karypis, 2005, Veloso et al., 2006] (see Section 2.4.4).

Recently, the focus was more on using patterns to define features that can represent

higher order interactions between the original data features [Cheng et al., 2007, Batal and

Hauskrecht, 2010b]. The rationale behind this approach is that patterns (feature-value

combinations) may capture more underlying semantics than simple features. Hence, the

inclusion of some patterns can improve the classification performance.

Formally, given a dataset D = {xi, yi}n
i=1 in d dimensional space and a set of patterns

Ω = {P1, ...,Pm}, D is mapped into a higher dimensional space with d + m dimensions by

adding indicator binary features to the original features:

xi → x′i = xi ⊕ {bi,1, ...,bi,m} where bi, j = 1 if P j ∈ xi and bi, j = 0 if P j 6∈ xi

The classification model is then learned in the new expanded feature space D′ = {x′i, yi}n
i=1.

Example 5. Consider the example in Figure 4, where there are two class labels y1 and y2 and

the original data has three trinary features (F1, F2 and F3). Assume we have the following

two patterns: P1: F1 =1 ∧ F3 =2 and P2: F2 =2. Using this information, we can map the

data into a higher dimensional space by defining two additional binary features b1 and b2,

where b1 (b2) indicates the presence or absence of pattern P1 (P2) in each data instance. After

performing this dimensionality expansion, it becomes very easy to classify the data (e.g., using

a linear model).

Note that applying frequent pattern mining usually returns a large number of frequent

patterns, most of which may be irrelevant to the classification task (patterns are generated

solely based on their support, not based on their discriminative power). Using all of these

31

Figure 4: An example illustrating how to expand the original feature space (defined by F1,

F2 and F3) with features that correspond to more complex patterns. Binary features b1 and

b2 correspond to patterns F1=1 ∧ F3=2 and F2=2, respectively.

patterns as features may hurt the classification performance due to the curse of dimension-

ality. Therefore, it is important to select a subset of frequent patterns that are important

for classification.

The most common approach for pattern-based classification is to evaluate each frequent

pattern individually in order to select the most discriminative patterns [Nijssen et al., 2009,

Cheng et al., 2007, Deshpande et al., 2005, Bay and Pazzani, 2001, Li et al., 2001b, Morishita

and Sese, 2000]. However, as we discussed earlier, this approach usually leads to many

spurious patterns in the results.

One way to partially overcome this problem is to apply an iterative forward feature

selection method. In [Cheng et al., 2007], the authors defined a redundancy score (based on

the Jaccard score [Geng and Hamilton, 2006]) and selected the classification patterns in an

incremental way as follows: a pattern is added to the set of patterns if it is both predictive

and has low redundancy to the patterns that are already selected. However, such iterative

methods can be computationally expensive when applied on a large number of frequent

patterns.

32

Having discussed these problems, it is important to develop a method that considers the

relations among the patterns to ensure that the selected ones are highly predictive and at

the same time contain low redundancy.

3.4 THE SPURIOUS PATTERNS PROBLEM

The task of selecting predictive patterns from a large pool of frequent patterns is more

challenging than the standard task of feature selection. This is due to the nested structure

of patterns: if a pattern is frequent, all of its subpatterns are also frequent, hence are also

in the mining result. This nested structure causes the problem of spurious patterns, which

we discuss and analyze in this section.

Definition 1. A pattern P is a spurious pattern if P is predictive when evaluated by itself,

but it is redundant given one of its subpatterns. Spurious patterns are formed by adding

irrelevant items to other simpler predictive patterns.

To illustrate this definition, consider the Bayesian belief network example in Figure 5.

In this network, the value of the class variable Y only depends on the value of feature F1

and is independent of the values of the other features: Y ⊥⊥ Fi : i ∈ {2, ...,n}. Assume that

pattern P : F1 = 1 is highly predictive of class Y = y1, so that Pr(Y = y1|P) > Pr(Y = y1).

Clearly, P is the only important pattern for predicting y1.

Now consider a spurious pattern P ′ that is a superpattern of P, P ′ : F1=1 ∧ Fq1 =vq1 ∧
...∧ Fqk = vqk , where Fqi ∈ {F2, ...,Fn} and vqi is any possible value of Fqi . The network

structure implies that Pr(Y = y1 |P ′) = Pr(Y = y1 |P), hence Pr(Y = y1 |P ′) is also larger than

the prior Pr(Y = y1).

The problem is that if we evaluate the patterns individually (without considering the

nested structure of the patterns), we may falsely think that P ′ is a predictive pattern be-

cause the confidence of rule P ′⇒ y1 is significantly larger than y1 prior. However, P ′ is totally

redundant given the real pattern P. Even by requiring a complex rule to have a higher confi-

dence than their simplifications (the confidence improvement) [Bayardo, 1999, Grosskreutz

33

Figure 5: Illustrating the problem of spurious patterns in frequent pattern mining.

et al., 2010, Webb, 2007, Li et al., 2001b, Li et al., 2001a], the problem still exists and

many spurious patterns can easily satisfy this constraint due to noise in sampling. Hav-

ing spurious patterns in the mining results is undesirable for both knowledge discovery and

classification. For knowledge discovery, spurious patterns can easily overwhelm the domain

expert and prevent him/her from understanding the real causalities in the data. For classi-

fication, spurious patterns can lead to redundant and highly correlated features, which may

negatively affect the classification performance. Therefore, it is very important to devise a

method that can effectively filter out spurious patterns from the result.

3.5 MINING MINIMAL PREDICTIVE PATTERNS

In this section, we present our approach for mining minimal predictive patterns. We start

by defining a Bayesian score to evaluate the predictiveness of a pattern compared to a more

general population. After that, we introduce the concept of minimal predictive patterns to

address the problem of spurious patterns. Lastly, we present an efficient mining algorithm

that integrates pattern evaluation and frequent pattern mining.

34

3.5.1 Evaluating Patterns using the Bayesian Score

3.5.1.1 Classical Evaluation Measures A large number of measures have been pro-

posed in the literature to evaluate the interestingness of individual rules. Examples of

such measures include confidence, lift, weighted relative accuracy, J-measure, and others

(cf [Geng and Hamilton, 2006]). Most of these measures trade-off two factors: 1) the distri-

butional unusualness of the class variable in the population covered by the rule compared to

the general population and 2) the coverage of the rule, which reflects its generality [Lavrač

and Gamberger, 2005, Novak et al., 2009]. This trade-off is often achieved in an ad-hoc way,

for instance by simply multiplying these two factors as in the weighted relative accuracy

score [Kavsek and Lavrač, 2006] or in the J-measure [Smyth and Goodman, 1992]. Further-

more, most measures rely on point estimates of these quantities, often using the maximum

likelihood estimation, and they do not capture the uncertainty of the estimation. In the

following, we present a novel evaluation measure based on the Bayesian principal.

3.5.1.2 The Bayesian Score Suppose we want to evaluate how predictive is pattern P

of class y compared to a more general group of instances G that contains the instances

covered by P: GP ⊆G. We will denote our proposed Bayesian score for rule P⇒ y compared

to group G by BS(P ⇒ y,G). We want this score to be high when there is a strong evidence

in the data to support the hypothesis that the probability of y in the instances covered by

P is higher than the probability of y in the instances of G that are not covered by P. The

Bayesian score treats these probabilities as uncertain random variables as opposed to just

relying on their point estimates as in the classical measures.

To explain the Bayesian score, we begin by defining the following three models:

1. Me is the model that conjectures that all instances in group G have the same probabil-

ity of having class y.

2. Mh is the model that conjectures that the probability of y in GP is higher than the

probability of y in the instances of G that are not covered by P (G \GP).

3. Ml is the model that conjectures that the probability of y in GP is lower than the prob-

ability of y in the instances of G that are not covered by P.

35

The Bayesian score is based on the idea of scoring the marginal likelihoods of these

three models. Intuitively, the more likely is model Mh compared to the other models, the

more confident we are that pattern P is predictive of class y, hence the higher BS(P⇒ y,G)

should be.

Let us start by defining the marginal likelihood for model Me. This model assumes that

all instances in G have the same probability of y, even though we are uncertain what that

probability is. Let us denote Pr(Y = y|G) by θ. To represent our uncertainty about θ, we

use a beta distribution with parameters α and β. Let N∗1 be the number of instances in G

with class Y = y and let N∗2 be the number of instances in G with class Y 6= y. The marginal

likelihood for model Me is as follows:

Pr(G|Me)=
∫ 1

θ=0
θN∗1 · (1−θ)N∗2 ·beta(θ;α,β)dθ

The above integral yields the following well known closed-form solution [Heckerman

et al., 1995]:

Pr(G|Me)= Γ(α+β)
Γ(α+N∗1+β+N∗2)

· Γ(α+N∗1)
Γ(α)

· Γ(β+N∗2)
Γ(β)

(3.1)

where Γ is the gamma function.

Now let us now define the marginal likelihood for model Mh. This model assumes that

the probability of y in GP , denoted by θ1, is different from the probability of y in the in-

stances of G that are not covered by P (G \GP), denoted by θ2. Furthermore, Mh believes

that θ1 is higher than θ2. To represent our uncertainty about θ1, we use a beta distribution

with parameters α1 and β1. To represent our uncertainty about θ2, we use a beta distribu-

tion with parameters α2 and β2. Let N11 and N12 be the number of instances in GP with

class Y = y and with class Y 6= y, respectively. That is, N11 is the number of true posi-

tives (instances correctly classified by the rule) and N12 is the number of false positives

(instances incorrectly classified by the rule). Let N21 and N22 be the number of instances

outside GP with Y = y and with Y 6= y, respectively (see Figure 6). Note that N∗1 = N11+N21

and N∗2 = N12 +N22.

The marginal likelihood for model Mh is defined as follows:

36

Figure 6: A diagram illustrating model Mh.

Pr(G|Mh)=
∫ 1

θ1=0

∫ θ1

θ2=0
θ1

N11 ·(1−θ1)N12 ·θ2
N21 ·(1−θ2)N22 · beta(θ1;α1,β1) ·beta(θ2;α2,β2)

k
dθ2dθ1 (3.2)

where k is a normalization constant for the parameter prior. Note that this formula does

not assume that the parameters are independent, but rather constrains θ1 to be higher than

θ2.

Below we show the closed-form solution we obtained by solving Equation 3.2. The

derivation of this solution is fully described in the dissertation’s appendix.

Pr(G|Mh)= 1
k
· Γ(α1+β1)
Γ(α1)Γ(β1)

· Γ(α2+β2)
Γ(α2)Γ(β2)

·
a+b−1∑

j=a

(
Γ(a)Γ(b)

Γ(j+1)Γ(a+b− j)
·Γ(c+ j)Γ(a+b+d− j−1)

Γ(a+b+c+d−1)

)
(3.3)

where a=N21 +α2, b=N22+β2, c=N11+α1, d=N12+β1. We solve for the normalization

constant k by applying Equation 3.3 (without the k term) with a=α2, b=β2, c=α1 and

d=β1. Note that k = 1
2 if we use uniform priors on both parameters by setting α1 =β1 =α2 =

β2 = 1.

Equation 3.3 can be expressed in logarithmic form to avoid computing very large num-

bers (to preserve numerical precision). Its computational complexity is O(b)=O(N22+β2)

(the number of terms in the summation). It turns out that we can redefine the solution of

37

Equation 3.2 so that its computational complexity is O(min(N11+α1, N12+β1, N21+α2, N22+
β2)). The modifications that achieve this complexity result are also described in the ap-

pendix.

Lastly, let us define the marginal likelihood for model Ml , which assumes that θ1 is

lower than θ2. The marginal likelihood for Ml is similar to Equation 3.2, but integrates θ2

from 0 to 1 and constrains θ1 to be integrated from 0 to θ2 (forcing θ1 to be smaller than

θ2). The solution for P(G|Ml) can be computed with complexity O(1) by reusing the terms

computed in Equation 3.3, which is described in the appendix.

Now that we have computed the marginal likelihood of the three models: Pr(G|Me),

Pr(G|Mh) and Pr(G|Ml), we compute the posterior probability of Mh (the model of interest)

using Bayes theorem:

Pr(Mh|G)= Pr(G|Mh)Pr(Mh)
Pr(G|Me)Pr(Me)+Pr(G|Mh)Pr(Mh)+Pr(G|Ml)Pr(Ml)

(3.4)

To be “non-informative”, we might simply assume that all three models are a priori

equally likely: Pr(Me)= Pr(Mh)= Pr(Ml)= 1
3 .

Note that Equation 3.4 quantifies in a Bayesian way how a posteriori likely is model

Mh. Since this is the quantity we are interested in, Pr(Mh|G) is used to score rule P ⇒ y

compared to group G: BS(P ⇒ y,G)= Pr(Mh|G).

Example 6. Let us use the Bayesian score to evaluate rule R3: Family history = Yes ⇒ CHD

in Example 4. This rule covers 30 CHD cases (N11=30) and 20 controls (N12=20). Let us

compute BS(R3,Gφ) for evaluating the predictiveness of R3 compared to the entire dataset.

Using the notations introduced earlier, N∗1 =50 and N∗2 =100 (the number of CHD cases

and controls in the dataset). Also, N21=N∗1−N11=20 and N22=N∗2−N12=80. Let us use

uniform beta priors for all parameters: α=β=α1=β1=α2=β2=1. The likelihood of Me is

3.2×10−43, the likelihood of Mh is 1.5×10−38 and the likelihood of Ml is 1×10−44. Using

Equation 3.4, we get BS(R3,Gφ)=Pr(Mh|Gφ)=0.99998. This implies that there is a strong

evidence in the data to conclude that pattern Family history=yes makes CHD more likely.

38

Example 7. Figure 7 shows a plot that illustrates the Bayesian score. In this plot, we set

N∗1 = N∗2 = 30. We vary each of N11 and N12 from 0 to 30 and plot the logit (log-odds) of the

corresponding Bayesian score1. We can see that the score is an increasing function of N11 (the

number of true positives) and a decreasing function of N12 (the number of false positives). It

achieves its maximum when N11 = N∗1 and N12 = 0 (the pattern correctly classifies all the

instances).

Figure 7: A plot showing the logit function of the Bayesian score as a function of the true

positives and the false positives. Points above the plane have a Bayesian score larger than

0.95.

3.5.2 Minimal Predictive Patterns

The Bayesian score proposed in the previous section provides a way to evaluate the pre-

dictiveness of a pattern by contrasting it to a more general population than the population

covered by the pattern. A straightforward approach for mining predictive patterns is to ap-

ply the Bayesian score to compare each pattern to the entire data and report the top scoring

patterns to the user. However, this approach does not overcome the spurious patterns prob-
1The logit function of a probability p (the inverse of the logistic function) is monotonically increasing in p.

We plot the logit of the score instead of the actual score because it has a smoother transition, making it easier
to visualize.

39

lem we discussed in Section 3.4: If rule P⇒ y has a very high Bayesian score (pattern P is

highly predictive of class y), many rules P ′⇒ y that correspond to spurious patterns P ′⊃P

are expected to have a high Bayesian score as well (provided that P ′ have enough support

in the data). As a result, the rules presented to the user would contain a lot of redundancies

and fail to provide a good coverage of the data.

Now we introduce the minimal predictive patterns framework for selecting patterns that

are highly predictive of the class variable and at the same time contain low redundancy.

Definition 2. A pattern P is a Minimal Predictive Pattern (MPP) with respect to class

label y if P predicts y significantly better than all of its subpatterns:

∀S ⊂ P : BS(P ⇒ y,GS)≥ δ

Where δ is a user specified significance parameter.

This definition means that if P is an MPP with respect to class y, then there is a strong

evidence in the data not only to conclude that P improves the prediction of y compared to

the entire data, but also compared to the data matching any of its subpatterns. Notice that

the MPP definition prefers simple patterns over more complex patterns (the Occam’s Razor

principal) because a pattern is not an MPP if its effect on the class distribution “can be

explained” by a simpler pattern (subpattern) that covers a larger population.

We would like to note that detecting MPP patterns can also be done, in addition to

using our Bayesian score, using a frequentist statistical significance test. We used this

approach in our earlier work [Batal and Hauskrecht, 2010a]. A similar method based on

Fisher exact test has also been used by [Wong et al., 2005] for disease outbreak detection on

biosurveillance data.

Example 8. Let us go back to Example 4. We want to decide whether rule R5: Race =

Caucasian ∧ Family history = Yes ⇒ CHD is an interesting rule (we should show it to the

user) or a spurious rule (we should remove it from the results). This rule covers 21 CHD

cases and 11 controls. In order to be an MPP, pattern Race = Caucasian ∧ Family history

= Yes should predict CHD significantly better than all of its subpatterns. If we compare R5

to the entire dataset, we get BS(R5,Gφ) = 0.9997. If we compare R5 to its subrule R2, we get

BS(R5,GR2)= 0.9998. Finally, if we compare R5 to its subrule R3, we get BS(R5,GR3)= 0.47.

40

We can see that R5 is considered very predictive when compared to the entire dataset or to

subrule R2, but is not predictive when compared to subrule R3. Therefore, we do not consider

R5 an important rule because it is equivocal whether it predicts CHD as being more likely

than does R3.

Example 9. Let us consider again the simple Bayesian network in Figure 5 to illustrate how

the MPP framework tackles the problem of spurious patterns. Assume we have 10 binary

features (F1 to F10) and a binary class variable: dom(Y)= {y1, y2}. Assume the CPTs of the

network are defined as follows: Pr(Fi = 1)= 0.4 : i ∈ {1, ...,10}, Pr(Y = y1|F1 = 1)= 0.9 and

Pr(Y = y1|F1 =0)=0.5. Let the data D be 500 instances that are randomly generated from

this network. Our task is to mine patterns that are predictive of class y1
2. As we discussed

earlier, the only important rule in D for predicting y1 is F1 = 1 ⇒ y1. All other rules are

spurious.

Let us use frequent pattern mining to explore patterns that occur in more than 10% of

the data. Doing so, we obtain 1,257 frequent patterns (potential rules). If we apply the χ2

test with significance level α=0.05 to select rules that have a significant positive correlation

with class y1, we get 284 rules that are statistically significant. Even if we apply the False

Discovery Rate (FDR) technique [Benjamini and Hochberg, 1995] to correct for multiple hy-

pothesis testing, we get 245 significant rules! Note that these methods do not overcome the

spurious patterns problem. Let us now apply the confidence improvement constraint to filter

out “non-productive” rules [Bayardo, 1999, Grosskreutz et al., 2010, Webb, 2007, Li et al.,

2001b, Li et al., 2001a]. By doing so, we get 451 rules! This clearly demonstrates that the

confidence improvement constraint is an ineffective criterion. Lastly, let us mine rules that

correspond to MPPs for y1 using significance parameter δ = 0.95. Doing so, we obtain only

a single rule F1=1 ⇒ y1 (the only important rule) and effectively filter out all other spurious

rules3.

2The prior of y1 in this network is Pr(Y = y1)=0.66.
3The 0.95 significant parameter is chosen so that it is comparable to the commonly used frequentist 0.05

significance level.

41

3.5.3 The Mining Algorithm

In this section, we present the algorithm for mining the minimal predictive patterns. The

algorithm utilizes frequent pattern mining to explore the space of potential patterns (rules)

and applies the Bayesian score to select the ones that satisfy the MPP definition (Definition

2).

To search the space of patterns, we partition the data according to the class labels and

explore frequent patterns for each class y ∈ dom(Y) separately using a local minimum sup-

port σy that is related to the number of instances from class y. This approach is reasonable

when pattern mining is applied in the supervised setting for the following reasons:

1. For unbalanced data, mining frequent patterns using a global minimum support may

result in missing many important patterns in the rare classes.

2. Mining patterns that are frequent in one of the classes (hence potentially predictive for

that class) is more efficient than mining patterns that are globally frequent4.

Figure 8 shows an example of a dataset with two class labels y1 and y2. The data is

partitioned into two parts based on the class label and MPPs are mined from each partition

using a local minimum support that is related to the partition size. Finally, the class specific

MPPs are combined to form the final result.

Figure 8: The Mining is applied on each class label separately and then final result is ob-

tained by combining the class specific MPPs.

4It is much more efficient to mine patterns that cover more than n instances in one of the classes as opposed
to mining all patterns that cover more than n instances in the entire database (the former is always a subset
of the latter).

42

The algorithm for mining MPPs for class label y ∈ dom(Y) takes as input the following

arguments:

1. The data instances from class y: D y = {(xi, yi) : yi = y}.

2. The data instances that do not belong to class y: D¬y = {(xi, yi) : yi 6= y}.

3. The local minimum support threshold σy.

4. The significance parameter δ.

The algorithm explores the space of frequent patterns and outputs patterns (rules) that

satisfy the MPP definition.

A straightforward way to obtain the result is to apply the commonly used two-phase

approach as in [Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrač, 2006,

Exarchos et al., 2008, Deshpande et al., 2005, Li et al., 2001b], which generates all frequent

patterns in the first phase and evaluates them in the second phase (a post-processing phase).

That is, this approach would apply the following two phases to mine MPPs for class y:

1. Phase I: Mine all frequent patterns: FP= {P1, ...,Pm : sup(Pi,D y)≥σy}.

2. Phase II: For each pattern Pi ∈FP, output rule Pi ⇒ y if BS(Pi⇒ y,GS)≥ δ : ∀S ⊂ Pi.

In contrast to this two-phase approach, our algorithm integrates pattern evaluation with

frequent pattern mining. This allows us to apply additional pruning techniques that are not

applicable in the two-phase approach.

Our algorithm explores the lattice of frequent patterns level by level from the bottom-up.

It starts by exploring frequent 1-patterns, then frequent 2-patterns, and so on. Whenever

the algorithm visits a frequent pattern P (a node in the lattice), it computes its Bayesian

score with respect to its subpattens and adds it to result if it satisfies the MPP definition.

Example 10. Assume that our data D contains 100 instances from class y1 and 100 in-

stances from class y2 and that our task is to find MPPs for class y1. Figure 9 illustrates the

mining algorithm on a small frequent pattern lattice (with three items I1, I2 and I3). Every

frequent k-pattern is represented as a node in the lattice with k children: one child for each

of its (k-1)-subpatterns. Next to each pattern P, we show the number of instances from class

y1 that satisfy P (#y1), the number of instances from class y2 that satisfy P (#y2) and the

confidence of rule P ⇒ y1 (conf = #y1
(#y1+#y2)).

43

Figure 9: An illustrative example showing the frequent pattern lattice associated with I1 ∧
I2 ∧ I3. Next to each pattern (node), we show the number of instances from class y1 and y2

that the pattern covers. We also show the confidence of the rule that predicts y1. The MPPs

for class y1 are shown in red.

The algorithm works by exploring the frequent pattern lattice level by level. It first ex-

plores the first level to find MPPs of size 1. Assuming a significance parameter δ= 0.95, pat-

tern I1 is an MPP because BS(I1⇒ y1,Gφ)≥δ. Next, the algorithm explore the second level of

the lattice to find MPPs of size 2. Pattern I1 ∧ I3 is an MPP because BS(I1 ∧ I3⇒ y1,Gφ)≥δ,

BS(I1 ∧ I3⇒ y1,G I1)≥δ and BS(I1 ∧ I3⇒ y1,G I3)≥δ. After that, the algorithm explores the

third level and so on.

44

3.5.4 Pruning the Search Space

In this section, we illustrate how integrating MPP evaluation with frequent pattern mining

helps pruning the search space (speeding up the mining). We say that pattern P is pruned if

we do not explore any of its superpatterns. This can be seen as excluding the entire sublattice

with bottom P from the lattice of patterns.

Frequent pattern mining relies only on the support information to prune patterns ac-

cording to the Apriori property: Any infrequent pattern is pruned because its superpatterns

are guaranteed not to be frequent (see Section 2.2.1).

However, frequent pattern mining can be computationally very expensive, especially

when:

• The data dimensionality is high.

• The minimum support is low.

• The data features are highly correlated.

These reasons cause the frequent pattern lattice to become extremely large. One simple

way to speed up the mining is to raise the minimum support threshold. However, doing

so may result in missing many important predictive patterns. In fact, [Cheng et al., 2007]

argued that the predictive power of very high support patterns is often limited5.

In the following, we present two effective pruning techniques that can utilize the predic-

tiveness of patterns to further prune the search space. The first technique is lossless and the

second is lossy.

3.5.4.1 Lossless pruning The MPP definition can help us to prune the search space.

The idea is to prune pattern P if we guarantee that none of its superpatterns is going to be

an MPP. However, since patterns are explored in a level-wise fashion, we do not know the

class distribution in the superpatterns of P. But we know that

∀P ′⊃P : GP ′⊆GP =⇒ sup(P ′,D y)≤ sup(P,D y) ∧ sup(P ′,D¬y)≤ sup(P,D¬y)

We now define the optimal superpattern of P with respect to class y, denoted as P∗, to be

5This is analogous to the uselessness of stop words for document classification or retrieval.

45

a hypothetical pattern that covers all instances from y and none of the instances from the

other classes:

sup(P∗,D y)= sup(P,D y) ∧ sup(P∗,D¬y)= 0

P∗ is the best possible superpattern for predicting y that P can generate. Now, we safely

prune P if P∗ does not satisfy the MPP definition. That is, if P∗ does not predict y signifi-

cantly better than P or one of its subpatterns:

Prune P if ∃ S ⊆ P : BS(P∗⇒ y,GS)< δ

Note that this pruning technique does not miss any MPP (lossless) and it is an anti-

monotone test in the sense that if a pattern fails to pass the test, all of its superpatterns

will fail the same test as well (see Section 2.3.3).

Example 11. Consider pattern P = I1 ∧ I2 ∧ I3 in Figure 9. This pattern covers 10 instances

from y1 and 10 instances from y2. P cannot generate any MPP for y1 because even its opti-

mal superpattern P∗ is not significant compared to subpattern I1∧ I3: BS(P∗⇒ y1,G I1∧I3)=
0.62< δ= 0.95. Therefore, we can safely prune P because we know that none of its superpat-

terns will be an MPP for y1.

3.5.4.2 Lossy pruning This technique performs lossy pruning, which means that it speeds

up the mining, but at the risk of missing some MPPs. The idea is that for mining MPPs for

class y, we prune pattern P if the underlying probability of y in the instances covered by P

is lower than the probability of y in the entire data: Pr(Y = y|GP)< Pr(Y = y|Gφ). To decide

whether this is the case, we apply our Bayesian score to evaluate rule P⇒ y compared to Gφ

and we prune P if model Ml (the model that assumes the probability of y in P is lower than

outside P) is the most likely model (see Section 3.5.1.2).

Let us now explain the rationale behind this heuristic. Assume we are interested in

mining MPPs for class y and we have pattern P where the probability of y in GP is lower

than the probability of y in the data. To give a concrete example, let us say that we have a

census income data and we are interested in MPPs for the class Income = High (e.g., people

who make over 80K a year). Let us say that the probability of Income = High is low for

46

people that match pattern P : Education = High-School (people with high school degree as

their highest eduction level).

For every pattern P ′ that is a superpattern of P, we can write the following:

P ′ ⊃ P =⇒ ∃ P ′′ : P ′ = P ∧ P ′′ =⇒ GP ′ =GP ∩ GP ′′

Going back to our running example, P ′ can be Education = High school ∧ Gender =

Female. The population of instances covered by P ′ is the intersection of the population

covered by P : Education = High school and the population covered by P ′′ : Gender = Female

as shown in Figure 10.

Figure 10: If the probability of class Income = High in the population defined by Education

= High school is low, we do not expect the probability of Income = High in the population

defined by Education = High school ∧ Gender = Female to be significantly higher than the

probability of Income = High in the population defined by Gender = Female.

Now in order for P ′ to be an MPP, it should predict y significantly better than all of its

subpatterns, including P ′′. However, we know that the probability of y in GP is low, hence it

is very unlikely that the probability of y in GP ∩ GP ′′ will be significantly higher than the

probability of y in GP ′′ .

47

Example 12. Consider pattern I2 in Figure 9. This pattern covers 40 instances from y1 and

60 instances from y2. If we apply the Bayesian score to evaluate rule I2 ⇒ y1 compared to

Gφ, we find that Ml is the most likely model. Therefore, we prune I2 because it is unlikely

to generate any MPP for y1. That is, we do not generate its superpatterns I1 ∧ I2, I2 ∧ I3 and

I1 ∧ I2 ∧ I3.

3.6 EXPERIMENTAL EVALUATION

3.6.1 UCI Datasets

For our experimental evaluation, we use 15 publicly available datasets from the UCI ma-

chine learning repository [Asuncion and Newman, 2007]. Recall that pattern mining meth-

ods require the data to be discrete (see Section 2.1). We discretize numerical attributes

using [Fayyad and Irani, 1993] supervised discretization method, which recursively applies

entropy minimization and uses the minimum description length criterion to decide on the

number of bins.

Table 5 shows the main characteristics of these datasets. For each dataset, we show the

number of instances, the number of attributes, the number of items (distinct attribute-value

pairs after discretization) and the number of classes.

3.6.2 Quality of Top-K Rules

In this section, we present our experiments for supervised descriptive rule discovery (see

Section 3.2). The purpose is to show that the MPP framework is able to explain and cover

the data with fewer rules than existing methods, which is beneficial for knowledge discovery.

We present the results first on a synthetic dataset and then on the UCI datasets.

3.6.2.1 Compared Methods We compare the quality of the top rules for the following

rule evaluation measures:

48

Dataset # Instances # Attributes # Items # Classes

Lymphography 142 18 57 2

Parkinson 195 22 51 2

Heart 270 13 33 2

Hepatitis 155 19 39 2

Diabetes 768 8 19 2

Breast cancer 286 9 41 2

Nursery 12,630 8 27 3

Red wine 1,599 11 32 3

Mammographic 961 5 13 2

Tic tac toe 958 9 27 2

Ionosphere 351 34 145 2

Kr vs kp 3,196 36 73 2

Pen digits 10,992 16 141 10

Zoo 74 16 32 3

WDBC 569 30 94 2

Table 5: UCI datasets characteristics.

1. GR: Rules are ranked using the Growth Rate measure, which was used in [Dong and Li,
1999, Bailey et al., 2002, Yu et al., 2012] in the context of emerging pattern mining.

GR(P⇒ y)= sup(P,D y)
sup(P,D¬y)

· |D¬y|
|D y|

where D y and D¬y represent the instances from class y and not from class y, respec-

tively.

49

2. J-measure: Rules are ranked using the J-measure [Smyth and Goodman, 1992], a pop-
ular information theoretic measure that scores the rules by their information content.

J-measure(P⇒ y)= sup(P,D)
|D| × ∑

z∈{y,¬y}
conf (P⇒z) · log2

(
conf (P⇒z)
conf (Φ⇒z)

)

3. WRAcc: Rules are ranked using the Weighted Relative Accuracy, which was used in
[Kavsek and Lavrač, 2006] in the context of subgroup discovery6.

WRAcc(P⇒ y)= sup(P,D)
|D| × (conf (P⇒ y)− conf (Φ⇒ y))

Note that this measure is compatible (provides the same rule ranking) with the support

difference measure used in [Bay and Pazzani, 2001] for contrast set mining (see [Novak

et al., 2009] for more details).

4. BS: Rules are ranked using our proposed Bayesian score. However, this method scores

each rule individually with respect to the entire data and do not consider the relations

between the rules.

5. Conf-imp: Only rules that satisfy the confidence improvement constraint are retained

[Bayardo, 1999, Grosskreutz et al., 2010, Webb, 2007, Li et al., 2001b, Li et al., 2001a]

and they are ranked according to their confidence.

6. MPP: Our proposed method, which mines rules that correspond to MPPs (patterns that

satisfy Definition 2 using significance parameter δ = 0.95) and rank them according to

the Bayesian score.

Note that the GR measure does not consider the coverage of the rule when assessing its

interestingness. For example, GR favors a rule that covers 8% of the instances of in one class

and 1% of the instances in the other classes over a rule that covers 70% of the instances of

in one class and 10% of the instances in the other classes (because 8
1 > 70

10). As a result, GR

often chooses rules that are very specific (with low coverage) and do not generalize well.

To overcome this, the J-measure and WRAcc explicitly incorporate the rule coverage
Sup(P,D)

|D| in their evaluation functions to favor high coverage rules over low coverage rules.

This is done by multiplying the coverage with a factor that quantifies the distributional
6The algorithm by [Kavsek and Lavrač, 2006] uses weighted sequential covering and modifies the WRAcc

measure to handel example weights.

50

surprise (unusualness) of the class variable in the rule (the cross entropy for J-measure and

the relative accuracy for WRAcc). However, it is not clear whether simply multiplying these

two factors leads to the optimal trade-off. On the other hand, our Bayesian score (used by

BS and MPP) achieves this trade-off implicitly by properly modeling the uncertainty of the

estimation (the more data we have, the more certain is our estimation).

Note that the first four methods (GR, J-measure, WRAcc and BS) evaluate the rules

individually with respect to the entire data without considering their relations. On the other

hand, Conf-imp and MPP evaluate each rule with respect to all of its subrules. Conf-imp

simply requires each rule have a higher confidence than its subrules, while MPP requires

each rule to be significantly more predictive than its subrules according to Definition 2.

For all methods, we use frequent pattern mining to explore the space of potential rules

and we set the local minimum support (σy) to 10% the number of instance in the class. For

BS and MPP, we use uniform beta priors (uninformative priors) for all parameters when

computing the Bayesian score. We apply both the lossless pruning 3.5.4.1 and the lossy

pruning 3.5.4.2 for the MPP method.

3.6.2.2 Performance Measures We evaluate the quality of the top rules that are in-

duced by the different evaluation measures in terms of their classification performance and

their representation in the ROC space.

Classification performance: For a set of rules to be practically useful, the rules should

accurately predict the class label of unseen data instances (high precision) and the rule set

should provide a good coverage of the data (high recall).

We compare the different evaluation measures according to the classification perfor-

mance of the top rules. In particular, for each of the compared measures, we mine top k

rules from the training data and use them to classify the testing data. The classification is

done according to the highest confidence rule in the set of top rules [Liu et al., 1998]:

Prediction(x)= argmax
yi

{ conf (P ⇒ yi): P ∈ x }

We evaluated the classification performance using the F1 score [Sebastiani, 2002], which

is the harmonic mean of the precision and recall. We compute it using micro-averaging,

51

which constructs a global contingency table to calculate precision and recall. The reason we

use micro-average F1 score instead of the classification accuracy is because it differentiates

between the error of an unclassified instance (not covered by any rule) and the error of a

misclassified instance (incorrectly classified). This is because an unclassified instance only

negatively affects the recall, while a misclassified instance negatively affects both precision

and recall. Note that if all test instances are classified (covered) by the rule set, then micro-

average F1 score is the same as the classification accuracy.

ROC space representation: Another way to evaluate the quality of rules is to analyze

them in the ROC (Receiver Operating Characteristics) space, as suggested by [Lavrač and

Gamberger, 2005, Kavsek and Lavrač, 2006, Novak et al., 2009].

The ROC space [Fawcett, 2006] is a two-dimensional space that shows classifier perfor-

mance in terms of its False Positive Rate (FPR) (the fraction of false positives out of the

negatives) plotted on the X-axis, and True Positive Rate (TPR) (the fraction of true positives

out of the positives) plotted on the Y-axis.

To analyze rules in the ROC space, we find the top rules that predict a specific class

label and represent each rule by its FPR and TPR. Rules that lie close to the main diagonal

are usually considered as insignificant because the distribution of positives and negatives

in the population they cover is similar to the distribution in the entire dataset. According

to [Lavrač and Gamberger, 2005, Kavsek and Lavrač, 2006, Novak et al., 2009], the most

significant rules correspond to the points from which the ROC convex hull is constructed.

Consequently, the area under the ROC convex hull (AUC) was used to measure the combined

quality of the rule set. Figure 11 shows a set of 5 rules in the ROC space and their convex

hull, which is defined by R1, R3 and R4.

All reported results (for both classification performance and area under the ROC con-

vex hull) are obtained using 10-fold cross-validation, where the same train/test splits are

applied for all compared methods.

3.6.2.3 Results on Synthetic Data We first start by showing results on a synthetic

dataset (generated from pre-defined patterns). This dataset is obtained by randomly sam-

pling 500 instances from the Bayesian network in Figure 12. In this network, we have 20

52

Figure 11: Representation of 5 rules in the ROC space and their convex hull.

binary features (F1 to F20) and a binary class variable Y : dom(Y) = {y1, y2}. The value of

Y only depends on the values of features F1 and F2 and is independent of the values of the

other features: Y ⊥⊥ Fi for i ∈ {3, ...,20}. Features F1 and F2 follow a bernoulli distribution

with probability 0.5 and features F3 to F20 follow a bernoulli distribution with probabil-

ity 0.25. Note that there are only four predictive rules in this data: F1 =1 ∧ F2 =1 ⇒ y1,

F1 =1 ∧ F2 =0 ⇒ y2, F1 =0 ∧ F2 =1 ⇒ y2 and F1 =0 ∧ F2 =0 ⇒ y1 with confidences 0.95,

0.95, 0.8 and 0.8, respectively. All other rules are spurious.

Figure 13 shows the classification performance for the different rule evaluation mea-

sures. The X-axis shows the number of top rules that are used for classification and the

Y-axis shows their F1 score.

We can see that MPP achieves the optimal classification performance using only the

top four rules, which correspond to the true predictive rules in this data. In comparison,

the other methods require much more rules to achieve the same performance because they

favor many spurious rules (such as F1 = 1 ∧ F2 = 1 ∧ F5 = 0 ⇒ y1) over more important

rules (such as F1 = 0 ∧ F2 = 0 ⇒ y1). As a result, the top rules contain a lot of redundancies

53

Figure 12: The Bayesian belief network used to generate the synthetic dataset.

Figure 13: Comparing the performance of the different rule evaluation measures (see Sec-

tion 3.6.2.1) on the synthetic dataset. The X-axis is the number of the top rules and the

Y-axis is the F1 score of the rule set.

and fail to cover the patterns of this data.

Let us now discuss the ROC space representation. In Figure 14, we plot rules R1 :

54

F1 = 1 ∧ F2 = 1 ⇒ y1 and R2 : F1 = 0 ∧ F2 = 0 ⇒ y1, which we know are both important

for predicting class y1. According to the ROC representation, R2 is considered suboptimal

because it lies below the ROC convex hull. This means that a rule mining method that finds

only rule R1 has the same “quality” (measured using the area under the ROC convex hull)

as a method that finds both R1 and R2. However, this is not the case because we need both

R1 and R2 to classify the instances of y1 (notice that the population cover by R1 is disjoint

from the population covered by R2).

Figure 14: Illustrating the deficiency of the ROC space representation on the synthetic data.

The figure shows rule R1 : F1 = 1 ∧ F2 = 1 ⇒ y1 and rule R2 : F1 = 0 ∧ F2 = 0 ⇒ y1. Note

that R2 is not on the convex hull.

3.6.2.4 Results on UCI Datasets Figure 15 shows the classification performance for

the different evaluation measures on the UCI datasets. We can see that GR is the worst

performing method for most datasets. The reason is that rules with the highest GR scores

are usually very specific (have low coverage) that may easily overfit the training data. The

other measures (J-measure, WRAcc and BS) perform better than GR because they favor

high-coverage rules over low-coverage rules, which results in rules that generalize better

on the testing data. However, because these measures do not consider the relations among

the rules, the top scoring rules usually contain many spurious rules. As a result, they

fail to provide a good coverage of the data (see for example the lymphography and the zoo

datasets). Finally, we can see that for most datasets, MPP achieves the best performance

55

with the smallest number of rules.

Table 6 shows the area under the rules’ ROC convex hull for the different rule evalua-

tion measures on the UCI datasets. For each measure, we mine the top 5 rules from each

class label, compute their AUC and finally average all class-specific AUCs7. The results are

reported using averages obtained via 10-fold cross-validation. We can see that MPP is the

best performing method on eleven out of the fifteen datasets.

7For each class label y ∈ dom(Y), we mine the top 5 rules for predicting y from the training data and
compute their AUC on the testing data. Then we average the class specific AUCs.

56

57

Figure 15: Comparing the performance of the different rule evaluation measures (see Sec-

tion 3.6.2.1) on the UCI datasets. The X-axis is the number of the top rules and the Y-axis

is the F1 score of the rule set. 58

Dataset GR J-measure WRAcc BS conf-imp MPP

Lymphography 71.5 76.68 79.01 77.14 74.4 85.43

Parkinson 70.61 73.31 76.4 76.22 75.9 84.32

Heart 63.08 76.44 81.51 79.76 63.82 80.13

Hepatitis 72.01 70.97 83.47 83.92 74.65 85.51

Diabetes 58.48 65.66 72.66 69.42 58.57 73.64

Breast cancer 57.57 60.01 69.76 68.62 59.21 70.29

Nursery 72.83 80.94 80.76 80.94 72.88 80.94

Red wine 56.72 65.16 68.58 67.35 57.28 68.9

Mammographic 62.05 81.26 85.29 85.54 63.75 85.41

Tic tac toe 59.77 59.77 68.1 68.8 59.77 68.8

Ionosphere 75.44 78.81 81.82 80.82 76.71 82.02

Kr vs kp 72.15 78.87 79.04 78.62 72.21 84.17

Pen digits 61.41 80.64 83.08 81.67 61.49 81.9

Zoo 100 100 100 100 100 100

WDBC 81.85 90.3 90.64 90.53 82.6 90.89

wins 0 1 2 3 0 11

Table 6: The area under the rules’ ROC convex hull for the different rule evaluation mea-

sures (see Section 3.6.2.1) on the UCI datasets.

3.6.3 Pattern-based Classification

In this section, we present our experiments for classification. The purpose is to show that

mapping the data into a higher dimensional space using MPPs as additional features (see

59

Section 3.3) can boost the classification performance. We present the results first on a syn-

thetic dataset and then on the UCI datasets in Section 3.6.1.

3.6.3.1 Compared Methods We compare the performance of the following classifiers:

1. SVM: The linear Support Vector Machine (SVM) classifier [Vapnik, 1995] on the original

feature space. We optimize the cost parameter (a parameter that controls regularization)

using internal cross-validation.

2. SVM RBF: SVM with the Radial Basis Function (RBF) kernel (Gaussian kernel). We

optimize the cost parameter and the kernel width parameter by a grid search using

internal cross-validation.

3. DT: Decision tree using the CART (Classification And Regression Tree) [Breiman et al.,

1984] algorithm.

4. Boost: The boosting algorithm with decision stumps (one level decision trees) as weak

learners. We use the Gentle AdaBoost algorithm [Friedman et al., 2000] because it is

known to be more robust than the original AdaBoost algorithm [Schapire and Singer,

1999]. We set the maximum number of boosting iterations to 100.

5. KNN: The k-nearest neighbors classifier. We set the number of neighbors k = 5 and use

the Euclidean distance to measure the similarity between instances.

6. MBST: The recently proposed Model Based Search Tree (MBST) algorithm [Fan et al.,

2008], which uses frequent pattern mining to build a decision tree. The basic idea is to

partition the data in a top down manner. That is, at each node of the tree: 1) invoke a

frequent pattern mining algorithm, 2) select the most discriminative pattern (according

to IG), 3) divide the data into two subsets, one containing this pattern and the other not,

and 4) repeat the process recursively on the two subsets.

7. FP-IG: This method ranks the frequent patterns according to information gain and se-

lects the top 50 patterns for classification.

8. MPP: Our proposed method, which ranks the MPPs (patterns that satisfy Definition 2

using significance parameter δ = 0.95) according to the Bayesian score and selects the

top 50 patterns for classification.

60

The first five methods (SVM, SVM RBF, DT, Boost and KNN) are standard classification

methods that work directly on the original feature space8. On the other hand, MBST, FP-

IG and MPP are pattern based classification methods that expands the feature space with

additional patterns. The classification model for FP-IG and MPP is built by learning a

linear SVM classifier in the space of the original features plus the induced patterns (see

Section 3.3).

For FP-IG and MPP, we set the local minimum support (σy) to 10% of the number of

instances in the class. For MBST, we found that its performance (execution time and clas-

sification accuracy) is very sensitive to the invocation minimum support parameter. Un-

fortunately, the authors did not provide guidance on how to set this parameter. We tried

many values and found that setting the invocation minimum support to 25% is a reasonable

choice for our datasets. Note that setting it to lower values made MBST computationally

prohibitive on several datasets.

All results are reported using averages obtained via 10-fold cross-validation, where the

same train/test splits are used for all compared methods.

3.6.3.2 Results on Synthetic Data We first start by showing results on a synthetic

dataset because this allows us to better understand the relation between the methods and

their classification performance.

We use the 3 circles dataset, which consists of 20 numerical features (F1 to F20) and

a trinary class variable Y : dom(Y) = {y1, y2, y3}. The relation between the class labels and

features F1 and F2 is shown in Figure 16:a, where each class label is shown with a dif-

ferent color. The other features (F3 to F20) are just noisy features that follow a Gaussian

distribution N(0,σ2), where σ2 is approximately the same as the variance of F1 and F2.

Since this data is numeric, discretization should be applied in order to do pattern mining

(for MBST, FP-IG and MPP). Figure 16:b shows the data after applying [Fayyad and Irani,

1993] supervised discretization method. As we see, F1 and F2 were divided into 5 bins

each. The other noisy features were divided into 2 bins each (the minimum number of bins)

8SVM RBF implicitly maps the data into a high dimensional space, but performs all computations in the
original feature space using the kernel trick

61

(a) (b)

Figure 16: On the left (a), we show the 3 circles synthetic dataset projected on the 2D plane

defined by features F1 and F2. On the right (b), we show the data after applying [Fayyad

and Irani, 1993] discretization.

because they do not contain any discriminative signal.

Figure 17 shows the classification accuracy on the 3 circles dataset. Let us first discuss

the performance of the classical classification methods. Linear SVM completely fails on this

datasets (with accuracy close to random guessing) because the classes cannot be linearly

separated. SVM RBF improves the performance over linear SVM because of its ability to

define non-linear decision boundaries. However, because the data contain a lot of noise (only

2 out of the 20 features are useful for classification), SVM RBF does not always generalize

well to the testing examples. Both DT and boost perform well on this data. KNN performs

poorly because the presence of noisy features makes the Euclidean distance is inappropriate

for measuring similarity between the data instances.

Now, Let us discuss the performance of the pattern-based classification methods. Notice

that the discretized 3 circles dataset (Figure 16:b) contains several patterns that are impor-

tant for classification. For example, all instances that satisfy pattern F1 =1 belong to the

62

black class and all instances that satisfy pattern F1 = 3 ∧ F2 = 3 belong to the red class.

Figure 17 shows that MBST also does not perform very well on this data and is out-

performed by simple decision tree (DT). FP-IG performs poorly because it evaluates the

patterns individually, hence it ends up selecting many spurious patterns that are not useful

for classification. For example, a spurious pattern such as F1 = 3∧ ∧ F2 = 3 ∧ F10 = 1 have

a higher information gain score than an important pattern such as F1 = 2. Finally, MPP is

the best performing method and achieves an accuracy of 98.9%.

Figure 17: The classification accuracy (%) of the different classifiers (see Section 5.7.2.1) on

the 3 circles synthetic dataset.

3.6.3.3 Results on UCI Datasets Table 7 shows the classification accuracy on the UCI

datasets. We can see that MPP is the best performing method on seven out of the fifteen

datasets. Figure 18 summarizes the results of Table 7 in a graphical form.

63

Dataset SVM SVM RBF DT Boost KNN MBST FP-IG MPP

Lymphography 86.52 88 76.67 84.62 85.14 83.05 88.71 90.05

Parkinson 87.54 88.13 86.04 90.62 91.26 87.49 85.99 92.10

Heart 85.19 84.07 76.67 80 81.11 75.56 83.59 85.19

Hepatitis 78.86 85.19 72.23 79.17 80.62 83.17 82.42 85.32

Diabetes 75.91 77.08 71.10 76.04 74.10 77.47 76.17 76.43

Breast cancer 71.31 75.15 68.15 71.27 74.82 69.19 72.36 74.82

Nursery 75.61 84.08 87.59 75.74 78.14 88.69 89.32 96.64

Red wine 61.29 69.10 66.30 64.36 61.85 61.36 63.30 63.67

Mammographic 81.06 83.56 80.34 82.10 80.96 83.76 82.83 83.14

Tic tac toe 65.34 89.66 86.74 83.71 84.76 79.12 100 100

Ionosphere 86.04 94.28 88.56 93.45 84.65 87.17 92 92.30

Kr vs kp 95.99 97.94 99.31 96.56 94.68 95.77 96.81 97.03

Pen digits 98.29 99.50 95.78 96.89 99.32 68.52 98.81 98.74

Zoo 100 100 98.57 100 97.32 98.57 100 100

WDBC 97.72 96.66 92.45 97.89 96.83 94.22 97.72 97.72

wins 2 5 1 2 0 2 2 7

Table 7: The classification accuracy (%) of the different classifiers (see Section 5.7.2.1) on

the UCI datasets.

3.6.4 Mining Efficiency

In this section, we present our experiments for comparing the efficiency of several pattern

mining methods. The purpose is to show that our proposed pruning techniques can greatly

64

Figure 18: Comparing the classification accuracies for different methods on the UCI

datasets against MPP. Every point corresponds to a specific method on a specific dataset: its

y-coordinate represents its accuracy and its x-coordinate represents the accuracy of MPP for

the same dataset. Points above the diagonal correspond to methods that outperform MPP

and points below the diagonal correspond to methods that are outperformed by MPP.

improve the efficiency of frequent pattern mining.

3.6.4.1 Compared Methods We compare the running time of the following methods:

1. FPM: A frequent pattern mining method, which corresponds to the first phase of any

two-phase method [Cheng et al., 2007, Webb, 2007, Xin et al., 2006, Kavsek and Lavrač,

2006, Exarchos et al., 2008, Deshpande et al., 2005, Li et al., 2001b]. We use the algo-

rithm by [Zaki, 2000], which applies the vertical data format (see Section 2.2.3).

2. MBST: The Model Based Search Tree (MBST) method [Fan et al., 2008], which uses

frequent pattern mining to build a decision tree (see Section 5.7.2.1).

65

3. MPP-naïve: This method mines MPPs using a naive two-phase implementation, which

first applies FPM (the first phase) and then evaluate all frequent patterns (the second

phase).

4. MPP-lossless: This method mines MPPs by integrating pattern evaluation with fre-

quent pattern mining. It applies only the lossless pruning described in Section 3.5.4.1.

5. MPP-lossy: Our proposed method, which mines MPPs by integrating pattern evaluation

with frequent pattern mining. It applies both the lossless pruning and the lossy pruning

described in Section 3.5.4.2.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon

3GHz CPU and 16GB of RAM. All methods are implemented in MATLAB.

3.6.4.2 Results on UCI Datasets Table 8 shows the execution time (in seconds) of the

compared methods on the UCI datasets. We use the same settings as before (see Section

5.7.2.1): For FPM, MPP-naïve, MPP-lossless and MPP-lossy, we set the local minimum sup-

port (σy) to 10%. For MBST, we set the invocation minimum support to 25%.

The results show that scalability is a concern for FPM, MPP-naïve and MBST. For ex-

ample, these methods are very slow on the parkinson, hepatitis, ionoshpere and WDBC

datasets. In comparison, MPP-lossless is faster due to its lossless pruning and MPP-lossy is

much faster due to its lossy pruning. Consider for instance the parkinson dataset. Mining

all frequent patterns took 9,866 seconds, MBST took 5,159 seconds and MPP-naïve took

10,832 seconds. On the other hand, MPP-lossless took 828 seconds (an order of magnitude

faster than FPM) and MPP-lossy took only 37 seconds (more than two orders of magnitude

faster than FPM). This shows that our pruning techniques can significantly improve the

mining efficiency.

Effectiveness of the lossy pruning: Remember that the lossy pruning heuristic used

by MPP-lossy does not guarantee the completeness of the result (see Section 3.5.4.2). Here,

we discuss its effectiveness by examining the number of MPPs that are missed when we

apply the lossy pruning. In turned out that on ten out of the fifteen datasets (namely, lym-

phography, heart, hepatitis, diabetes, breast cancer, nursery, mammographic, tic tac toe,

ionosphere and zoo), MPP-lossy did not miss any MPP. On the parkinson, red wine, Kr vs

66

Dataset FPM MBST MPP-naïve MPP-lossless MPP-lossy

Lymphography 335 568 344 154 22

Parkinson 9,866 5,159 10,832 828 37

Heart 41 143 57 38 9

Hepatitis 1,121 1,808 1,156 394 35

Diabetes 3 16 6 6 2

Breast cancer 3 13 4 4 2

Nursery 2 3 11 9 8

Red wine 24 73 52 52 11

Mammographic 1 2 1 1 1

Tic tac toe 2 7 4 4 3

Ionosphere 16,580 3,522 16,809 1,080 814

Kr vs kp 175 538 535 479 104

Pen digits 70 23 137 135 121

Zoo 183 116 242 23 4

WDBC 2,305 1,834 5,182 270 73

Table 8: The mining time (in seconds) for the different pattern mining methods (see Section

3.6.4.1) on the UCI datasets.

KP, pen digits and WDBC datasets, MPP-lossy misses on average 1.6%, 2.1%, 1.5%, 2.1%

and 0.9% (respectively) of the total number of MPPs. This small loss in completeness can

be often tolerated in exchange for the large gain in efficiency that is obtained by using the

lossy pruning.

Changing the minimum support threshold: Let us now compare the execution time

67

of the different methods using different minimum support thresholds. Figure 19 shows the

execution time (on logarithmic scale) of FPM, MPP-naïve, MPP-lossless and MPP-lossy on

the lymphography dataset and on the hepatitis dataset. We did not include MBST because

it is very inefficient for low minimum support thresholds.

(a) (b)

Figure 19: The mining time (on logarithmic scale) for the different pattern mining methods

using different support thresholds on the lymphography dataset (a) and the hepatitis dataset

(b).

We can see that the execution time of FPM and MPP-naïve exponentially blows up when

the minimum support decreases. On the other hand, MPP-lossless controls the complexity

and the execution time increases much slower when the minimum support decreases. For

example, by setting the minimum support to 5% for hepatitis, MPP-lossless becomes more

than 15 times faster than FPM. Finally, MPP-lossy is very fast and it scales up much better

than the other methods when the minimum support is low.

68

3.7 SUMMARY

In this chapter, we studied pattern mining in the supervised setting and presented the

minimal predictive patterns (MPP) framework. Our framework relies on Bayesian inference

to evaluate the predictiveness of patterns. It also considers the structure of the patterns to

ensure that each pattern in the result offers a significant predictive advantage over all of its

generalizations. We presented an efficient algorithm for mining the MPP set. In contrast

to the widely used two-phase approach, our algorithm integrates pattern evaluation with

frequent pattern mining and applies several pruning techniques to improve the efficiency.

Our experimental evaluation on several synthetic and real-world data illustrates the

following benefits of our work:

1. The MPP framework is able to explain and cover the data with fewer rules than existing

rule mining methods, which facilitates the process of knowledge discovery.

2. Pattern-based classification using MPPs outperforms many well known classifiers.

3. Mining MPPs is more efficient than mining all frequent patterns.

69

4.0 TEMPORAL PATTERN MINING

In Chapter 2, we discussed mainly the related research on pattern mining for attribute-

value data (atemporal data). Now, we focus our attention to temporal data, which require

different tools and techniques than those used for atemporal data.

This chapter provides an overview of the related research on temporal pattern mining.

Our objective is not just to enumerate the methods proposed so far, but also to classify and

organize them in a way that makes it easier to compare and contrast the different methods.

The rest of this chapter is organized as follows. Section 4.1 provides our categorization

of the different types of temporal data, which will be used throughout the chapter. Section

4.2 reviews methods for classifying temporal data. Section 4.3 describes pattern mining

methods for time point data. Section 4.4 describes pattern mining methods for time interval

data. Section 4.5 describes temporal abstraction techniques for converting numeric time

series into time interval sequences. Finally, Section 4.6 summarizes the chapter.

4.1 TEMPORAL DATA MODELS

Temporal data usually refers to any type of data that explicitly or implicitly capture the

notion of time or define a specific order. For example, even when time is not explicit and only

an ordering is given, we may still consider the data to be temporal (e.g., DNA sequences).

We say that the temporal data is univariate if the data instances consist of measure-

ments of a single variable over time. We say that the data is multivariate if the data

instances consist of measurements of multiple variables over time. Multivariate temporal

data appear in a wide variety of domains, such as health care [Hauskrecht et al., 2010, Sac-

70

chi et al., 2007, Ho et al., 2003], sensor measurements [Jain et al., 2004], intrusion detection

[Lee et al., 2000], motion capture [Li et al., 2009], environmental monitoring [Papadimitriou

et al., 2005] and many more.

We say that the temporal data is regularly sampled in time if the time between con-

secutive events is uniform (the same for all pairs of consecutive events). Otherwise, the data

is irregularly sampled in time. The latter is often the case for electronic health records1,

which is the focus of this thesis.

Temporal data can be also classified based on the values of its observations. If the val-

ues are numerical, we have numeric time series (see Figure 20:a). If the values are dis-

crete (belong to a finite alphabet Σ), we have symbolic sequences. For example, a DNA

sequence (Figure 20:b) is a symbolic sequence, where the alphabet represents the 4 possi-

ble nucleotides Σ = {A,G,C,T}. Figure 20:c shows an example of a multivariate symbolic

sequence that is irregularly sampled in time. In this example, there are 3 temporal vari-

ables F1, F2 and F3 and the observations belong to alphabet Σ= {A,B,C,D}2. A real world

example of such multivariate symbolic sequences are log messages that are emitted from

multiple machines or alarms that are emitted in a telecommunication network [Mannila

et al., 1997]. Note that symbolic sequences can also be obtained from numeric time series

using discretization [Lin et al., 2003, Yang et al., 2005].

In some cases, the data do not consist of time points, but of time intervals that have

durations and are associated with specific start and end times. For example, the data may

express temporal concepts such as: “the patient underwent cancer chemotherapy from day

11 until day 15 of his hospitalization”. In this case, we have state sequences, where each

state holds during a specific time interval. Figure 20:d shows an example of a multivariate

state sequence, where there are 3 temporal variables F1, F2 and F3 and the states belong to

alphabet Σ= {A,B,C,D}. Note that state sequences can also be obtained from numeric time

series using temporal abstraction, which will be discussed in Section 4.5.

Finally, for each temporal data model, the database may consist of a single long se-

1The time period between the consecutive lab measurements usually varies within the same patient (de-
pending on his clinical situation) and also across different patients.

2If the different temporal variables take different sets of values, the alphabet is defined as the union of all
such values.

71

(a) (b)

(c) (d)

Figure 20: Illustrating different temporal data models: the upper left (a) is a univariate

numeric time series, the upper right (b) is a univariate symbolic sequence, the bottom left

(c) is a multivariate symbolic sequence and the bottom right (d) is a multivariate state

sequence.

quence or multiple (short) sequences. Examples of the former are weather data [Höpp-

ner, 2003] or stock market data (may be collected over several years). Examples of the latter

are web-click data, customer shopping profiles [Agrawal and Srikant, 1995], telephone calls,

electronic health records [Hauskrecht et al., 2010], etc. Long sequences are usually mined

using a sliding window approach, where a window of a specific width is slid along the se-

quence and only patterns that are observed within this window are considered to be valid

[Mannila et al., 1997, Höppner, 2003, Moerchen, 2006b].

72

4.2 TEMPORAL DATA CLASSIFICATION

In this section, we review commonly used methods for classifying temporal data. First,

let us make a distinction between temporal classification and time series forecasting. The

task of temporal classification is defined as follows: “Given an unlabeled sequence or time

series T, assign it to one of predefined classes”. On the other hand, the task of time series

forecasting is defined as follows: “Given a time series T that contains n data points, predict

its future values at time n+1,n+2, ...”. We start by briefly reviewing the most common time

series forecasting methods. After that, we discuss in more details temporal classification

methods, which are more related to the topic of the thesis.

In time series forecasting, the goal is to learn a model that can predict future values

of a time series based on its past values. This area has been extensively studied in statistics

[Shumway and Stoffer, 2006]. One of the most popular techniques is Auto-Regressive In-

tegrated Moving Average (ARIMA), which fits a parametric model that approximately gen-

erates the values of the time series and uses it to predict the future values. Generalized

Auto-Regressive Conditional Heteroscedastic (GARCH) is another popular method that is

used to model changes of variance along time (heteroskedasticity). Recurrent Neural Net-

works (RNN) [Rojas, 1996] is a machine learning approach that extends neural networks to

the temporal domain. The idea is to add a context node to the hidden layer to summarize

the network output at time t. This node is fed as input to the network at time t+1, which

creates a directed cycle in the network. This modification allows RNN to capture dynamic

temporal behavior.

In temporal classification, each sequence (time series) is assumed to belong to one

of finitely many predefined classes and the goal is to learn a model that can classify future

sequences. There are many practical applications of temporal classification, such as classi-

fying Electroencephalography signals [Xu et al., 2004], speech recognition [Rabiner, 1989],

gesture recognition [Li et al., 2009], handwritten word recognition [Plamondon and Srihari,

2000] and more. In the following, we describe the main temporal classification approaches.

73

4.2.1 The Transformation-based Approach

This approach applies a space transformation on the original time series and learn the

classification model in the transformed space. It is mostly used when the data instances are

univariate numeric time series.

The most straightforward transformation is to represent every time series of length n

as a point in an n-dimensional Euclidean space and then apply standard machine learning

methods. However, this approach is often limited because it completely ignores correlations

between the consecutive time points, which is usually very informative for classification.

To overcome this shortcoming, a transformation can be applied to de-correlate the fea-

tures (the time series points) and reveal structures that are often hidden in the time domain.

In [Batal and Hauskrecht, 2009], time series are first transformed from the time domain into

a frequency domain using Discrete Cosine Transform (DCT), or into a joint time-frequency

domain using Discrete Wavelet Transform (DWT). After that, feature selection is performed

on the transformed representation in order to select the classification features. The exper-

iments showed that this method is able to outperform classifiers that are built using the

original time series (without any transformation). [Ye and Keogh, 2009] introduced a trans-

form based on shapelets, which are are time series subsequences that are in some sense

maximally representative of of class membership.

4.2.2 The Instance-based Approach

This approach stores all training instances and defers the classification of a new instance

until the time it is encountered (lazy classification). The most common instance-based

method is k-nearest neighbor (KNN), which classifies an instance by taking a majority vote

of its k nearest neighbors.

The success of KNN heavily depends on the quality of the distance metric. For time

series data, using simple metrics such as the Euclidean distance may result in poor classi-

fication performance, especially when time series from the same class are similar in shape,

but are not perfectly aligned on the time axis (with phase shifts). To overcome this, we

can use the Dynamic Time Warping (DTW) [Ratanamahatana and Keogh, 2005], which has

74

the ability to warp the time axis of the compared time series in order to achieve a better

alignment. The work by [Xi et al., 2006] shows that the 1NN classifier with DTW is an

exceptionally accurate method for classifying univariate numeric time series, such as the

benchmark data provided by [Keogh et al., 2010].

For classifying univariate symbolic sequences, such as gene sequences or protein se-

quences, we can apply KNN with the edit distance (Levenshtein distance) [Levenshtein,

1966]. This distance is defined as the minimum number of edits needed to transform one

symbolic sequence into the other, with the allowable edit operations being insertion, dele-

tion, or substitution of a single symbol.

Note that instance-based approaches are not used for classifying multivariate time series

or multivariate sequences. The reason is that it is very difficult to define a meaningful

distance metric to compare instances for such data.

4.2.3 The Model-based Approach

This approach learns a parametric model (usually a probabilistic model) from the training

data and uses it for classification. The most common model-based method for temporal

classification is the Hidden Markov Model (HMM) [Rabiner, 1989]. HMM is very popular for

many applications, such as speech recognition, gesture recognition, part-of-speech tagging

and bioinformatics. The common way to use HMM for temporal classification is to apply the

following two phases [Blasiak and Rangwala, 2011]:

• Training phase: Learn a separate model for each class label using the Baum-Welch

algorithm.

• Testing phase: Classify the test sequence by evaluating its probability under the differ-

ent models (using the forward algorithm) and assigning it to the class corresponding to

the most probable model.

The Conditional Random Field (CRF) model [Lafferty et al., 2001] is a discriminative

model that conditions on the entire observation sequence. It is more flexible that HMM be-

cause it avoids the need for independence assumptions between observations. CRF has been

recently applied for temporal classification. [Vail et al., 2007] showed that CRF outperforms

75

HMM on an activity recognition task.

HMM and CRF can be applied on univariate symbolic sequences, univariate time se-

ries and multivariate time series. However, both models assume that the observations are

equally spaced in time. Hence, they cannot be applied on irregularly sampled temporal data,

such as the electronic health records data.

4.2.4 The Pattern-based Approach

In Section 2.4.4, we discussed several pattern mining methods for classifying atemporal

data. Here, we discuss pattern mining methods for classifying temporal data. We describe

methods that classify symbolic sequences (time point data). We are not aware of any pattern-

based method that was proposed to classify state sequences (time interval data), which is the

focus of our work.

The methods by [Tseng and Lee, 2005, Exarchos et al., 2008] classify symbolic sequences

by applying a two-phase approach, which mines all frequent sequences (sequential patterns)

in the first phase and selects the classification sequences in the second phase. As opposed

to the two-phase approach, the recently proposed method by [Ifrim and Wiuf, 2011] smartly

interleaves pattern selection and frequent pattern mining. It employs gradient-bounded co-

ordinate descent to efficiently select discriminative sequences without having to explore the

whole space of subsequences. Their experiments showed that this method can achieve com-

parable performance to the state of the art kernel-based support vector machine methods

(e.g, [Leslie et al., 2002]) for classifying symbolic sequences.

This thesis focuses on the pattern-based approach. The next two sections discuss in

more details the algorithms for mining time point data and time interval data.

4.3 TEMPORAL PATTERNS FOR TIME POINT DATA

In this section, we review the major approaches for mining symbolic sequences, where the

events are instantaneous and do not have time durations.

76

4.3.1 Substring Patterns

The simplest form of patterns that can be extracted from time point symbolic sequences are

the substring patterns [Manber and Myers, 1990, Fischer et al., 2008], which are subse-

quences of symbols that appear consecutively in a sequence (without gaps). For example,

Figure 21 shows the occurrences of substring pattern < B,C,D > in a symbolic sequence.

Discovering such patterns is mostly used in bioinformatics and computational biology for

matching sequences of nucleotides or amino acids. Substring pattern mining is applied on

univariate symbolic sequences that are regularly sampled in time.

Figure 21: An example showing the occurrences of substring pattern < B,C,D > in a sym-

bolic sequence.

4.3.2 Sequential Patterns

Sequential patterns are more general than substring patterns because they do not have to

be consecutive in the sequence (allow gaps). Similar to itemset mining, sequential pattern

mining was initially proposed for analyzing market basket data and customer shopping

behavior [Agrawal and Srikant, 1995]. An example of a sequential pattern is “customers

who buy a Canon digital camera are likely to buy an HP color printer within a month”.

In the following example, we illustrate the main concepts of sequential pattern mining

in the setting of market basket data. However, the presented concepts generalize to other

domains, such as telecommunication data, machine logs, web-click data and more.

Example 13. Consider the data in Table 9, where the alphabet of items is Σ = {A,B,C,D}

and there are 5 transactions T1 to T5. Each transaction is a sequence of events (customer

visits to the supermarket) and each event can be a single item or a set of items (items bought

77

by the customer on the same trip to the supermarket). For example, customer T1 bought

first item A, then item C, then items B and A together. We can see that sequential pattern

P1 =< C,B > (C followed by B) appears in transactions T1, T2, T3 and T4, hence sup(P1)= 4,

while sequential pattern P2 =< B,C > appears only in transaction T4 and hence sup(P2)= 1.

Transaction sequence of items

T1 < A,C, (B, A)>
T2 < C, (D, A),B >
T3 < A,C,B, A >
T4 < C, (B,D), (A,C)>
T5 < B,D >

Table 9: An example of a sequence data.

The standard sequential pattern mining framework only cares about the order of events

rather than their exact times. Therefore, sequential pattern mining does not require the

original sequences to be regularly sampled in time. Note that the application of sequential

pattern mining goes far beyond the market basket analysis task. It can be applied to any

kind of univariate or multivariate symbolic sequences.

In the following, we first outline the most common sequential pattern mining algorithms

and then discuss how to reduce the number of sequential patterns using temporal con-

straints.

Mining algorithms: The first algorithm for mining frequent sequential patterns was

proposed by [Agrawal and Srikant, 1995], which is based on the Apriori approach (see Sec-

tion 2.2.1). PrefixSpan [Pei et al., 2001] mines sequential patterns using the pattern growth

approach (see Section 2.2.2) and SPADE [Zaki, 2001] uses the vertical data approach (see

Section 2.2.3). CloSpan [Yan et al., 2003] and BIDE [Wang and Han, 2004] are two efficient

methods for mining closed sequential patterns (see Section 2.3.1 for the definition of closed

patterns).

Temporal Constraints: Mining the complete set or even the closed set of frequent

sequential patterns usually leads to results that are too large to be analyzed by humans.

78

Many of the concise representations described in Section 2.3 can be applied for compressing

sequential patterns. Another way to reduce the number of sequential patterns is to impose

temporal constraints on the patterns. One common temporal constraint is to restrict the

total duration of the pattern. For example, we may specify that the total pattern duration

must not exceed w time unites (e.g., 6 months). This constraint translates to defining a

sliding window of width w and mining only sequential patterns that can be observed within

this window. Another common temporal constraint is to define the maximum gap that is

allowed between consecutive events in a pattern. For example, we may specify that the

difference between consecutive events should not be more than g time units (e.g., 2 weeks).

Incorporating temporal constraints in the Apriori approach is described in [Srikant and

Agrawal, 1996] and in the pattern growth approach is described in [Pei et al., 2007].

4.3.3 Episode Patterns

We saw that sequential patterns are used to express order among events. Episode pat-

terns [Mannila et al., 1997, Méger and Rigotti, 2004] are more general than sequential

patterns because they can also express the concept of concurrency. [Mannila et al., 1997]

defined two special types of episodes:

1. Serial episodes: express order of events (equivalent to a sequential pattern with a

maximum pattern duration constraint).

2. Parallel episodes: express concurrency of events (the order does not matter).

In general, an episode is a combination of serial and parallel episodes. For example, an

episode can be a sequence of parallel episodes or a parallel combination of serial episodes.

Episodes are usually represented as a directed acyclic graph of events whose edges specify

the temporal order of events. On the right of Figure 22, we show an example of an episode

pattern that is a parallel combination of two serial episodes < F2 = C, F1 = A > and < F3 =
D, F3 = B >. Note that this episode represents only a partial order because the relation

between F2 = C and F3 = D is unspecified. On the left of Figure 22, we show the occurrences

of this episode in a multivariate symbolic sequence using a sliding window.

79

Figure 22: An example showing the occurrences of episode pattern (< F2 = C,F1 = A >,<
F3 = D,F3 = B >) in a multivariate symbolic sequence using a sliding window.

Although these episodes are able to represent partial order patterns, not every partial

order pattern can be represented as a combination of serial and parallel episodes. [Casas-

Garriga, 2005] proposed an algorithm for mining all partial order patterns. However, their

algorithm is computationally very expensive and does not scale up to large data.

4.4 TEMPORAL PATTERNS FOR TIME INTERVAL DATA

In this section, we review the main approaches for mining state sequences, where the events

have time durations.

4.4.1 Allen’s Temporal Relations

The temporal relation between two time points can be easily described using the following

three relations: before, equals (at the same time) and after. However, when the events

have time durations, the relations become more complex. The most common way is to use

Allen’s temporal relations [Allen, 1984], which were introduced in artificial intelligence

for temporal reasoning and have been later adopted in the research for mining time interval

80

data [Kam and Fu, 2000, Höppner, 2003, Papapetrou et al., 2005, Winarko and Roddick,

2007, Patel et al., 2008, Moskovitch and Shahar, 2009].

Allen formalized a logic on time intervals (states) by specifying 13 different temporal

relations and showing their completeness. Any pair of states are temporally related by one

of the following 13 relations: before, meets, overlaps, is-finishes-by, contains, starts; their

corresponding inverses: after, is-met-by, is-overlapped-by, finishes, during, is-started-by and

the equals relation (see Figure 23).

Figure 23: Allen’s temporal relations.

Allen’s relations can precisely describe the temporal relation between two states. How-

ever, it is less obvious how to describe the temporal relations for a pattern with multiple

states. In the following, we outline the most common time interval pattern representations

and discuss several mining algorithms. We will see that most of these algorithms are exten-

sions of sequential pattern mining algorithms [Srikant and Agrawal, 1996, Zaki, 2001, Pei

et al., 2001, Yan et al., 2003, Lin and Lee, 2005] to handle time intervals3.

In order to simplify the notations in the subsequent sections, we use a subscript next

to each state to denote its temporal variable. For example, in Figure 24, state A1 means

F1 = A, state D2 means F2 = D and state B3 means F3 = B.

3Sequential pattern mining is a special case of time interval pattern mining, in which all intervals are
instantaneous with zero durations.

81

4.4.2 Early Approaches

[Villafane et al., 2000] is the earliest work in the area of mining time interval patterns. Their

temporal patterns are restricted to having only containment relations, which corresponds to

Allen’s contains relation. An example of such patterns is “during a FLU infection, a certain

strain of bacteria is often found on the patient”.

[Kam and Fu, 2000] is the first to propose using Allen’s relations for defining temporal

patterns. Their temporal patterns, called the A1 patterns, are based on a nested repre-

sentation which only allows concatenations of temporal relations on the right hand side of

the pattern. For example, P1 = ((A1 before D2) overlaps B3) is interpreted as: “state A1 is

before state D2 and the interval that contains both A1 and D2 overlaps with state B3”. Fig-

ure 24 shows a graphical representation of a situation that matches pattern P1. Note that

this representation is ambiguous because the situation in Figure 24 can be also described

as: P2 = ((A1 overlaps B3) contains D2) (“state A1 overlaps state B3 and the interval that

contains both A1 and B3 contains state D2”). That is, the exact same situation in the data

can be described by multiple A1 patterns, which is an undesirable property.

Figure 24: The pattern in this figure can be described by several A1 patterns, such as

((A1 before D2) overlaps B3) and ((A1 overlaps B3) contains D2). This illustrates the am-

biguity of the nested representation.

4.4.3 Höppner Representation

[Höppner, 2003] proposed the first non-ambiguous representation for defining time interval

patterns. The idea is to first define the normalized form of temporal patterns, where the

82

states of a pattern are always sorted in increasing index according to their start times, end

times and value4. Now in order to define a temporal pattern with k states (a k-pattern), we

should specify the relations for all pairs of states. However, since the patterns are in the

normalized form, we only need 7 of the 13 Allen’s relations, namely: before, meets, overlaps,

is-finished-by, contains, starts and equals.

Figure 25 shows an example of a temporal pattern with states A1, B3 and D2. The

matrix on the right of the figure specifies the relations for all pairs of states. Because the

pattern is in normalized form, it suffices to only specify the relations between each state

and all of its following states (only using the upper triangular matrix). Therefore, defining

a k-pattern requires specifying all of its k states and specifying all k× (k− 1)/2 relations

between the states. Hence the “cost” of this representation is k+k× (k−1)/2, where the cost

is informally defined as the effort needed to describe a pattern to the user.

Figure 25: A temporal pattern represented using Höppner’s non-ambiguous representation.

For mining these patterns, [Höppner, 2003] used a sliding window approach to extract

local temporal patterns (i.e., patterns with limited total durations) from a single long mul-

tivariate state sequence (weather data). He defined the support of a pattern to be the total

time in which the pattern can be observed within the sliding window. Note that this defi-

nition is different from the conventional support definition, which is the number of times a

pattern appears in the data. His algorithm extends Apriori for sequential patterns [Agrawal

and Srikant, 1995] to handle the more complex case of time interval patterns.

Later on, the same pattern representation as [Höppner, 2003] was independently de-
4We first sort all states by their start times. If two states have the same start time, we sort them by their

end times. If they also have the same end time, we sort them alphabetically.

83

scribed by [Papapetrou et al., 2005, Winarko and Roddick, 2007]. [Papapetrou et al., 2005]

proposed the hybrid-DFS method, which uses a tree-based enumeration algorithm like the

one introduced by [Bayardo, 1998]. [Winarko and Roddick, 2007] proposed the ARMADA

algorithm, which extends a sequential pattern mining algorithm called MEMISP [Lin and

Lee, 2005] to mine time interval patterns.

4.4.4 Other Representations

[Moerchen, 2006a, Moerchen, 2006b] proposed the Time Series Knowledge Representation

(TSKR) as an alternative to using Allen’s relations. This representation is based on the

concept of cords, which describe coincidence (overlapping) of several states. Figure 26

shows the same pattern in Figure 25 in the TSKR format. The cords of this pattern are

< A1, A1B3,B3,D2B3,B3 >, which mean that state A1 is first observed alone, then both A1

and B3 are observed, then B3 alone and so on. Mining TSKR patterns was done by modifying

the CloSpan algorithm [Yan et al., 2003] and using a sliding window approach. Moerchen

also proposed mining patterns that describe partial order of cords, which he called phrases.

Figure 26: A temporal pattern represented using the TSKR representation.

In [Sacchi et al., 2007], the user is required to define beforehand a set of complex pat-

terns of interest, which are called Abstractions of Interest (AoI). These AoI constitute the

basis for the construction of temporal rules. A temporal association rule is defined as A ⇒ c,

where A is a set of AoI and c is a single AoI. The temporal rule holds when the precedes re-

84

lation is satisfied between the antecedent (A) and the consequent (c). This relation requires

specifying three parameters (see Figure 27):

1. Left shift: the maximum allowed time between the start of c and the maximum start of

the patterns in A.

2. Gap: the maximum allowed time between the start of c and the minimum end of the

patterns in A.

3. Right shift: the maximum allowed time between the end of c and the minimum end of

the patterns in A.

As we can see, this representation relies on the user to define the AoI and to specify the

three parameters of the proceeds relation.

Figure 27: Illustrating the three parameters of the precedes relation for a rule that has two

AoI in the antecedent.

[Patel et al., 2008] realized the ambiguity of the nested representation of [Kam and

Fu, 2000] and proposed augmenting this representation with additional counts to make it

unambiguous. However, the resulting patterns are very complicated and hard to interpret.

Besides, there was no clear justification (nor a comparison) for using this representation

instead Höppner’s representation that is already non-ambiguous and easier to understand.

[Wu and Chen, 2007] proposed a very different interval pattern language, where every

state S in the data is represented by its two interval boundaries: 1) the time S appears,

denoted as S+ and 2) the time S disappears, denoted by S−. An interval pattern is repre-

85

sented as a sequence of its state boundaries. Because this representation only deals with

time points (as opposed to time intervals) and sorts the boundaries according to their times,

it suffices to use only two relations: before (<) and equals (=) to describe any temporal pat-

tern.

Figure 28 shows the same pattern in Figure 25 represented as A+
1 < B+

3 < A−
1 < D+

2 <
D−

2 < B−
3 . As we can see, representing a k-pattern in this framework requires specifying the

k states and 2× k−1 relations between their boundaries. Hence, the cost of this represen-

tation is k+2× k−1. This representation can be considered more compact than Höppner’s

representation (which has a cost of k+ k× (k−1)/2) when the patterns are large. However,

it may be less intuitive and harder to communicate with the experts.

Figure 28: A temporal pattern represented by the order of its state boundaries.

In order to mine these patterns, the algorithm by [Wu and Chen, 2007] first converts all

state sequences in the data into sequences of state boundaries and then employs a sequen-

tial pattern mining algorithm. This algorithm is modification of PrefixSpan [Pei et al., 2001]

that adds additional constraints to ensure that the sequential state boundary patterns cor-

respond to valid time interval patterns. For example, patterns like A−
1 < A+

1 or A+
1 < B−

2 < A−
1

will be suppressed from the results.

It is important to note that there is a one-to-one correspondence between this represen-

tation and Höppner’s representation. In other words, both representations give the same

result if they are applied on the same data with the same minimum support.

86

The work of [Moerchen and Fradkin, 2010] is similar to [Wu and Chen, 2007] in that

they represent the states by their boundaries. However, the difference is that [Moerchen

and Fradkin, 2010] do not force the mined patterns to be proper time interval patterns,

which results in what they call Semi-Interval Sequential Patterns (SISP). According to their

definition, patterns like A−
1 < A+

1 or A+
1 < B−

2 < A−
1 are considered to be valid results.

As an example, consider A+
1 < B+

3 < A−
1 < D+

2 . This SISP matches all three Höppner’s

patterns in Figure 29. As we can see, SISPs are always a super set of Höppner’s patterns5,

which the authors claim is the advantage of this representation (a more flexible representa-

tion).

Figure 29: Three different Höppner’s patterns that match SISP: A+
1 < B+

3 < A−
1 < D+

2 .

However, using this representation has the following disadvantages:

1. It usually returns a huge number of patterns6.

2. Patterns do not describe precise situations in the data (Figure 29). For example, SISP

A−
1 < B−

2 does not tell us much about the temporal relation between state A1 and state

B2. It is possible that B2 contains A1, A1 overlaps B2 or A1 before B2, which are concep-

tually very different situations.

3. The mining is computationally very expensive because the search space is very large.

5A Höppner’s pattern matches only one SISP, while a SISP can match several Höppner’s patterns.
6As we saw in Section 2.3, one of the most active research in pattern mining is reducing the number of

discovered patterns. This representation blows up the number of temporal patterns, which makes the task of
knowledge discovery much harder.

87

4.5 TEMPORAL ABSTRACTION

Temporal abstraction [Shahar, 1997] transforms numeric time series from a low-level

quantitative form into a high-level qualitative form. More specifically, temporal abstraction

segments the numeric time series into a sequence of states, where each state represents a

property that holds during a time interval. These states become the building blocks to con-

struct more complex time interval patterns as we explained in the previous section. That is,

temporal abstraction can be seen as a pre-processing step for time interval pattern mining.

Usually, we would like these abstractions to be meaningful and easy to interpret by humans

so that the resulting patterns would be useful for knowledge discovery. In the following, we

describe the three main temporal abstraction approaches: abstraction by clustering, trend

abstractions and value abstractions.

4.5.1 Abstraction by Clustering

Abstraction by clustering is the process of inductively deriving a set of states for a nu-

meric time series by clustering similar parts of the time series [Das et al., 1998, Kadous,

1999]. In this approach, subsequences (portions of time series) are considered data objects

and clusters correspond to inductively derived states that describe similar subsequences.

More concretely, given a time series T = (T1, ..,Tn) and a window of width w, abstraction by

clustering works as follows:

1. Extract all subsequences of length w using a sliding window.

2. Cluster the set of all subsequences to obtain clusters C1, ...,Ck. Note that this requires

defining a distance metric for measuring similarity between two subsequences of length

w (e.g., the Euclidean distance or dynamic time warping [Ratanamahatana and Keogh,

2005]).

3. Define the abstracted version of T by assigning every subsequence to its corresponding

cluster symbol: T ′ = (s j(1), s j(2), ..., s j(n−w+1)), where si is the symbol for cluster Ci.

The basic property of abstraction by clustering is that the alphabet is not predefined,

but automatically derived from the data. However, it has the following disadvantages:

88

1. The output highly depends on the choice of the window width w, the choice of the dis-

tance metric and the choice of the clustering algorithm.

2. The resulting abstractions are usually very hard to understand by humans because they

do not have intuitive interpretations.

4.5.2 Trend Abstractions

Trend abstractions is the process of partitioning numeric time series based on its local

trends. This is usually done using the following steps:

1. Apply Piecewise Linear Representation (PLR) to approximate the series with straight

lines (Figure 30).

2. Define the abstractions based on the slopes of the fitted lines (segments). For example,

assume we want to use alphabet Σ = { decreasing, steady, increasing }. We label the

segments that result from applying PLR as following: Given a threshold δ, if the slope of

the segment is positive and greater than δ, we assign it the label increasing. If the slope

is negative and its absolute value is greater than δ, we assign it the label decreasing.

Otherwise, we assign it the label steady.

Figure 30: An example illustrating the piecewise linear representation.

PLR has been also used to support a variety of data mining tasks, such as classification

[Batal et al., 2009, Batal et al., 2011], clustering [Keogh and Pazzani, 1998] and indexing

[Keogh et al., 2001].

89

The algorithm for finding a PLR is usually called a segmentation algorithm. It requires

defining a measure to evaluate the fitness of a potential segment. The most common mea-

sure is the residual error, which is the sum of squares of the differences between the actual

time series values and the fitted segment.

The objective of a segmentation algorithm can be formulated in one of the following two

ways:

1. Produce a PLR such that the error for any segment does not exceed a user-specified

threshold ε.

2. Produce the “best” PLR using only k segments.

[Keogh et al., 1993] group time series segmentation algorithms into the following three

categories:

1. Sliding window: This approach works by first anchoring the left point of a potential

segment at the first time point of the time series, then attempting to approximate the

data to its right with increasing longer segments. At some point i, the error for the

potential segment becomes greater than ε, so the subsequence from the anchor to point

i − 1 is transformed into a segment. The anchor is then moved to location i and the

process repeats until the entire time series is segmented. This algorithm is attractive

because it is very simple, intuitive and online in nature.

2. Top-down: This approach works by considering every possible two-ways partitioning of

the time series and splitting it at the best location. Both segments are tested to check

whether the stopping condition is satisfied (the errors of all segments is below ε or the

total number of segments is k). If not, the algorithm recursively continues splitting the

subsequences until the stopping condition is satisfied.

3. Bottom-up: This approach begins by creating the finest possible segmentation of the

time series, so that n/2 segments are used to approximate a time series of length n.

Next, the cost of merging each pair of adjacent segments is calculated and the algorithm

iteratively merges the lowest cost pair until the stopping condition is satisfied.

Note that both top-down and bottom-up allow the user to specify the maximum error per

segment ε or to specify the desired number of the segments k. On the other hand, sliding

90

window only allows the first option.

4.5.3 Value Abstractions

Value abstractions is the process of partitioning numeric time series based on its values.

The most straightforward approach is to use standard discretization methods [Yang et al.,

2005], such as equal width histogram or equal frequency histogram, to discretize the time

series values. However, such methods ignore the temporal order of values, which may lead

to states that are not practically meaningful.

To overcome this, [Moerchen and Ultsch, 2005] argued that a good discretization method

should produce states with persisting behavior. They proposed the Persist algorithm, which

tries to obtain discretization symbols with a self transition distribution (under the first

order Markovian assumption) P(Si = s|Si−1 = s′) significantly higher than their marginal

distribution P(Si = s).

Symbolic Aggregate Approximation (SAX) [Lin et al., 2003] is a popular time series dis-

cretization technique, which applies the following two steps:

1. Divide the time series into q equal-sized segments and replace the values in each seg-

ment with their average. These q coefficients are known in the literature as the Piece-

wise Aggregate Approximation (PAA) [Keogh et al., 2000].

2. Convert the PAA coefficients to k symbols (k is the alphabet size) by determining the

breakpoints which divide the distribution space into k equiprobable regions. In other

words, determine the breakpoints such that the probability of a segment falling into any

of the regions is approximately the same. Once the breakpoints are determined, each

region is assigned a symbol.

Figure 31:a shows the PAA of a time series using q=8 segments. Figure 31:b shows the

SAX symbols for an alphabet of size k=3.

91

(a) (b)

Figure 31: An example illustrating the SAX representation. The figure on the left shows the

PAA of the series and the figure on the right shows the derived SAX symbols.

4.6 SUMMARY

Temporal data mining refers to mining data that have a temporal aspect. Temporal data

can take a variety of forms from simple univariate regularly sampled data, to complex mul-

tivariate irregularly sampled data. In this chapter, we presented an overview of temporal

data mining and we mostly focused on temporal classification and temporal pattern mining.

The goal of temporal classification is to train a classifier that can accurately predict

the class label for future unlabeled sequences. There are several approaches to construct a

temporal classifier:

1. Apply a time series transformation such as DFT, DWT or shapelet transform. This

approach is mostly applied to univariate regularly sampled numeric time series.

2. Define a distance metric and classify unlabeled sequences according to the most similar

training sequences (the KNN classifier). This approach is mostly applied to univariate

regularly sampled series.

3. Learn a probabilistic model such as HMM or CRF and use it for classification. This

approach can handle univariate and multivariate regularly sampled series.

4. Apply temporal pattern mining and use the patterns for classification.

92

Temporal pattern mining can be applied to symbolic sequences to mine sequential pat-

terns (Section 4.3) and to state sequences to mine time interval patterns (Section 4.4). In

order to apply temporal pattern mining on numeric time series, the series should be con-

verted into state sequences using temporal abstraction (Section 4.5).

93

5.0 MINING PREDICTIVE TEMPORAL PATTERNS

The majority of existing temporal classification methods (see Section 4.2) assume that each

data instance (represented by a single or multiple time series) is associated with a single

class label that affects its entire behavior. That is, they assume that all temporal observa-

tions are potentially equally useful for classification.

However, the above assumption is not suitable when considering event detection prob-

lems. In these problems, a class label denotes an event that is associated with a specific time

point (or a time interval) in the instance, not necessarily the entire instance (see Figure 32).

The objective is to learn a predictive model that can accurately identify the occurrence of

events in unlabeled time series instances (a monitoring task). Examples of such problems

are the detection of adverse medical events (e.g. drug toxicity) in clinical data [Hauskrecht

et al., 2010], the detection of equipment malfunctions [Guttormsson et al., 1999], fraud

detection [Srivastava et al., 2008], environmental monitoring [Papadimitriou et al., 2005],

intrusion detection [Chandola et al., 2006] and others.

Given that class labels are associated with specific time points (or time intervals), each

time series instance can be annotated with multiple labels1. Consequently, the context in

which the classification is made is often local and affected by the most recent behavior of the

monitored instances.

This chapter proposes a novel temporal pattern mining approach for event detection

that takes into account the local nature of decisions. We present the Recent Temporal

Pattern (RTP) mining framework, which mines frequent temporal patterns backward in

time, starting from patterns related to the most recent observations. Applying this tech-

1In the clinical domain, a patient may be healthy at first, then develop an adverse medical condition, then
be cured and so on.

94

(a) (b)

Figure 32: Illustrating the difference between temporal classification and event detection.

nique, temporal patterns that extend far into the past are likely to have low support in

the data and hence would not be considered for classification. Incorporating the concept

of recency in temporal pattern mining is a new research direction that, to the best of our

knowledge, has not been previously explored in the pattern mining literature.

We primarily focus on applying RTP mining to temporal data in Electronic Health

Record (EHR) systems. In this data, each record (data instance) consists of multiple time

series of clinical variables collected for a specific patient, such as laboratory test results

and medication orders. The record may also provide information about patient’s diseases

and other adverse medical events over time. Our objective is to mine patterns that can ac-

curately predict adverse medical events and apply them to monitor future patients. This

task is extremely used for intelligent patient monitoring, outcome prediction and decision

support.

The task of temporal modeling for EHR data is challenging because the data are multi-

variate and the time series for clinical variables are irregularly sampled in time (measured

asynchronously at different time moments). Therefore, most existing times series classifi-

cation methods [Blasiak and Rangwala, 2011, Vail et al., 2007], time series similarity mea-

sures [Ratanamahatana and Keogh, 2005, Yang and Shahabi, 2004] and time series feature

extraction methods [Li et al., 2010, Batal and Hauskrecht, 2009, Weng and Shen, 2008]

95

cannot be directly applied on the raw EHR data.

The key step for analyzing EHR data is defining a language that can adequately rep-

resent the temporal dimension of the data. Our approach relies on 1) temporal abstrac-

tions (see Section 4.5) to convert numeric time series variables to time interval sequences

and 2) temporal relations (see Section 4.4.1) to represent temporal interactions among the

variables. For example, this allows us to define complex temporal patterns (time-interval

patterns) such as “the administration of heparin precedes a decreasing trend in platelet

counts”.

After defining temporal patterns, we need to design an efficient algorithm for mining

predictive patterns in temporally abstracted time interval data. This task is very challeng-

ing because the search space of such patterns is extremely large. All existing methods in

this area (see Section 4.4) have been applied in an unsupervised setting to mine temporal

association rules [Moskovitch and Shahar, 2009, Wu and Chen, 2007, Winarko and Roddick,

2007, Papapetrou et al., 2005, Moerchen, 2006b, Höppner, 2003]. These methods are known

to be computationally very expensive and they do not scale up to large data.

In contrast to the existing methods, our work applies temporal pattern mining in the su-

pervised setting to find patterns that are important for the event detection task. To achieve

this, we present an efficient algorithm for mining RTPs (see above) from time interval data.

We also present the Minimal Predictive Recent Temporal Patterns (MPRTP), which extends

the MPP framework to the temporal domain in order to find predictive and non-spurious

RTPs.

The rest of the chapter is organized as follows. Section 5.1 describes the event detec-

tion problem and briefly outlines our approach for solving it. Section 5.2 describes temporal

abstraction and defines temporal patterns for time interval data. Section 5.3 defines the

recent temporal patterns (RTPs) and illustrate their properties. Section 5.4 describes our

algorithm for mining frequent RTPs. Section 5.5 describes our algorithm for mining mini-

mal predictive recent temporal patterns (MPRTPs). Section 5.6 illustrates how to obtain a

feature vector representation of the multivariate time series data in order to learn the event

detection classifier. Section 5.7 compares our methods with several baselines on a synthetic

dataset and two real-world clinical datasets. Finally, Section 5.8 summarizes the chapter.

96

5.1 PROBLEM DEFINITION

Let D = {< xi, yi >}n
i=1 be a training dataset such that xi ∈ X is a multivariate temporal

instance up to some time ti and yi ∈ Y is a class label (an event) associated with xi at time

ti (see Figure 32:b). The objective is to learn a function f : X → Y that can label unlabeled

time series instances. This setting is applicable to a variety of event detection problems,

such as the ones described in [Srivastava et al., 2008, Chandola et al., 2006, Guttormsson

et al., 1999, Papadimitriou et al., 2005].

In this work, we test our method on data from Electronic Health Records (EHRs). For

this task, every data instance xi is a record for a specific patient up to some time ti and

the class label yi denotes whether or not this patient is diagnosed with an adverse medical

condition (e.g., renal failure) at ti. Figure 33 shows a graphical illustration of an EHR

instance with 3 clinical temporal variables. The objective is to learn a classifier that can

predict well the studied medical condition and apply it to monitor future patients.

Figure 33: An example of an EHR data instance with three temporal variables. The black

dots represent their values over time.

Learning the classifier directly from EHR data is very difficult because each instance

consists of multiple irregularly sampled time series of different length. Therefore, we want

to apply a space transformation ψ : X → X ′ that maps each EHR instance xi to a fixed-size

feature vector x′
i, while preserving the predictive temporal characteristics of xi as much as

possible.

One approach to define ψ is to represent the data using a predefined set of features and

97

their values as in [Hauskrecht et al., 2010]. Examples of such features are “most recent

creatinine value”, “most recent glucose trend”, “maximum cholesterol value”, etc. Our ap-

proach is different because we learn transformation ψ from the data using temporal pattern

mining. This is done by applying the following steps:

1. Convert the numeric time series variables into time interval state sequences using tem-

poral abstraction.

2. Mine recent temporal patterns from the time interval data.

3. Transform each instance xi into a binary indictor vector x′
i using the patterns obtained

in step 2.

After applying this transformation, we can use a standard machine learning method

(e.g. support vector machines, decision tree, or logistic regression) on {<x′
i, yi >}n

i=1 to learn

the classifier f .

In the following, we explain in details each of these steps.

5.2 TEMPORAL ABSTRACTION PATTERNS

5.2.1 Temporal Abstraction

The goal of temporal abstraction (Section 4.5) is to transform the numeric time series

variables to a high-level qualitative form. More specifically, each temporal variable (e.g.,

series of platelet counts) is transformed into an interval-based representation 〈v1[s1, e1], ...,

vn[sn, en]〉, where vi ∈ Σ is an abstraction that holds from time si to time e i and Σ is the

abstraction alphabet that represents a finite set of permitted abstractions.

In our work, we use two types of temporal abstractions:

1. Trend abstractions: Segment the time series based on its local trends (see Section 4.5.2).

We use the following abstractions: Decreasing (D), Steady (S) and Increasing (I), i.e.,

Σ= {D, S, I}. These abstractions are obtained by using the sliding window segmentation

method [Keogh et al., 1993] and labeling the states according to the slopes of the fitted

segments. For more information about trend segmentation, see Section 4.5.2.

98

2. Value abstractions: Segment the time series based on its values (see Section 4.5.3). We

use the following abstractions: Very Low (VL), low (L), Normal (N), High (H) and Very

High (VH), i.e., Σ= {VL, L, N, H, VH}. These abstractions are obtained using the 10th,

25th, 75th and 90th percentiles on the lab values: a value below the 10th percentile is

very low (VL), a value between the 10th and 25th percentiles is low (L), and so on.

Figure 34 shows the trend and value abstractions on a time series of platelet counts.

Figure 34: An example illustrating trend abstractions and value abstractions. The blue

dashed lines represent the 25th and 75th percentiles of the values and the red solid lines

represent the 10th and 90th percentiles of the values.

5.2.2 Multivariate State Sequences

Let a state be an abstraction for a specific variable. We denote a state S by a pair (F,V),

where F is a temporal variable and V ∈ Σ is an abstraction value. We sometimes denote S

as F=V . Let a state interval be a state that holds during an interval. We denote a state

interval E by a 4-tuple (F,V , s, e), where F is a temporal variable, V ∈ Σ is an abstraction

value, and s and e are the start time and end time (respectively) of the state interval (E.s ≤
E.e)2. For example, assuming the time granularity is days, state interval (glucose,H,5,10)

2If E.s = E.e, state interval E corresponds to a time point.

99

represents high glucose values from day 5 to day 10.

After abstracting all time series variables, each multivariate time series instance in the

data becomes a multivariate state sequence.

Definition 3. A Multivariate State Sequence (MSS) is represented as a series of state

intervals that are ordered according to their start times3:

Z = 〈 E1,E2, ...,E l 〉 : E i.s ≤ E i+1.s ∀i ∈ {1, ..., l−1}

Note that we do not require E i.e to be less than E i+1.s because the state intervals are

obtained from different temporal variables and their intervals may overlap. Let Z.end

denote the end time of the MSS.

5.2.3 Temporal Relations

Allen’s temporal logic (Section 4.4.1) describes the relations for any pair of state intervals

using 13 possible relations. However, it suffices to use the following 7 relations: before,

meets, overlaps, is-finished-by, contains, starts and equals because the other relations are

simply their inverses. Allen’s relations have been used by the majority of research on mining

time interval data [Kam and Fu, 2000, Höppner, 2003, Papapetrou et al., 2005, Winarko and

Roddick, 2007, Patel et al., 2008, Moskovitch and Shahar, 2009].

Most of Allen’s relations require equality of one or two of the intervals end points. That

is, there is only a slight difference between overlaps, is-finished-by, contains, starts and

equals relations (see Figure 23 in Section 4.4.1). Hence, when the time information in the

data is noisy (not very precise), which is the case for EHR data, using Allen’s relations may

cause the problem of pattern fragmentation4 [Moerchen, 2006b].

Therefore, we opt to use only two temporal relations, namely before (b) and co-occurs

(c), which we define as follows:

Given two state intervals E i and E j:

3If two state intervals have the same start time, we sort them by their end time. If they also have the same
end time, we sort them by lexical order (see [Höppner, 2003]).

4Pattern fragmentation refers to the problem of having many different temporal patterns that describe a
very similar situation in the data.

100

• E i is before E j, denoted as b(E i,E j), if E i.e < E j.s (same as Allen’s before).

• E i co-occurs with E j, denoted as c(E i,E j), if E i.s ≤ E j.s ≤ E i.e. That is, E i starts be-

fore E j and there is a nonempty time period where both E i and E j occur. Note that this

relation covers the following Allen’s relations: meets, overlaps, is-finished-by, contains,

starts and equals.

5.2.4 Temporal Patterns

In order to obtain temporal descriptions of the data, basic states are combined using tempo-

ral relations to form temporal patterns (time interval patterns). In the previous section, we

defined the relation between two states to be either before (b) or co-occurs (c). In order to

define relations between k states, we adopt Höppner’s representation of temporal patterns

(see Section 4.4.3).

Definition 4. A temporal pattern is defined as P = (〈S1, ...,Sk〉,R) where Si is the ith

state of the pattern and R is an upper triangular matrix that defines the temporal relations

between each state and all of its following states:

i ∈ {1, ...,k−1}∧ j ∈ {i+1, ...,k} : Ri, j ∈ {b, c} specifies the relation between Si and S j.

The size of a temporal pattern P is the number of states it contains. If P contains k

states, we say that P is a k-pattern. Hence, a single state is a 1-pattern (a singleton). When

a pattern contains only 2 states: (〈S1,S2〉,R1,2), we sometimes write it simply as S1 R1,2 S2

because it is easier to read.

Figure 35 shows a graphical representation of a 4-pattern 〈 S1=(F1,B), S2=(F3, A), S3=
(F2,C), S4 = (F3,B) 〉, where the states are abstractions of temporal variables F1, F2 and

F3 using abstraction alphabet Σ= {A,B,C}. The half matrix on the right represents the

temporal relations between every state and the states that follow it. For example, the second

state (F3, A) co-occurs with the third state (F2,C): R2,3 = c.

Definition 5. Given an MSS Z = 〈 E1,E2, ...,E l 〉 and a temporal pattern P = (〈S1, ...,Sk〉,R),

we say that Z contains P, denoted as P∈Z, if there is an injective mapping π from the states

101

Figure 35: A temporal pattern with states 〈 (F1,B), (F3, A), (F2,C), (F3,B) 〉 and temporal

relations R1,2 = c, R1,3 = b, R1,4 = b, R2,3 = c, R2,4 = b and R3,4 = c.

of P to the state intervals of Z such that:

∀i ∈ {1, ...,k} : Si.F=Eπ(i).F ∧ Si.V =Eπ(i).V

∀i ∈ {1, ...,k−1}∧ j ∈ {i+1, ...,k} : Ri, j
(
Eπ(i) , Eπ(j)

)

The definition says that checking whether an MSS contains a k-pattern requires: 1)

matching all k states of the pattern and 2) checking that all k(k−1)/2 temporal relations are

satisfied.

5.3 RECENT TEMPORAL PATTERNS

As we discussed in Section 5.1, the setting for event detection applications is that each

training temporal instance xi (e.g. an electronic health record) is associated with class label

yi at time ti (e.g. whether or not an adverse medical event was observed). Consequently,

recent measurements of the temporal variables of xi (close to ti) are usually more predictive

than distant measurements, as was shown in [Valko and Hauskrecht, 2010] for clinical data.

In the following, we define the recent temporal patterns, which are patterns that occur close

to the end of the temporal instance.

102

Definition 6. Given an MSS Z=〈 E1,E2, ..., E l 〉 and a maximum gap parameter g, we say

that E j ∈ Z is a recent state interval in Z, denoted as rg(E j, Z), if any of the following two

conditions is satisfied:

1. Z.end−E j.e ≤ g.

2. 6 ∃ Ek ∈ Z : Ek.F = E j.F ∧k > j.

The first condition is satisfied if E j is less than g time units away from the end of the

MSS (Z.end) and the second condition is satisfied if E j is the most recent state interval in

its variable (there is no state interval in variable E j.F that appear after E j). Note that if

g =∞, any state interval of Z (E j ∈ Z) is considered to be recent.

Definition 7. Given an MSS Z=〈E1,E2, ...,E l〉 and a maximum gap parameter g, we say

that temporal pattern P = (〈S1, ...,Sk〉,R) is a Recent Temporal Pattern (RTP) in Z, de-

noted as Rg(P, Z), if all of the following conditions are satisfied:

1. P ∈ Z with a mapping π from the states of P to the state intervals of Z.

2. Sk matches a recent state interval in Z: rg(Eπ(k), Z).

3. ∀i ∈ {1, ...,k−1}, Si and Si+1 match state intervals not more than g away from each other:

Eπ(i+1).s−Eπ(i).e ≤ g.

The definition says that in order for temporal pattern P to be an RTP in MSS Z, 1) P

should be contained in Z (Definition 5), 2) the last state of P should map to a recent state

interval in Z (Definition 6), and 3) any pair of consecutive states in P should map to state

intervals that are “close to each other”. This definition forces P to be close to the end of Z

and to have limited temporal extension in the past. Note that g is a parameter that specifies

the restrictiveness of the RTP definition. If g =∞, any pattern P ∈ Z would be considered

to be an RTP in Z. We denote an RTP that contains k states as a k-RTP.

Example 14. Let Z be the MSS in Figure 36 and let the maximum gap parameter be g=3.

Temporal pattern P = (〈 (F4, A), (F2,C), (F1,B)〉, R1,2 = b, R1,3 = b, R2,3 = b) is an RTP

in Z because P ∈ Z, (F1,B,15,18) is a recent state interval in Z, (F2,C,8,13) is “close to”

(F1,B,15,18) (15−13≤ g) and (F4, A,1,5) is “close to” (F2,C,8,13) (8−5≤ g).

103

Figure 36: Temporal pattern (〈 (F4, A), (F2,C), (F1,B)〉, R1,2 = b, R1,3 = b, R2,3 = b) is an

RTP in this MSS if the maximum gap paramter g ≥ 3.

Definition 8. Given temporal patterns P = (〈S1, ..., Sk1〉,R) and P ′ = (〈S′
1, ...,S′

k2
〉,R′) with

k1 < k2, we say that P is a suffix subpattern of P ′, denoted as Suffix(P,P ′), if:

∀i ∈ {1, ...,k1} ∧ j ∈ {i+1, ...,k1} : Si = S′
i+k2−k1 ∧ Ri, j = R′

i+k2−k1, j+k2−k1

That is, P consists of the last k1 states of P ′ and satisfies among them the same temporal

relations that are satisfied in P ′. For example, pattern (〈 (F3, A), (F2,C), (F3,B) 〉, R1,2 =
c, R1,3 = b, R2,3 = c) is a suffix subpattern of the pattern in Figure 35. When P is a suffix

subpattern of P ′, we say that P ′ is a backward-extension superpattern of P.

Proposition 1. Given an MSS Z and temporal patterns P and P ′, if P ′ is an RTP in Z and

P is a suffix subpattern of P ′, then P is an RTP in Z:

Rg(P ′, Z) ∧ Suffix(P,P ′) =⇒ Rg(P, Z)

The proof follows directly from the Definition of RTP.

104

Example 15. Assume that P = (〈S1,S2,S3〉,R1,2,R1,3,R2,3) is an RTP in Z. Proposition 1

says that its suffix subpattern (〈S2,S3〉, R2,3) must also be an RTP in Z. However, this does

not imply that (〈S1,S2〉,R1,2) must be an RTP (the second condition of Definition 7 may be

violated) nor that (〈S1,S3〉,R1,3) must be an RTP (the third condition of Definition 7 may be

violated).

Definition 9. Given a dataset D of MSS and a maximum gap parameter g, we define the

support of RTP P in D as RTP-supg(P,D)= | {Zi : Zi ∈ D ∧ Rg(P, Zi)} |.

Given a user defined minimum support threshold σ, temporal pattern P is a frequent

RTP in D given σ if RTP-supg(P,D)≥σ.

Note that Proposition 1 implies the following property of RTP-sup, which we will use in

our algorithm for mining frequent RTPs.

Corollary 1. If P and P ′ are two temporal patterns such that Suffix(P,P ′), then

RTP-supg(P,D)≥RTP-supg(P ′,D)

5.4 MINING FREQUENT RECENT TEMPORAL PATTERNS

In this section, we present the algorithm for mining frequent RTPs. For the same reasons

mentioned in Section 3.5.3, we partition the data according to the class labels and mine

frequent RTPs for each class separately using a local minimum support σy that is related to

the number of instances (MSS) from class y.

The algorithm for mining frequent RTPs for class label y takes as input the following

arguments:

1. The MSS from class y: D y.

2. The maximum gap parameter g.

3. The local minimum support threshold σy.

The algorithm outputs all temporal patterns that have an RTP-sup in D y that is larger

or equal to σy:
{P1, ...,Pm : RTP-supg(Pi,D y)≥σy}

105

The algorithm explores the space of temporal patterns level by level. It first finds all

frequent 1-RTPs (recent states). Then it extends these patterns backward in time and

finds frequent 2-RTPs and so on. For each level k, the algorithm performs the following two

phases to obtain the frequent (k+1)-RTPs:

1. The candidate generation phase: Generate candidate (k+1)-patterns by extending

frequent k-RTPs backward in time.

2. The counting phase: Obtain the frequent (k+1)-RTPs by removing the candidates with

RTP-sup less than σy.

This process repeats until no more frequent RTPs can be found.

In the following, we describe in details the candidate generation algorithm. Then we

proposed techniques to improve the efficiency of candidate generation and counting.

5.4.1 Backward Candidate Generation

We generate a candidate (k+1)-pattern by appending a new state (1-pattern) to the begin-

ning of a frequent k-RTP. Let us assume that we are backward extending pattern P =
(〈S1, ...,Sk〉,R) with state Snew to generate candidates (k+1)-patterns of the form (〈S′

1, ...,S′
k+1〉

,R′). First of all, we set S′
1=Snew, S′

i+1=Si for i ∈ {1, ...,k} and R′
i+1, j+1=Ri, j for i ∈ {1, ...,k−

1}∧ j ∈ {i+1, ...,k}. This way, we know that every candidate P ′ of this form is a backward-

extension superpattern of P: Suffix(P,P ′).

In order to fully define a candidate, we still need to specify the temporal relations be-

tween the new state S′
1 and states S′

2, ...,S′
k+1, i.e., we should define R′

1,i for i ∈ {2, ...,k+1}.

Since we have two possible temporal relations (before and co-occurs), there are 2k possible

ways to specify the missing relations, which results in 2k different candidates. If we denote

the set of all possible states by L and the set of all frequent k-RTPs by Fk, generating the

(k+1)-candidates naïvely in this fashion results in 2k ×|L|× |Fk| candidate (k+1)-patterns.

This large number of candidates makes the mining algorithm computationally very ex-

pensive and greatly limits its scalability. Below, we describe the concept of incoherent pat-

terns and introduce a method that generates fewer candidates without missing any real

106

pattern from the mining results.

5.4.2 Improving the Efficiency of Candidate Generation

Definition 10. A temporal pattern P is incoherent if there does not exist any valid MSS

that contains P.

Clearly, we do not have to generate and count incoherent candidates because we know

that they will have zero support in the data. We introduce the following two lemmas to

avoid generating incoherent candidates when specifying the relations R′
1,i : i ∈ {2, ...,k+1} in

candidates of the form P ′ = (〈S′
1, ...,S′

k+1〉,R′).

Lemma 1. P ′ = (〈S′
1, ...,S′

k+1〉,R′) is incoherent if ∃i ∈ {2, ...,k+1} : R′
1,i = c and S′

1.F = S′
i.F.

Proof. Two state intervals that belong to the same temporal variable cannot co-occur.

Lemma 2. P ′ = (〈S′
1, ...,S′

k+1〉,R′) is incoherent if ∃i ∈ {3, ...,k+1} : R′
1,i = c∧∃ j < i : R′

1, j = b.

Proof. Assume that there exists an MSS Z = 〈E1, ...,E l〉 where P ′ ∈ Z. Let π be the map-

ping from the states of P ′ to the state intervals of Z. The definition of temporal patterns

(Definition 4) and the fact that state intervals in Z are ordered by their start values (Defini-

tion 3) implies that the matching state intervals 〈Eπ(1), ...,Eπ(k+1)〉 are also ordered by their

start times: Eπ(1).s ≤ ... ≤ Eπ(k+1).s. Hence, Eπ(j).s ≤ Eπ(i).s since j< i. We also know that

Eπ(1).e < Eπ(j).s because R′
1, j = b. Therefore, Eπ(1).e < Eπ(i).s. However, since R′

1,i = c, then

Eπ(1).e ≥ Eπ(i).s, which is a contradiction. Therefore, there is no MSS that contains P ′.

Example 16. Assume we want to extend P = (〈S1 = (F1,B), S2 = (F3, A), S3 = (F2,C), S4 =
(F3,B)〉, R1,2= c, R1,3=b, R1,4=b, R2,3= c, R2,4=b, R3,4= c) in Figure 35 with state Snew =
(F2,B) to generate candidates of the form (〈S′

1=(F2,B), S′
2=(F1,B), S′

3=(F3, A), S′
4=(F2,C),

S′
5 = (F3,B)〉, R′). We have to specify relations R′

1,i : i ∈ {2, ...,k+1}. R′
1,2 is allowed to be

either before (R′
1,2 = b) or co-occurs (R′

1,2 = c). If R′
1,2 = b, then all the following relations

must be before according to Lemma 2, resulting in the candidate shown in Figure 37:a. If

R′
1,2= c, then R′

1,3 is allowed to be either before (R′
1,3=b) or co-occurs (R′

1,3= c), resulting in

the candidates shown in Figure 37:b and Figure 37:c, respectively. Now, according to Lemma

107

1, R′
1,4 6= c because both S′

1 and S′
4 belong to the same temporal variable (F2). As we see, we

reduce the number of candidates that result from adding (F2,B) to 4-RTP P from 24=16 in

the naïve way to only 3.

(a)

(b)

(c)

Figure 37: The coherent candidates that result from extending the temporal pattern in

Figure 35 backward in time with state (F2,B).

Theorem 1. There are at most k+1 coherent candidates that result from backward extending

a single k-RTP with a new state.

Proof. We know that every candidate P ′=(〈S′
1, ...,S′

k+1〉,R′) corresponds to a specific assign-

ment of R′
1,i ∈ {b, c} for i ∈ {2, ...k+1}. When we assign the temporal relations, once a relation

becomes before, all the following relations have to be before as well according to Lemma 2.

We can see that the relations can be co-occurs in the beginning of the pattern, but once we

have a before relation at point q ∈ {2, ...,k+1} in the pattern, all subsequent relations (i>q)

108

should be before as well:

R′
1,i = c : i ∈ {2, ..., q−1}; R′

1,i = b : i ∈ {q, ...,k+1}

Therefore, the total number of coherent candidates cannot be more than k+1, which

is the total number of different combinations of consecutive co-occurs relations followed by

consecutive before relations.

In some cases, the number of coherent candidates is less than k+1. Assume that there

are some states in P ′ that belong to the same variable as state S′
1. Let S′

j be the first such

state (j ≤ k + 1). According to Lemma 1, R′
1, j 6= c. In this case, the number of coherent

candidates is j−1< k+1.

Algorithm 1 illustrates how to extend a k-RTP P with a new state Snew to generate

coherent candidates (without violating Lemmas 1 and 2).

Algorithm 1: Extend backward a k-RTP P with a state Snew.
Input: A k-RTP: P = (〈S1, ...,Sk〉,R); a new state: Snew

Output: Coherent candidates: C

1 S′
1 = Snew; S′

i+1 = Si : i ∈ {1, ...,k};

2 R′
i+1, j+1 = Ri, j : i ∈ {1, ...,k−1}, j ∈ {i+1, ...,k};

3 R′
1,i = b : i ∈ {2, ...,k+1}; P ′ = (〈S′

1, ...,S′
k+1〉,R′);

4 C = {P ′};

5 for i=2 to k+1 do

6 if (S′
1.F = S′

i.F) then

7 break;

8 else

9 R′
1,i = c; P ′ = (〈S′

1, ...,S′
k+1〉,R′);

10 C = C∪ {P ′};

11 end

12 end

13 return C

109

Corollary 2. Let L denote the set of all possible states and let Fk denote the set of all frequent

k-RTPs. The number of coherent (k+1)-candidates is always less or equal to (k+1)×|L|×|Fk|.

5.4.3 Improving the Efficiency of Counting

Even after eliminating incoherent candidates, the mining algorithm is still computationally

expensive because for every candidate, we need to scan the entire database in the counting

phase to compute its RTP-sup. The question we try to answer in this section is whether

we can omit portions of the database that are guaranteed not to contain the candidate we

want to count. The proposed solution is inspired by [Zaki, 2000] that introduced the vertical

format for itemset mining (see Section 2.2.3) and later applied it for sequential pattern

mining [Zaki, 2001].

Let us associate every frequent RTP P with a list of identifiers for all MSS in D y that

have P as an RTP (Definition 7):

P.RTP-l ist = 〈i1, i2, ..., in〉 : Zi j ∈ D y ∧Rg(P, Zi j)

Clearly, RTP-supg(P,D y)= |P.RTP-l ist|.
Let us also associate every state S with a list of identifiers for all MSS that contain S

(Definition 5):

S.l ist = 〈q1, q2, ..., qm〉 : Zq j ∈ D y ∧S ∈ Zq j

Now, when we generate candidate P ′ by backward extending RTP P with state S, we

define the potential list (p-RTP-list) of P ′ as follows:

P ′.p-RTP-l ist = P.RTP-l ist ∩ S.l ist

Proposition 2. Let P ′ be a backward-extension superpattern of RTP P with state S: P ′.RTP-l ist ⊆
P ′.p-RTP-l ist

110

Proof. Assume Zi is an MSS such that Rg(P ′, Zi). By definition, i∈P ′.RTP-l ist. We know

that Rg(P ′, Zi) =⇒ P ′∈Zi =⇒ S∈Zi =⇒ i∈S.l ist. Also, we know that Suffix(P,P ′) (Defini-

tion 8) =⇒ Rg(P, Zi) (Proposition 1) =⇒ i∈P.RTP-l ist. Therefore, i∈P.RTP-l ist∩S.l ist =
P ′.p-RTP-l ist

Putting it all together, we compute the RTP-l ists in the counting phase (based on the

true matches) and the p-RTP-l ists in the candidate generation phase. The key idea is that

when we count candidate P ′, we only need to check the instances in its p-RTP-l ist because

according to Proposition 2: i 6∈ P ′.p-RTP-l ist =⇒ i 6∈ P ′.RTP-l ist =⇒ P ′ is not an RTP in Zi.

This offers a lot of computational savings because the p-RTP-l ists get smaller as the size of

the patterns increases, making the counting phase much faster.

Algorithm 2 outlines the candidate generation. Line 4 generates coherent candidates

using Algorithm 1. Line 6 computes the p-RTP-l ist for each candidate. Note that the cost

of the intersection is linear because the lists are always sorted according to the order of the

instances in the data. Line 7 applies an additional pruning to remove candidates that are

guaranteed not to be frequent according to the following implication of Proposition 2:

|P ′.p-RTP-l ist| <σy =⇒ |P ′.RTP-l ist|=RTP-supg(P,D y)<σy

5.5 MINING MINIMAL PREDICTIVE RECENT TEMPORAL PATTERNS

Although the RTP framework focuses the search on temporal patterns that are potentially

important for predicting the class variable, not all frequent RTPs are important for clas-

sification. Besides, many RTPs may be spurious (see Section 3.4) as we illustrate in the

following example.

Example 17. Assume that having elevated creatinine level (creatinine=High) is an impor-

tant indicator of renal failure. If we denote this pattern by P, we expect conf(P ⇒ renal-

failure) to be much higher than the renal-failure prior in the entire population of patients.

111

Algorithm 2: A high-level description of candidate generation.
Input: All frequent k-RTPs: Fk; all frequent states: L

Output: Candidate (k+1)-patterns: Cand, with their p-RTP-l ists

1 Cand =Φ;

2 foreach P ∈ Fk do

3 foreach S ∈ L do

4 C = extend_backward(P, S); (Algorithm 1)

5 for q = 1 to | C | do

6 C[q].p-RTP-l ist = P.RTP-l ist∩S.l ist;

7 if (| C[q].p-RTP-l ist | ≥σy) then

8 Cand = Cand∪ {C[q]};

9 end

10 end

11 end

12 end

13 return Cand

Now consider pattern P ′ that extends P backward with a state indicating a normal value

for white blood cell counts: P ′ : WBC=Normal before creatinine=High. Assume that observing

P ′ does not change our belief about the presence of renal failure compared to observing P. As

we discussed in Section 3.4, conf(P ′⇒ renal-failure) ≈ conf(P ⇒ renal-failure). Intuitively,

the instances covered by P ′ can be seen as a random sample of the instances covered by P.

So if the proportion of renal failure for P is relatively high, we expect the proportion of renal

failure for P ′ to be high as well. The problem is that if we evaluate P ′ by itself, we may falsely

think that it is an important pattern for predicting renal failure, where in fact this happens

only because P ′ contains the real predictive pattern P.

In general, spurious RTPs are formed by adding irrelevant states to other simpler pre-

dictive RTPs. Having spurious RTPs in the result is undesirable because they overwhelm

the user and prevent him/her from understanding the important patterns in data. In order

112

to filter out such spurious patterns, we extend the minimal predictive patterns framework

(Section 3.5.2) to the temporal domain.

Definition 11. A temporal pattern P is a Minimal Predictive Recent Temporal Pattern

(MPRTP) with respect to class label y if P predicts y significantly better than all of its suffix

subpatterns.

∀S such that Suffix(S,P) : BS(P ⇒ y,GS)≥ δ

Where BS is the Bayesian score we defined in Section 3.5.1.2, GS is the group of MSS in the

data where S is an RTP and δ is a user specified significance parameter.

The algorithm in Section 5.4 describes how to mine all frequent RTPs from data D y. In

order to mine MPRTPs, the algorithm requires another input: D¬y, the MSS in the data

that do not belong to class y. Mining MPRTPs is integrated with frequent RTP mining

using an algorithm similar to the one described in Section 3.5.3 for mining MPPs. The

algorithm utilizes the predictiveness of RTPs to prune the search space using a lossless

pruning technique and a lossy pruning technique.

lossless pruning: This technique is similar to the lossless pruning used for MPP min-

ing (Section 3.5.4.1). The idea is to prune a frequent RTP P if we guarantee that none

of its backward-extension superpatterns is going to be an MPRTP. We know that for any

backward-extension superpattern P ′, the following holds according to Corollary 1:

RTP-supg(P ′,D y)≤RTP-supg(P,D y) ∧ RTP-supg(P ′,D¬y)≤RTP-supg(P,D¬y)

We now define the optimal backward-extension superpattern of P with respect to class y,

denoted as P∗, to be a hypothetical temporal pattern that is an RTP in all instances from y,

but not in any instance from from the other classes:

RTP-supg(P∗,D y)=RTP-supg(P,D y) ∧ RTP-supg(P∗,D¬y)= 0

P∗ is the best possible backward-extension superpattern for predicting y that P can gener-

ate. Now, we safely prune P if P∗ does not satisfy the MPRTP definition.

lossy pruning: This technique is similar to the lossy pruning used for MPP mining

(Section 3.5.4.2). The idea is that if we are mining MPRTPs for class y, we prune RTP P if

we have evidence that the underlying probability of y in GP (the group of MSS in D y where

113

P is an RTP) is lower than the probability of y in the entire data. To decide whether this is

the case, we apply our Bayesian score to evaluate rule P⇒ y compared to Gφ and we prune

P if model Ml is the most likely model (see Section 3.5.1.2).

The rationale behind this heuristic is that if the probability of y in the MSS covered by

P is low, we also expect the probability of y in the MSS covered by its backward-extension

superpattern P ′ to be low as well. Thus, P ′ is unlikely to be an MPRTP. Note that this

heuristic is lossy in the sense that it speeds up the mining, but at the risk of missing some

MPRTPs.

5.6 LEARNING THE EVENT DETECTION MODEL

In this section, we summarize our approach for learning classification models for event

detection problems. Given a training dataset {<xi, yi>}n
i=1, where xi is a multivariate time

series instance up to time ti and yi is a class label at ti, we apply the following steps:

1. Convert every instance xi to an MSS Zi using temporal abstraction.

2. Mine the frequent RTPs or MPRTPs from the MSS of each class label separately and

combine the class-specific patterns to obtain the final result Ω.

3. Convert every MSS Zi into a binary vector x′i of size equal to |Ω|, where x′i, j corresponds

to a specific pattern P j ∈Ω and its value is 1 if Rg(P j, Zi); and 0 otherwise.

4. Learn the classification model on the transformed binary representation of the training

data {<x′
i, yi>}n

i=1.

5.7 EXPERIMENTAL EVALUATION

5.7.1 Temporal Datasets

In our experiments, we evaluate our RTP and MPRTP frameworks first on a synthetic

dataset and then on two real-world EHR dataset.

114

5.7.1.1 Synthetic Dataset This data consist of multivariate symbolic sequences (time-

point states). Each instance has 6 temporal variables (F1 to F6) and each temporal variable

is a sequence of exactly 4 states. All states are regularly sampled in time and belong to

alphabet Σ={A,B,C} (see Figure 38).

We define two class labels, y1 and y2, and generate 250 instances from each class as

follows:

• Step I: We randomly generate the instances of both classes by sampling each state in

each variable from alphabet Σ= {A,B,C} according to a multinomial distribution with

probabilities: Pr(A)= 0.25, Pr(B)= 0.25 and Pr(C)= 0.5.

• Step II: For the instances from class y1, we inject RTP P1: < F1 = B, F1 = A > (the last

two states of F1 are B followed by A as in Figure 38:a) with probability 0.6. For the

instances from class y2, we inject RTP P2: < F2 = C, F3 = C, F2 = C > (the second state

of F2 is C, the third state of F3 is C and the fourth state of F2 is C as in Figure 38:b)

with probability 0.45.

Note that the probability of observing RTP P1 (by chance) in an instance from class y2

is 0.0625. The reason is that the probability that third state of F1 is B and the fourth state

of F1 is A in class y2 is 0.25×0.25= 0.0625. On the other hand, the probability of observing

RTP P1 in an instance from class y1 is 0.625. The reason is that P1 is injected in 60% of

the instances of y1 and can occur by chance with probability 0.0625 in the remaining 40%

of the instances (0.6+0.4×0.0625 = 0.625). Using a similar reasoning, we can see that the

probability of observing RTP P2 in an instance from class y1 is 0.125 and in an instance

from class y2 is 0.519. Both of these RTPs are important for discriminating the two classes

and we would like our mining algorithm to be able to recover them.

5.7.1.2 HIT Dataset This data are acquired from a database that contains electronic

health records of post cardiac surgical patients [Hauskrecht et al., 2010]. Our task is to learn

a classifier that can detect the onset of Heparin Induced Thrombocytopenia (HIT), which is

a pro-thrombotic disorder induced by heparin exposure with subsequent thrombocytopenia

(low platelet in the blood) and associated thrombosis (blood clot). HIT is a life-threatening

115

(a) (b)

Figure 38: The synthetic temporal data: on the left we show RTP < F1 = B, F1 = A > that is

injected in the instances of class y1 and on the right we show RTP < F2 = C, F3 = C, F2 = C >
that is injected in the instances of class y2.

condition if it is not detected and managed properly. Hence, it is very important to detect its

onset.

We select 220 patients who were considered by physicians to be at risk of HIT and 220

patients without the risk of HIT. Patients who are at risk of HIT were selected using in-

formation about the Heparin Platelet Factor 4 antibody (HPF4) test, which is ordered for

a patient when the physician suspects that he is developing HIT. Therefore, an HPF4 test

order is a good surrogate of the HIT-risk label. The positive instances (HIT-risk) include clin-

ical information up to the time HFP4 was first ordered. The negative instances (no HIT-risk)

were selected randomly from the remaining patients and they include clinical information

up to some randomly selected time point in the patient’s record.

For each instance, we consider the following 5 clinical variables: platelet counts (PLT),

activated partial thromboplastin time (APTT), white blood cell counts (WBC), hemoglobin

(Hgb) and heparin orders. PLT, APTT, WBC and Hgb are numeric time series, so we con-

vert them into time-interval sequences using both trend abstractions and value abstractions

(Section 5.2.1). Heparin orders are already in an interval-based format that specify the

116

time period during which the patient was taking heparin. For this variable, we simply use

abstractions that indicate whether the patient is on heparin.

5.7.1.3 Diabetes Dataset This data consist of 13,558 electronic health records of adult

diabetic patients (both type I and type II diabetes). Our task is to learn classifiers that can

detect various types of disorders that are frequently associated with diabetes.

Each patient’s record consists of time series of 19 different lab values, including blood

glucose, creatinine, glycosylated hemoglobin, blood urea nitrogen, liver function tests, choles-

terol, etc. In addition, we have access to time series of ICD-9 diagnosis codes reflecting the

diagnoses made for the patient over time. Overall, the database contains 602 different ICD-

9 codes. These codes were grouped by our medical expert into the following eight major

diagnosis categories (diseases):

• Cardiovascular disease (CARDI).

• Renal disease (RENAL).

• Peripheral vascular disease (PERIP).

• Neurological disease (NEURO).

• Metabolic disease (METAB).

• Inflammatory (infectious) disease (INFLM).

• Ocular (ophthalmologic) disease (OCULR).

• Cerebrovascular disease (CEREB).

Our objective is to learn models that are able to accurately diagnose each of these major

diseases. For each disease, we divide the data into positive instances and negative instances

as follows:

• The positives are records of patients with the target disease and they include clinical

information up to the time the disease was first diagnosed.

• The negatives are records of patients without the target disease and they include clinical

information up to a randomly selected time point in the patient’s record.

117

To avoid having uninformative data, we discard instances that contain less than 10

lab measurements or that span less than 3 months (short instances). We choose the same

number of controls as the number of cases for each category to make the datasets balanced.

For each instance, we consider both the laboratory tests and the disease categories. Note

that the diagnosis of one or more disease categories may be predictive of the (first) occur-

rence of another disease, so it is important to include them as features. Laboratory tests

are numeric time series, so we convert them into time-interval sequences using value ab-

stractions (see Section 5.2.1). Disease categories, when used as features, are represented

as intervals that start at the time of the diagnosis and extend until the end of the record.

For these variables, we simply use abstractions that indicate whether the patient has been

diagnoses with the disease.

5.7.1.4 Datasets Summary Table 10 summaries the three temporal datasets we use

in our experimental evaluation. For each dataset, we show its type (whether the states

are time-points or time-intervals), the number of data instances it contains, the number of

temporal variables per instance, the alphabet size (the number of permitted abstractions)

and the total number of states in the data.

For the synthetic dataset, we have 500 instances (250 instances from each class) and 6

temporal variables per instance. The alphabet size is 3 because Σ = {A,B,C}. Since there

are 4 states per variable, the number of states per instance is 6×4= 24 and the total number

of states in the data is 24×500=12,000.

For the HIT dataset, we have 440 instances (220 HIT-risk instances and 220 no HIT-risk

instances). We use both trend abstractions (decreasing, steady and increasing) and value

abstractions (very low, low, normal, high and very high) for the laboratory variables and one

abstraction for the heparin variable. Hence, the alphabet size is 9. Since we consider two

types of temporal abstractions for each of the 4 laboratory variables (PLT, APTT, WBC and

Hgb) and one abstraction for the heparin variable, we have a total of 9 temporal variables

per instance.

For the diabetes datasets, we define a different dataset for each of the 8 major diagnosis

diseases (see Section 5.7.1.3). For all of these datasets, we use value abstractions (very low,

118

low, normal, high and very high) for the laboratory variables and one abstraction for the

disease categories. Hence, the alphabet size is 6. Since we have 19 laboratory variables and

7 disease variables (the 8 major diseases minus the one we are predicting), we have a total

of 26 temporal variables per instance.

Dataset Type # Instances # Variables Alphabet Size # States

Synthetic Time-point 500 6 3 12,000

HIT Time-interval 440 9 9 9,770

Diabetes-CARDI Time-interval 5,486 26 6 235,990

Diabetes-RENAL Time-interval 6,710 26 6 327,957

Diabetes-PERIP Time-interval 6,740 26 6 325,872

Diabetes-NEURO Time-interval 4,386 26 6 240,572

Diabetes-METAB Time-interval 1,936 26 6 118,378

Diabetes-INFLM Time-interval 4,788 26 6 264,541

Diabetes-OCULR Time-interval 4,490 26 6 227,708

Diabetes-CEREB Time-interval 5,648 26 6 319,695

Table 10: Temporal datasets characteristics.

5.7.2 Classification

In this section, we test the performance of our RTP mining and MPRTP mining methods for

the event detection task.

5.7.2.1 Compared Methods We compare the classification performance of the following

feature construction methods:

119

1. Last-abs: The features are the most recent abstractions of each clinical variable. For

example, the most recent trend abstraction for platelet counts is “decreasing”, the most

recent value abstraction for platelet counts is “low”, and so on.

2. TP: The features correspond to all frequent temporal patterns.

{P1, ...,Pm : sup(Pi,D y)≥σy} where sup(P,D y)= | {Zi : Zi ∈ D y ∧ P ∈ Zi} |

3. TP-IG: The features correspond to the top k frequent temporal patterns, where the

patterns are ranked according to Information Gain (IG).

4. RTP: The features correspond to all frequent RTPs.

{P1, ...,Pk : RTP-supg(Pi,D y)≥σy} where RTP-supg(P,D y)= | {Zi : Zi ∈ D y ∧ Rg(P j, Zi)} |

5. RTP-IG: The features correspond to the top k frequent RTPs, where the patterns are

ranked according to IG.

6. MPRTP: The features correspond to the top k frequent RTPs, where only the patterns

that satisfy the MPRTP definition (Definition 11) are retained and they are ranked ac-

cording to the Bayesian score (see Section 3.5.1.2).

The first method (Last-abs) is atemporal and only considers the most recent abstractions

for defining the classification features (a static transformation). On the other hand, methods

(2-6) use temporal patterns (built using temporal abstractions and temporal relations) as

their features (a dynamic transformation).

When defining the binary representation of an instance (MSS) Zi for methods TP and

TP-IG, the feature value is set to one if the corresponding temporal pattern occurs anywhere

in the instance (Definition 5), and is set to zero otherwise:

Zi → x′i where x′i, j = 1 if P j ∈ Zi and x′i, j = 0 otherwise.

When defining the binary representation of an instance Zi for methods RTP, RTP-IG

and MPRTP, the feature value is set to one if the corresponding temporal pattern occurs

recently in the instance (Definition 7), and is set to zero otherwise (see Section 5.6):

Zi → x′i where x′i, j = 1 if Rg(P j, Zi) and x′i, j = 0 otherwise.

120

It is important to note that although patterns generated by TP subsume the ones gen-

erated by RTP (by definition, every frequent RTP is also a frequent temporal pattern), the

induced binary features are often different. For example, a temporal pattern that is very

discriminative when observed at the end of an instance may become less discriminative

when observed in the middle of an instance.

We use methods TP-IG, RTP-IG and MPRTP in the evaluation because we want to com-

pare the ability of TP and RTP in representing the classifier using only a limited number of

temporal patterns (a sparse classifier). In addition, we want to compare using a univariate

scoring versus our MPRTP approach for selecting RTPs that are used for classification.

We judged the quality of the different feature representations in terms of their induced

classification performance. More specifically, we use the features extracted by each method

to build a linear SVM classifier and evaluate its performance using the area under the

ROC curve (AUC) and the classification accuracy. We did not compare against other time

series classification methods because most methods [Blasiak and Rangwala, 2011, Batal

and Hauskrecht, 2009, Weng and Shen, 2008, Vail et al., 2007, Xi et al., 2006] cannot be

directly applied on multivariate irregularly sampled time series data as our EHR data.

All classification results are reported using averages obtained via 10-fold cross-validation,

where the same train/test splits are used for all compared methods.

5.7.2.2 Results on Synthetic Data For all temporal pattern mining methods (TP, TP-

IG, RTP, RTP-IG and MPRTP), we set the local minimum supports (σy) to 10% of the num-

ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap

parameter (see Definition 7) to 1 time unit, which means that we do not allow gaps between

consecutive states of an RTP5. For TP-IG, RTP-IG and MPRTP, we select the top 10 patterns

to be used for classification.

Table 11 shows the AUC and the classification accuracy on the synthetic dataset. We

show the best performing method in boldface and we show all methods that are statistically

significantly inferior to it in grey. For the statistical test, we apply paired t tests (see chapter

5Remember that the synthetic data is regularly sampled in time.

121

5 in [Mitchell, 1997]) with the commonly used 0.05 significance level6.

We can see that RTP and MPRTP are the best performing methods in terms of AUC.

Also, the AUC of MPRTP is much higher than that of RTP-IG. The reason is that RTP-IG

evaluates the RTPs individually, hence most of the selected RTPs are spurious and do not

improve to the classification performance. For example, a spurious RTP like < F3 = C, F1 =
B, F1 = A >, which is a backward-extension superpattern of < F1 = B, F1 = A > (Figure

38:a), have a higher information gain score than < F2 = C, F3 = C, F2 = C > (Figure 38:b),

which is much more important for classification.

Last-abs TP TP-IG RTP RTP-IG MPRTP

AUC 82.51 85.93 82.44 87.06 81.34 88.07

Accuracy 73.8 75.8 77.8 79.3 80.4 80.6

Table 11: Synthetic dataset: The area under ROC (AUC) and the classification accuracy of

the compared feature representation methods (Section 5.7.2.1). The best performing method

is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM

is used for classification.

5.7.2.3 Results on HIT Data For all temporal pattern mining methods (TP, TP-IG,

RTP, RTP-IG and MPRTP), we set the local minimum supports (σy) to 10% of the num-

ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap

parameter (see Definition 7) to 2 days. For TP-IG, RTP-IG and MPRTP, we select the top

50 patterns to be used for classification.

Table 12 shows the AUC and the classification accuracy on the HIT dataset. We can

see that features based on temporal patterns (TP, RTP and MPRTP) are beneficial for the

classification task, since they outperform features based on only most recent abstractions

6We apply statistical significance testing with k-fold cross validation. It is important to note that in this
setting, the testing sets are independent of each other, but the training sets are not independent. Hence, the
statistical models do not perfectly fit the iid assumption. Nevertheless, the significance results are still of
great help in interpreting experimental comparison of learning methods [Mitchell, 1997].

122

(last-abs). For the temporal pattern mining methods, RTP and MPRTP are the best per-

forming methods.

Last-abs TP TP-IG RTP RTP-IG MPRTP

AUC 87.18 90.87 87.79 91.99 88.58 91.57

Accuracy 79.52 80.62 82 84.3 82.46 83.61

Table 12: HIT dataset: The area under ROC (AUC) and the classification accuracy of the

compared feature representation methods (Section 5.7.2.1). The best performing method is

shown in bold and all methods that are statistically inferior to it are shown in grey. SVM is

used for classification.

5.7.2.4 Results on Diabetes Data For all temporal pattern mining methods (TP, TP-

IG, RTP, RTP-IG and MPRTP), we set the local minimum supports (σy) to 15% of the num-

ber of instances in the class. For RTP, RTP-IG and MPRTP, we set the maximum gap

parameter (see Definition 7) to 6 months7. For TP-IG, RTP-IG and MPRTP, we select the

top 50 patterns to be used for classification.

Table 13 and Table 14 show the AUC and the classification accuracy for each classifi-

cation task (major disease). We can see that for most classification tasks, RTP is the best

performing method. We can see that although MPRTP does not perform as well as RTP,

it mostly outperforms RTP-IG (see for example the performance on the NEURO dataset in

Table 13 and Table 14).

7Note that the diabetes data are outpatient data and have a much coarser time granularity than the inpa-
tient HIT data.

123

Last-abs TP TP-IG RTP RTP-IG MPRTP

CARDI 77.52 80.03 77.28 80.04 78.74 79.43

RENAL 83.28 84.97 73.38 86.27 83.65 84.41

PERIP 75.11 76 73.53 77.95 75.72 75.82

NEURO 72.2 74.46 72.03 76.23 71.89 74.33

METAB 80.8 83 80.17 81.65 80.76 82.59

INFLM 72.21 73.2 70.93 74.49 72.52 73.19

OCULR 73.71 76.65 74.92 75.52 74.74 75.23

CEREB 72.69 75.22 72.53 76.3 73.34 73.66

Table 13: Diabetes dataset: The area under ROC of the compared feature representation methods
(Section 5.7.2.1) for the eight major diabetes diseases (Section 5.7.1.3). The best performing method
is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM is used
for classification.

Last-abs TP TP-IG RTP RTP-IG MPRTP

CARDI 69.23 72.35 69.14 71.54 70.61 71.25

RENAL 74.56 76.99 71.89 77.91 76.87 76.9

PERIP 67.22 68.4 66.47 69.58 68.55 68.52

NEURO 64.5 67.49 65.21 68.49 65.98 67.26

METAB 71.62 74.12 72.21 73.09 72.21 72.83

INFLM 65.31 66.06 63.79 67.19 65.48 66.58

OCULR 67.04 69.67 67.44 68.15 67.57 67.46

CEREB 65.64 67.78 65.49 68.49 66.08 65.65

Table 14: Diabetes dataset: The classification accuracy of the compared feature representation
methods (Section 5.7.2.1) for the eight major diabetes diseases (Section 5.7.1.3). The best performing
method is shown in bold and all methods that are statistically inferior to it are shown in grey. SVM
is used for classification.

124

5.7.3 Knowledge Discovery

In this section, we test the ability of MPRTP for mining concise predictive and non-spurious

RTPs.

5.7.3.1 Results on Synthetic Data Table 16 shows the top 3 MPRTPs according to

the Bayesian score on the synthetic data. Patterns P1 and P3 recover the two patterns

we injected in the instances of class y1 and class y2 (see Figure 38). Pattern P2 is a suffix

subpattern of P1. As we discuss in Section 5.7.2.2, if we use a univariate evaluation measure

(such as IG) instead of MPRTP, many spurious backward-extension superpatterns of < F1 =
B, F1 = A > will be ranked higher than < F2 = C, F3 = C, F2 = C >.

MPRTP Precision Recall

P1: < F1 = B, F1 = A > ⇒ y1 93.18 65.6

P2: < F1 = A > ⇒ y1 74.48 71.2

P3: < F2 = C, F3 = C, F2 = C > ⇒ y2 76.54 49.6

Table 15: Synthetic dataset: The top 3 MPRTPs with their precision and recall.

5.7.3.2 Results on HIT Data Table 16 shows the top 5 MPRTPs according to the Bayesian

score on the HIT data. Patterns P1, P2, P3 and P4 describe the main patterns used to detect

HIT and are in agreement with the current HIT detection guidelines [Warkentin, 2000]. P5

relates the risk of HIT with an increasing trend of APTT (activated partial thromboplastin

time). This relation is not obvious from the HIT detection guidelines. However it has been

recently discussed in the literature [Pendelton et al., 2006]. Hence this pattern requires

further investigation.

125

MPRTP Precision Recall

P1: PLT=L ⇒ HIT-risk 78.3 84.79

P2: PLT=VL ⇒ HIT-risk 89.31 65.44

P3: PLT=L before PLT=VL ⇒ HIT-risk 91.13 52.07

P4: PLT=D co-occurs PLT=L ⇒ HIT-risk 86.33 55.3

P5: APTT=I before PLT=L ⇒ HIT-risk 88.24 41.47

Table 16: HIT dataset: The top 5 MPRTPs with their precision and recall. Abbreviations:

PLT: platelet count; APTT: activated partial thromboplastin time. Trend abstractions:

PLT=D: decreasing trend in PLT; APTT=I: increasing trend in APTT. Value abstractions:

PLT=VL (Very Low): <76×109 per liter; PLT=L (Low): <118×109 per liter.

5.7.3.3 Results on Diabetes Data Table 17 shows some of the top MPRTPs8 on the

diabetes data. Patterns P1, P2 and P3 are predicting renal (kidney) disease. These patterns

relate the risk of renal problems with very high values of the BUN test (P1), an increase

in creatinine levels from normal to high (P2), and high values of BUN co-occurring with

high values of creatinine (P3). P4 shows that an increase in glucose levels from high to very

high may indicate a metabolic disease. Finally, P5 shows that patients who were previously

diagnosed with cardiovascular disease and exhibit an increase in glucose levels are prone

to develop a cerebrovascular disease. These patterns, extracted automatically from data

without prior clinical knowledge, are in accordance with the medical diagnosis guidelines.

8Most of the highest scores MPRTPs are predicting the RENAL category because it is the easiest prediction
task. So to diversify the patterns, we show the top 3 predictive MPRTPs for RENAL and the top 2 MPRTPs
for other categories.

126

MPRTP Precision Recall

P1: BUN=VH ⇒ Dx=RENAL 0.97 0.17

P2: Creat=N before Creat=H ⇒ Dx=RENAL 0.96 0.21

P3: BUN=H co-occurs Creat=H ⇒ Dx=RENAL 0.95 0.21

P4: Gluc=H before Gluc=VH ⇒ Dx=METAB 0.79 0.24

P5: Dx=CARDI co-occurs (Gluc=N before Gluc=H) ⇒ Dx=CEREB 0.71 0.22

Table 17: Diabetes dataset: The top MPRTPs with their precision and recall. Abbrevia-

tions: Dx: diagnosis code (one of the 8 major categories described in Section 5.7.1.3); BUN:

Blood Urea Nitrogen; Creat: creatinine; Gluc: blood glucose. Value abstractions: BUN=VH:

>49 mg/dl; BUN=H: >34 mg/dl; Creat=H: >1.8 mg/dl; Creat=N: [0.8-1.8] mg/dl; Gluc=VH:

>243 mg/dl; Gluc=H:>191 mg/dl.

5.7.4 Mining Efficiency

In this section, we study the efficiency of different temporal pattern mining methods.

5.7.4.1 Compared Methods We compare the running time of the following methods:

1. TP_Apriori: Mine frequent temporal patterns by extending the Apriori algorithm [Agrawal

and Srikant, 1994, Agrawal and Srikant, 1995] to the time interval domain. This method

applies the Apriori pruning in the candidate generation phase to prune any candidate

k-pattern that contains an infrequent (k-1)-patterns (see Section 2.2.1).

2. TP_lists: Mine frequent temporal patterns by extending the vertical format [Zaki, 2000,

Zaki, 2001] to the time interval domain as described in [Batal et al., 2011]. This method

applies the Apriori pruning in candidate generation and uses the id-list indexing to

speed up the counting.

3. RTP_no-lists: Mine frequent RTPs backward in time as described in Section 5.4, but

127

without applying the technique described in Section 5.4.3 to speed up the counting. That

is, this method scans the entire dataset for each generated candidate in order to compute

its RTP-sup.

4. RTP_lists: Our proposed method for mining frequent RTPs.

5. MPRTP: Our proposed method for mining MPRTPs. This method applies both the loss-

less pruning and the lossy pruning to restrict the search space of temporal patterns (see

Section 5.5).

To make the comparison fair, all methods apply the techniques we propose in Section

5.4.2 to avoid generating incoherent candidates. Note that if we do not remove incoherent

candidates, the execution time for all methods greatly increases.

The experiments are conducted on a Dell Precision T1600 machine with an Intel Xeon

3GHz CPU and 16GB of RAM. All methods are implemented in MATLAB.

5.7.4.2 Results on Synthetic Data Similar to the previous settings for the synthetic

data (Section 5.7.2.2), we set the local minimum supports to 10% and the maximum gap

parameter to 1 time unit.

Figure 39 shows the execution time (on logarithmic scale) of the compared methods. We

can see that RTP-lists and MPRTP are the most efficient methods.

5.7.4.3 Results on HIT Data Similar to the previous settings for the HIT data (Section

5.7.2.3), we set the local minimum supports to 10% and the maximum gap parameter to 2

days.

Figure 40 shows the execution time (on logarithmic scale) of the compared methods.

Again, we see that RTP-lists and MPRTP outperform the other temporal pattern mining

methods.

128

Figure 39: Synthetic dataset: The mining time (in seconds) of the compared temporal

pattern mining methods (Section 5.7.4.1). The local minimum support is 10%.

Figure 40: HIT dataset: The mining time (in seconds) of the compared temporal pattern

mining methods (Section 5.7.4.1). The local minimum support is 10%.

5.7.4.4 Results on Diabetes Data Similar to the previous settings for the diabetes data

(Section 5.7.2.4), we set the local minimum supports to 15% and the maximum gap param-

eter to 6 months (unless stated otherwise).

129

Figure 41 shows the execution time (on logarithmic scale) of the compared methods on all

major diagnosis datasets. We can see that RTP_lists and MPRTP are much more efficient

than the other temporal pattern mining methods. For example, on the INFLM dataset,

RTP_lists is around 5 times faster than TP_lists, 10 times faster than RTP_no-lists and 30

times faster than TP_Apriori. Furthermore, MPRTP is more efficient than RTP_lists for all

datasets.

Figure 41: Diabetes dataset: The mining time (in seconds) of the compared temporal

pattern mining methods (Section 5.7.4.1) for the eight major diabetes diseases. The local

minimum support is 15%.

Figure 42 compares the execution time of the different methods on the CARDI dataset

for different minimum support thresholds.

Finally, let us examine the effect of the maximum gap parameter (g) on the efficiency of

recent temporal pattern mining methods (RTP_no-lists, RTP_lists and MPRTP). Figure 43

shows the execution time on the CARDI dataset for different values of g (the execution time

of TP_Apriori and TP_lists does not depend of g).

Clearly, the execution time of RTP_no-lists, RTP_lists and MPRTP increase with g be-

cause the search space becomes larger (more temporal patterns become RTPs). We can see

that when g is more than 18 months, RTP_no-lists becomes slower than TP_Apriori. The

reason is that for large values of g, applying the Apriori pruning in candidate generation

130

Figure 42: Diabetes dataset (CARDI): The mining time (in seconds) of the compared tem-

poral pattern mining methods (Section 5.7.4.1) on the CARDI diabetes dataset for different

values of the minimum support.

becomes more efficient (generates less candidates) than the backward extension of temporal

patterns (see Example 15). On the other hand, the execution time of RTP_lists and MPRTP

increase much slower with g and they maintain their efficiency advantage over TP_Apriori

and TP_lists for larger values of g.

131

Figure 43: Diabetes dataset (CARDI): The mining time (in seconds) of the compared tem-

poral pattern mining methods (Section 5.7.4.1) on the CARDI diabetes dataset for different

values of the maximum gap parameter.

5.8 SUMMARY

In this chapter, we studied the problem of mining predictive temporal patterns in complex

multivariate time series data, such as electronic health records. We used temporal abstrac-

tion and temporal logic for defining and representing the temporal patterns.

It is well known that mining the entire set of frequent temporal patterns (whether se-

quential patterns or time-interval patterns) from large-scale data is computationally very

expensive. To alleviate this problem, previous research [Srikant and Agrawal, 1996, Pei

et al., 2007] introduced several temporal constraints to scale up the mining, such as re-

stricting the overall pattern duration or restricting the permitted gap between consecutive

states in a pattern. This chapter proposed a new class of temporal constraints for finding

recent temporal patterns (RTP), which we argued is appropriate for event detection prob-

lems. We presented an efficient algorithm that mines time-interval patterns backward in

time, starting from patterns related to most recent observations. We also presented the

132

minimal predictive recent temporal patterns (MPRTP) framework for selecting predictive

and non-spurious RTPs.

We tested and demonstrated the usefulness of our framework on two real-world clin-

ical tasks. The first is to predict patients who are at risk of developing heparin induced

thrombocytopenia, a life threatening condition that may develop in patients treated with

heparin. The second is predict and diagnose various disorders for diabetic patients, such as

cardiological, renal or neurological disorders. Our experimental evaluation demonstrated

the following benefits of our approach:

1. RTP mining and MPRTP mining are able to learn accurate event detection classifiers

for real-world clinical tasks, which is a key step for developing intelligent clinical moni-

toring systems.

2. The MPRTP framework is effective for selecting predictive and non-spurious RTPs,

which makes it useful for knowledge discovery.

3. Mining RTPs or MPRTPs is more scalable than the existing temporal pattern mining

methods.

133

6.0 DISCUSSION

In this dissertation, we studied pattern mining in the supervised setting, where the objective

is to find patterns (defining subpopulations of the data) that are important for predicting

the class labels. We have presented several methods for mining predictive patterns for both

atemporal and temporal data. The main contributions of this dissertation are summarized

below.

• We presented the minimal predictive patterns (MPP) framework for supervised pattern

mining in static (atemporal) data. This framework applies a novel Bayesian score to

evaluate the predictiveness of patterns. It also considers the structure of patterns to

assure that every pattern is not only predictive compared to the entire data, but also

compared to the data matching any of its subpatterns. We showed that the MPP frame-

work is able to explain and summarize the data using fewer patterns that the existing

methods. We also showed that using MPPs as features can greatly improve the classifi-

cation performance.

• We presented an efficient algorithm for mining MPPs, which integrates pattern evalu-

ation with frequent pattern mining and applies supervised pruning strategies to speed

up the mining. We showed that our algorithm is more efficient than standard frequent

pattern mining algorithms.

• We also studied the problem of supervised pattern mining in multivariate temporal data.

We presented a novel method for mining recent temporal patterns (RTP), which we ar-

gued is appropriate for event detection problems. We showed that the RTP framework is

able to learn accurate event detection models for real-world clinical tasks. In addition,

we showed that it is much more efficient and scalable than existing temporal pattern

134

mining methods.

• We extended the MPP framework to the temporal domain and presented the minimal

predictive recent temporal patterns (MPRTP). We showed that MPRTP is effective for

selecting predictive and non-spurious RTPs.

There are however some limitations of pattern mining techniques, which our proposed

methods inherit:

• Pattern mining suffers when applied on high-dimensional data. The reason is that when

the dimensionality of the data is large, the space of patterns becomes very large, which

in turn makes the mining computationally very expensive and increases the risk of false

discoveries.

• Pattern mining requires a prior discretization of the data in order to convert numeric

values to a finite number of categories. This may result in loosing some predictive in-

formation in the numeric attributes. Besides, pattern mining treats these discretized

categories as being independent and disregards their ordinal relations.

We now outline some related open questions and research opportunities.

• Mining Association Rules: This is an unsupervised pattern mining task which aims

to extract interesting correlations, associations and casual relations between items in

the data1. Association rules are usually obtained by first applying a frequent pattern

mining method and then generating rules that have coverage and confidence higher

than user-specified thresholds [Han et al., 2006]. However, using a similar argument

to the one in Section 3.4, we can see that this approach usually leads to many spurious

association rules. For example, if rule chips ⇒ salsa has a high confidence, many of its

spurious rules, such as chips ∧ banana ⇒ salsa, are expected to have high confidences

as well.

The MPP framework we proposed for supervised pattern mining can also be used to

filter out spurious association rules. That is, we can apply it as a postprocessing step to

1In contrast to our work, where we restrict the consequent of rules to be a class label (supervised), the
consequent of rules for association rule mining can be any item (unsupervised).

135

assure that every association rule in the result offers a significant predictive advantage

over all of its subrules.

• Comparing and Contrasting Datasets: Identifying and explaining the similarities

and differences between two datasets can be very valuable. For example, suppose we

have data about patients in two different intensive care units (ICUs), or within the same

ICU during two different periods. If the two ICUs experience different outcomes (e.g.,

different mortality rates), we may wish to understand and gain insights on the reasons

they differ2. An important research problem is to extend our method to search for pat-

terns that most contribute to the differences between datasets and provide explanations

on how they account for the differences.

• Detecting Patterns in Spatio-Temporal Data: The aim of this task is to find pat-

terns that describe the temporal changes in the relations between spatially related ob-

jects. For example, assume we have a temporal sequence of medical images and an

object detection algorithm. Assume we detected two neighboring objects A and B and

defined their relations using the intensity gradient. It would be interesting to study

patterns that describe how this relation changes over time. An example of such patterns

is Intensity_gradient(A,B)=low proceeds Intensity_gradient(A,B)=high.

• Mining Pattern Sets: Traditional pattern mining methods are based on the idea of

evaluating the quality of individual patterns and choosing the top quality ones. In this

thesis, we proposed a method that considers the relations between patterns (the partial

order defined on the lattice of patterns) when evaluating their quality. An alternative

(and more general) approach is to cast pattern mining as an optimization problem. This

can be done by specifying a function that evaluates the quality of an entire set of patterns

and finding a set that optimizes (or satisfies constraints on) that function. An example

of such task is to find the smallest set of patterns that collectively cover at least 90% of

the data and predict the class label with accuracy at least 80%. This general formulation

appears to be hard to solve. An interesting research direction is to investigate specific

forms of quality functions that make the problem computationally more tractable.

2For example, the higher mortality in hospital A compared to hospital B may be simply because patients in
A were in worse conditions than patients in B, not because of worse patient management.

136

APPENDIX

MATHEMATICAL DERIVATION AND COMPUTATIONAL COMPLEXITY OF THE

BAYESIAN SCORE

This appendix explains in details the mathematical derivations and the computational com-

plexity of the Bayesian score described in Section 3.5.1.2. Section A.2 derives the closed

form solution for the marginal likelihood of model Mh: P(G|Mh). Section A.3 shows the

four equivalent formulas for solving P(G|Mh). Section A.4 illustrates how to obtain the

marginal likelihood of model Ml from the solution to the marginal likelihood of model

Mh. Finally, Section A.5 analyzes the overall computational complexity for computing the

Bayesian score.

A.1 DEFINITION AND NOTATIONS

We want to evaluate rule P⇒ y with respect to a group of instances G where GP ⊆G. Let Y

denote the class variable (the outcome). Let θ denote the probability of class Y = y in G, let

θ1 denote the probability of= y in GP and let θ2 denote the probability of= y in the instances

of G not covered by P (G \GP).

We define the following three models:

1. Me is the model that conjectures that θ1 is the same as θ2.

2. Mh is the model that conjectures that θ1 is higher than θ2.

137

3. Ml is the model that conjectures that θ1 is lower than θ2.

Let α and β be the beta parameters for the prior distribution on θ. Let α1 and β1 be the

beta parameters for the prior distribution on θ1. Let α2 and β2 be the beta parameters for

the prior distribution on θ2. Let N∗1 and N∗2 be the number of instances in G with Y = y

and with Y 6= y, respectively. Let N11 and N12 be the number of instances in GP with Y = y

and with Y 6= y, respectively. Let N21 and N22 be the number of instances in G \ GP with

Y = y and with Y 6= y, respectively.

We define the Bayesian score of rule P⇒ y with respect to group G as follows:

BS(P⇒ y,G)= Pr(Mh|G)= Pr(G|Mh) ·Pr(Mh)
Pr(G|Me) ·Pr(Me)+Pr(G|Mh) ·Pr(Mh)+Pr(G|Ml) ·Pr(Ml)

(.1)

Evaluating Equation .1 requires evaluating the marginal likelihood for models Me, Mh

and Ml . Evaluating the marginal likelihood of Me is easy and is given by the following well

known closed-form solution [Heckerman et al., 1995]:

Pr(G|Me)= Γ(α+β)
Γ(α+N∗1+β+N∗2)

· Γ(α+N∗1)
Γ(α)

· Γ(β+N∗2)
Γ(β)

(.2)

where Γ is the gamma function.

In the rest of this appendix, we describe how to obtain closed-form solutions for the

marginal likelihood of Mh and Ml and then analyse the overall computational complexity of

the Bayesian score (evaluating Equation .1).

A.2 DERIVATION OF THE CLOSED-FORM SOLUTION FOR MODEL MH

The marginal likelihood of model Mh (Pr(G|Mh)) is defined as follows:

138

= 1
k

∫ 1

θ1=0

∫ θ1

θ2=0
θ1

N11 · (1−θ1)N12 ·θ2
N21 · (1−θ2)N22 ·beta(θ1;α1,β1) ·beta(θ2;α2,β2)dθ2dθ1

= 1
k

∫ 1

θ1=0
θ1

N11 · (1−θ1)N12 ·beta(θ1;α1,β1)︸ ︷︷ ︸
f1

∫ θ1

θ2=0
θ2

N21 · (1−θ2)N22 ·beta(θ2;α2,β2)dθ2︸ ︷︷ ︸
f2

dθ1

(.3)

We first show how to solve the integral over θ2 in closed form, which is denoted by f2 in

Equation .3. We then expand the function denoted by f1, multiply it by the solution to f2,

and solve the integral over θ1 in closed form to complete the integration.

We use the regularized incomplete beta function [Abramowitz and Stegun, 1964] to solve

the integral given by f2. Using the notation in the expression denoted by f2, the incomplete

beta function is as follows:

∫ θ1

θ2=0
θ2

a−1 ·(1−θ2)b−1dθ2 = Γ(a) ·Γ(b)
Γ(a+b)

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

·θ j
1 ·(1−θ1)a+b−1− j (.4)

where a and b should be natural numbers.

Note that when θ1 = 1 in Equation .4, the solution to the integral in that equation is

simply the following:

∫ 1

θ2=0
θ2

a−1 · (1−θ2)b−1dθ2 = Γ(a) ·Γ(b)
Γ(a+b)

(.5)

We now solve the integral given by f2 in Equation .3 as follows:

f2 =
∫ θ1

θ2=0
θ2

N21 · (1−θ2)N22 ·beta(θ2;α2,β2)dθ2

=
∫ θ1

θ2=0
θ2

N21 · (1−θ2)N22 · Γ(α2 +β2)
Γ(α2) ·Γ(β2)

·θα2−1
2 · (1−θ2)β2−1dθ2

= Γ(α2 +β2)
Γ(α2) ·Γ(β2)

∫ θ1

θ2=0
θ2

N21+α2−1 · (1−θ2)N22+β2−1dθ2

= Γ(α2 +β2)
Γ(α2) ·Γ(β2)

∫ θ1

θ2=0
θ2

a−1 · (1−θ2)b−1dθ2

139

where a = N21 +α2 and b = N22 +β2.

Using Equation .4, we get the following:

f2 = Γ(α2 +β2)
Γ(α2) ·Γ(β2)

· Γ(a) ·Γ(b)
Γ(a+b)

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

·θ j
1 · (1−θ1)a+b−1− j (.6)

We now turn to f1, which can be expanded as follows:

f1 =
∫ 1

θ1=0
θ1

N11 · (1−θ1)N12 ·beta(θ1;α1,β1)

=
∫ 1

θ1=0
θ1

N11 · (1−θ1)N12 · Γ(α1 +β1)
Γ(α1) ·Γ(β1)

·θα1−1
1 · (1−θ1)β1−1

= Γ(α1 +β1)
Γ(α1) ·Γ(β1)

∫ 1

θ1=0
θ1

c−1 · (1−θ1)d−1

(.7)

where c = N11 +α1 and d = N12 +β1.

Now we combine Equations .6 and .7 to solve Equation .3:

Pr(G|Mh)= 1
k
· f1 · f2 dθ1

= 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

·
∫ 1

θ1=0
θ1

c−1 · (1−θ1)d−1 · Γ(α2 +β2)
Γ(α2) ·Γ(β2)

· Γ(a) ·Γ(b)
Γ(a+b)

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

·θ j
1 · (1−θ1)a+b−1− jdθ1

= 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(α2 +β2)
Γ(α2) ·Γ(β2)

· Γ(a) ·Γ(b)
Γ(a+b)

·
∫ 1

θ1=0
θ1

c−1 · (1−θ1)d−1

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

·θ j
1 · (1−θ1)a+b−1− jdθ1

= 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(α2 +β2)
Γ(α2) ·Γ(β2)

· Γ(a) ·Γ(b)
Γ(a+b)

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

·
∫ 1

θ1=0
θ1

(c+ j)−1 · (1−θ1)(a+b+d−1− j)−1dθ1

Which by Equation .5 is

140

Pr(G|Mh)= 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(α2 +β2)
Γ(α2) ·Γ(β2)

· Γ(a) ·Γ(b)
Γ(a+b)

·
a+b−1∑

j=a

Γ(a+b)
Γ(j+1) ·Γ(a+b− j)

· Γ(c+ j) ·Γ(a+b+d−1− j)
Γ(a+b+ c+d−1)

= 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(α2 +β2)
Γ(α2) ·Γ(β2)

·
a+b−1∑

j=a

Γ(a) ·Γ(b)
Γ(j+1) ·Γ(a+b− j)

· Γ(c+ j) ·Γ(a+b+d−1− j)
Γ(a+b+ c+d−1)

(.8)

where a = N21 +α2, b = N22 +β2, c = N11 +α1 and d = N12 +β1.

We can solve for k (the normalization constant for the parameter prior) by solving Equa-

tion .3 (without the k term) with N11 = N12 = N21 = N22 = 0. Doing so is equivalent to

applying Equation .8 (without the k term) with a =α2, b = β2, c =α1 and d = β1. Note that

k = 1
2 if we use uniform priors on both parameters by setting α1 =β1 =α2 =β2 = 1.

A.3 FOUR EQUIVALENT SOLUTIONS FOR MODEL MH

In the previous section, we showed the full derivation of the closed-form solution to the

marginal likelihood of model Mh. It turned out that there are four equivalent solutions to

Equation .3. These solutions are derived by redefining which class map to the values 1 and

2 and by redefining which regions map to θ1 and θ2.

Let us use the notations introduced in the previous section: a = N21 +α2, b = N22 +β2,

c = N11 +α1 and d = N12 +β1. Also, let us define C as follows:

C = 1
k
· Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(α2 +β2)
Γ(α2) ·Γ(β2)

(.9)

The marginal likelihood of Mh (Equation .3) can be obtained by solving any of the fol-

lowing four equations:

C ·
a+b−1∑

j=a

Γ(a) ·Γ(b)
Γ(j+1) ·Γ(a+b− j)

· Γ(c+ j) ·Γ(a+b+d− j−1)
Γ(a+b+ c+d−1)

(.10)

141

Which is the solution we derived in the previous section.

C ·
d+c−1∑

j=d

Γ(c) ·Γ(d)
Γ(j+1) ·Γ(c+d− j)

· Γ(b+ j) ·Γ(c+d+a− j−1)
Γ(a+b+ c+d−1)

(.11)

C ·
(
Γ(a) ·Γ(b)
Γ(a+b)

· Γ(c) ·Γ(d)
Γ(c+d)

−
a+b−1∑

j=b

Γ(a) ·Γ(b)
Γ(j+1) ·Γ(a+b− j)

· Γ(d+ j) ·Γ(a+b+ c− j−1)
Γ(a+b+ c+d−1)

)
(.12)

C ·
(
Γ(a) ·Γ(b)
Γ(a+b)

· Γ(c) ·Γ(d)
Γ(c+d)

−
c+d−1∑

j=c

Γ(c) ·Γ(d)
Γ(j+1) ·Γ(c+d− j)

· Γ(a+ j) ·Γ(c+d+b− j−1)
Γ(a+b+ c+d−1)

)
(.13)

A.4 DERIVATION OF THE CLOSED-FORM SOLUTION FOR MODEL ML

The marginal likelihood of model Ml (Pr(G|Ml)) is defined as follows:

= 1
k

∫ 1

θ2=0
θ2

N21 · (1−θ2)N22 ·beta(θ2;α2,β2)︸ ︷︷ ︸
f1

∫ θ2

θ1=0
θ1

N11 · (1−θ1)N11 ·beta(θ1;α1,β1)dθ1︸ ︷︷ ︸
f2

dθ2

(.14)

By solving the integral given by f2, we get:

f2 = Γ(α1 +β1)
Γ(α1) ·Γ(β1)

∫ θ2

θ1=0
θ1

c−1 · (1−θ1)d−1dθ2

= Γ(α1 +β1)
Γ(α1) ·Γ(β1)

· Γ(c) ·Γ(d)
Γ(c+d)

·
c+d−1∑

j=c

Γ(c+d)
Γ(j+1) ·Γ(c+d− j)

·θ j
2 · (1−θ2)c+d−1− j

where, as before, c = N11 +α1 and d = N12 +β1.

By solving f1, we get:

f1 = Γ(α2 +β2)
Γ(α2) ·Γ(β2)

∫ 1

θ2=0
θ2

a−1 · (1−θ2)b−1

Now we can solve Equation .14:

142

Pr(G|Ml)= C ·
c+d−1∑

j=c

Γ(c) ·Γ(d)
Γ(j+1) ·Γ(c+d− j)

· Γ(a+ j) ·Γ(c+d+b−1− j)
Γ(a+b+ c+d−1)

(.15)

Where C is the constant we defined by Equation .9 in the previous section.

Notice that Equation .15 (the solution to Pr(G|Ml)) can be obtained from Equation .13

(one of the four solutions to Pr(G|Mh)) as follows:

Pr(G|Ml)= C · Γ(a) ·Γ(b)Γ(c) ·Γ(d)
Γ(a+b) ·−Γ(c+d)

−Pr(G|Mh) (.16)

It turned out that no matter which formula we used to solve Pr(G|Mh), we can use

Equation .16 to obtain Pr(G|Ml).

A.5 COMPUTATIONAL COMPLEXITY

Since we require that N11, N12, N21, N22, α1, β1, α2 and β2 be natural numbers, the gamma

function simply becomes a factorial function: Γ(x) = (x−1)!. Since such numbers can be-

come very large, it is convenient to use the logarithm of the gamma function and express

Equations .2, .10, .11, .12, .13 and .16 in logarithmic form in order to preserve numerical

precision. The logarithm of the integer gamma function can be pre-computed and efficiently

stored in an array as follows:

lnGamma[1]= 0

For i = 2 to n

lnGamma[i]= lnGamma[i−1]+ ln(i−1)

We then can use lnGamma in solving the above equations. However, Equations .10,

.11, .12 and .13 include a sum, which makes the use of the logarithmic form more involved.

To deal with this issue, we can define function lnAdd, which takes two arguments x and

y that are in logarithmic form and returns ln(ex + ey). It does so in a way that preserves a

good deal of numerical precision that could be lost if ln(ex + ey) were calculated in a direct

143

manner. This is done by using the following formula:

lnAdd(x, y)= x+ ln(1+ e(y−x))

Now that we introduced functions lnGamma and lnAdd, it is straightforward to eval-

uate Equations .2, .10, .11, .12, .13 and .16 in logarithmic form.

Let us now analyze the overall computational complexity for computing the Bayesian

score for a specific rule (solving Equation .1). Doing so requires computing Pr(Me|G),

Pr(Mh|G) and Pr(Ml |G). Pr(Me|G) can be computed in O(1) using Equation .2. Pr(Mh|G)

can be computed by applying Equation .10, Equation .11, Equation .12 or Equation .13. The

computational complexity of these equations are O(N22 +β2), O(N11 +α1), O(N21 +α2) and

O(N12 +β1), respectively. Therefore, Pr(Mh|G) can be computed in O(min(N11 +α1, N12 +
β1, N21 +α2, N22 +β2). Pr(Ml |G) can be computed from Pr(Mh|G) in O(1) using Equation

.16. By assuming that α1, β1, α2, β2 are bounded from above, the overall complexity for

computing the Bayesian score is O(min(N11, N12, N21, N22).

144

BIBLIOGRAPHY

[Abramowitz and Stegun, 1964] Abramowitz, M. and Stegun, I. A. (1964). Handbook of
Mathematical Functions with Formulas, Graphs, and Mathematical Tables.

[Agrawal et al., 1998] Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. (1998). Au-
tomatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In
Proceedings of the international conference on Management Of Data (SIGMOD).

[Agrawal et al., 1993] Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining Association
Rules between Sets of Items in Large Databases. In Proceedings of the international
conference on Management Of Data (SIGMOD).

[Agrawal and Shafer, 1996] Agrawal, R. and Shafer, J. C. (1996). Parallel Mining of Associ-
ation Rules. IEEE Transaction on Knowledge and Data Engineering, 8:962–969.

[Agrawal and Srikant, 1994] Agrawal, R. and Srikant, R. (1994). Fast Algorithms for Min-
ing Association Rules in Large Databases. In Proceedings of the international conference
on Very Large Data Bases (VLDB).

[Agrawal and Srikant, 1995] Agrawal, R. and Srikant, R. (1995). Mining Sequential Pat-
terns. In Proceedings of the International Conference on Data Engineering (ICDE).

[Allen, 1984] Allen, F. (1984). Towards a General Theory of Action and Time. Artificial
Intelligence, 23:123-154.

[Asuncion and Newman, 2007] Asuncion, A. and Newman, D. (2007). UCI machine learning
repository.

[Bailey et al., 2002] Bailey, J., Manoukian, T., and Ramamohanarao, K. (2002). Fast Al-
gorithms for Mining Emerging Patterns. In Proceedings of the European conference on
Principles of Data Mining and Knowledge Discovery (PKDD).

[Batal et al., 2012a] Batal, I., Cooper, G., and Hauskrecht, M. (2012a). A Bayesian Scoring
Technique for Mining Predictive and Non-Spurious Rules. In Proceedings of the European
conference on Principles of Data Mining and Knowledge Discovery (PKDD).

[Batal et al., 2012b] Batal, I., Fradkin, D., Harrison, J., Moerchen, F., and Hauskrecht, M.
(2012b). Mining Recent Temporal Patterns for Event Detection in Multivariate Time

145

Series Data. In Proceedings of the international conference on Knowledge Discovery and
Data mining (SIGKDD).

[Batal and Hauskrecht, 2009] Batal, I. and Hauskrecht, M. (2009). A Supervised Time Se-
ries Feature Extraction Technique Using DCT and DWT. In International Conference on
Machine Learning and Applications (ICMLA).

[Batal and Hauskrecht, 2010a] Batal, I. and Hauskrecht, M. (2010a). A Concise Represen-
tation of Association Rules using Minimal Predictive Rules. In Proceedings of the Euro-
pean conference on Principles of Data Mining and Knowledge Discovery (PKDD).

[Batal and Hauskrecht, 2010b] Batal, I. and Hauskrecht, M. (2010b). Constructing Classi-
fication Features using Minimal Predictive Patterns. In Proceedings of the international
conference on Information and knowledge management (CIKM).

[Batal et al., 2009] Batal, I., Sacchi, L., Bellazzi, R., and Hauskrecht, M. (2009). Multivari-
ate Time Series Classification with Temporal Abstractions. In Proceedings of the Florida
Artificial Intelligence Research Society (FLAIRS).

[Batal et al., 2011] Batal, I., Valizadegan, H., Cooper, G. F., and Hauskrecht, M. (2011). A
Pattern Mining Approach for Classifying Multivariate Temporal Data. In Proceedings of
the IEEE international conference on bioinformatics and biomedicine (BIBM).

[Batal et al., 2012c] Batal, I., Valizadegan, H., Cooper, G. F., and Hauskrecht, M. (2012c). A
Temporal Pattern Mining Approach for Classifying Electronic Health Record Data. ACM
Transaction on Intelligent Systems and Technology (ACM TIST), Special Issue on Health
Informatics.

[Bay and Pazzani, 2001] Bay, S. D. and Pazzani, M. J. (2001). Detecting Group Differences:
Mining Contrast Sets. Data Mining and Knowledge Discovery, 5:213–246.

[Bayardo, 1998] Bayardo, R. J. (1998). Efficiently Mining Long Patterns from Databases. In
Proceedings of the international conference on Management Of Data (SIGMOD).

[Bayardo, 1999] Bayardo, R. J. (1999). Constraint-Based Rule Mining in Large, Dense
Databases. In Proceedings of the International Conference on Data Engineering (ICDE).

[Beil et al., 2002] Beil, F., Ester, M., and Xu, X. (2002). Frequent Term-based Text Clus-
tering. In Proceedings of the international conference on Knowledge discovery and data
mining (SIGKDD).

[Benjamini and Hochberg, 1995] Benjamini, Y. and Hochberg, Y. (1995). Controlling the
False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of
the Royal Statistical Society, 57(1):289–300.

[Blasiak and Rangwala, 2011] Blasiak, S. and Rangwala, H. (2011). A Hidden Markov
Model Variant for Sequence Classification. In Proceedings of the International Joint Con-
ferences on Artificial Intelligence (IJCAI).

146

[Breiman et al., 1984] Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984). Classi-
fication and Regression Trees. Statistics/Probability Series. Wadsworth Publishing Com-
pany.

[Brin et al., 1997a] Brin, S., Motwani, R., and Silverstein, C. (1997a). Beyond Market Bas-
kets: Generalizing Association Rules to Correlations. In Proceedings of the international
conference on Management Of Data (SIGMOD).

[Brin et al., 1997b] Brin, S., Motwani, R., Ullman, J. D., and Tsur, S. (1997b). Dynamic
Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the
international conference on Management Of Data (SIGMOD).

[Calders and Goethals, 2002] Calders, T. and Goethals, B. (2002). Mining All Non-derivable
Frequent Itemsets. In Proceedings of the European conference on Principles of Data Min-
ing and Knowledge Discovery (PKDD).

[Casas-Garriga, 2005] Casas-Garriga, G. (2005). Summarizing Sequential Data with Closed
Partial Orders. In Proceedings of the SIAM international conference on Data Mining
(SDM).

[Chandola et al., 2006] Chandola, V., Eilertson, E., Ertoz, L., Simon, G., and Kumar, V.
(2006). Data Warehousing and Data Mining Techniques for Computer Security, chapter
Data Mining for Cyber Security. Springer.

[Cheng et al., 2007] Cheng, H., Yan, X., Han, J., and wei Hsu, C. (2007). Discriminative
Frequent Pattern Analysis for Effective Classification. In Proceedings of the International
Conference on Data Engineering (ICDE).

[Cheng et al., 2008] Cheng, H., Yan, X., Han, J., and Yu, P. S. (2008). Direct Discriminative
Pattern Mining for Effective Classification. In Proceedings of the International Conference
on Data Engineering (ICDE).

[Clark and Niblett, 1989] Clark, P. and Niblett, T. (1989). The CN2 Induction Algorithm.
Machine Learning, 3:261–283.

[Cohen, 1995] Cohen, W. (1995). Fast Effective Rule Induction. In Proceedings of Interna-
tional Conference on Machine Learning (ICML).

[Cohen and Singer, 1999] Cohen, W. and Singer, Y. (1999). A Simple, Fast, and Effective
Rule Learner. In Proceedings of the National conference on Artificial Intelligence (AAAI).

[Cong et al., 2005] Cong, G., Tan, K.-L., Tung, A. K. H., and Xu, X. (2005). Mining Top-
K Covering Rule Groups for Gene Expression Data. In Proceedings of the international
conference on Management Of Data (SIGMOD).

[Das et al., 1998] Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P. (1998).
Rule Discovery from Time Series. In Proceedings of the international conference on Knowl-
edge Discovery and Data mining (SIGKDD).

147

[Deshpande et al., 2005] Deshpande, M., Kuramochi, M., Wale, N., and Karypis, G. (2005).
Frequent Substructure-Based Approaches for Classifying Chemical Compounds. IEEE
Transactions on Knowledge and Data Engineering, 17:1036–1050.

[Dong and Li, 1999] Dong, G. and Li, J. (1999). Efficient Mining of Emerging Patterns:
Discovering Trends and Differences. In Proceedings of the international conference on
Knowledge discovery and data mining (SIGKDD).

[Exarchos et al., 2008] Exarchos, T. P., Tsipouras, M. G., Papaloukas, C., and Fotiadis, D. I.
(2008). A Two-stage Methodology for Sequence Classification based on Sequential Pattern
Mining and Optimization. Data and Knowledge Engineering, 66:467–487.

[Fan et al., 2008] Fan, W., Zhang, K., Cheng, H., Gao, J., Yan, X., Han, J., Yu, P., and Ver-
scheure, O. (2008). Direct Mining of Discriminative and Essential Frequent Patterns via
Model-based Search Tree. In Proceeding of the international conference on Knowledge
Discovery and Data mining (SIGKDD).

[Fawcett, 2006] Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition
Letters., 27(8):861–874.

[Fayyad and Irani, 1993] Fayyad, U. and Irani, K. (1993). Multi-Interval Discretization of
Continuous-Valued Attributes for Classification Learning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).

[Fischer et al., 2008] Fischer, J., Mäkinen, V., and Välimäki, N. (2008). Space Efficient
String Mining under Frequency Constraints. In Proceedings of the International Con-
ference on Data Mining (ICDM).

[Friedman et al., 2000] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive Logistic
Regression: a Statistical View of Boosting. Annals of Statistics, 28.

[Geng and Hamilton, 2006] Geng, L. and Hamilton, H. J. (2006). Interestingness Measures
for Data Mining: A Survey. ACM Computing Surveys, 38.

[Goethals et al., 2005] Goethals, B., Muhonen, J., and Toivonen, H. (2005). Mining Non-
Derivable Association Rules. In Proceedings of the SIAM international conference on Data
Mining (SDM).

[Grosskreutz et al., 2010] Grosskreutz, H., Boley, M., and Krause-Traudes, M. (2010). Sub-
group Discovery for Election Analysis: a Case Study in Descriptive Data Mining. In
Proceedings of the international conference on Discovery science.

[Guttormsson et al., 1999] Guttormsson, S., Marks, R.J., I., El-Sharkawi, M., and Kerszen-
baum, I. (1999). Elliptical Novelty Grouping for on-line short-turn Detection of Excited
Running Rotors. IEEE Transactions on Energy Conversion.

148

[Han et al., 2007] Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent Pattern Mining:
Current Status and Future Directions. Data Mining and Knowledge Discovery, 14(1):55–
86.

[Han et al., 2006] Han, J., Kamber, M., and Pei, J. (2006). Data Mining: Concepts and
Techniques. Morgan Kaufmann, 2 edition.

[Han et al., 2000] Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without
candidate generation. In Proceedings of the international conference on Management Of
Data (SIGMOD).

[Hauskrecht et al., 2010] Hauskrecht, M., Valko, M., Batal, I., Clermont, G., Visweswaram,
S., and Cooper, G. (2010). Conditional Outlier Detection for Clinical Alerting. In Proceed-
ings of the American Medical Informatics Association (AMIA).

[Heckerman et al., 1995] Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learn-
ing Bayesian Networks: The Combination of Knowledge and Statistical Data. Machine
Learning.

[Ho et al., 2003] Ho, T. B., Nguyen, T. D., Kawasaki, S., Le, S. Q., Nguyen, D. D., Yokoi,
H., and Takabayashi, K. (2003). Mining Hepatitis Data with Temporal Abstraction. In
Proceedings of the international conference on Management Of Data (SIGMOD).

[Höppner, 2003] Höppner, F. (2003). Knowledge Discovery from Sequential Data. PhD the-
sis, Technical University Braunschweig, Germany.

[Ifrim and Wiuf, 2011] Ifrim, G. and Wiuf, C. (2011). Bounded Coordinate-descent for Bio-
logical Sequence Classification in High Dimensional Predictor Space. In Proceedings of
the international conference on Knowledge Discovery and Data mining (SIGKDD).

[Jain et al., 2004] Jain, A., Chang, E. Y., and Wang, Y.-F. (2004). Adaptive stream resource
management using Kalman Filters. In Proceedings of the international conference on
Management Of Data (SIGMOD).

[Jaroszewicz and Scheffer, 2005] Jaroszewicz, S. and Scheffer, T. (2005). Fast discovery of
unexpected patterns in data relative to a Bayesian network. In Proceedings of the inter-
national conference on Knowledge discovery in data mining (SIGKDD).

[Kadous, 1999] Kadous, M. W. (1999). Learning Comprehensible Descriptions of Multivari-
ate Time Series. In Proceedings of the International Conference of Machine Learning
(ICML).

[Kam and Fu, 2000] Kam, P.-s. and Fu, A. W.-C. (2000). Discovering Temporal Patterns for
Interval-Based Events. In Proceedings of the international conference on Data Warehous-
ing and Knowledge Discovery (DaWaK).

149

[Kavsek and Lavrač, 2006] Kavsek, B. and Lavrač, N. (2006). APRIORI-SD: Adapting As-
sociation Rule Learning to Subgroup Discovery. Applied Artificial Intelligence, 20(7):543–
583.

[Keogh et al., 2000] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2000). Di-
mensionality Reduction for Fast Similarity Search in Large Time Series Databases. jour-
nal of Knowledge and Information Systmes, 3:263–286.

[Keogh et al., 1993] Keogh, E., Chu, S., Hart, D., and Pazzani, M. (1993). Segmenting Time
Series: A Survey and Novel Approach. Data mining in Time Series Databases.

[Keogh et al., 2010] Keogh, E., Zhu, Q., Hu, B., Y., H., Xi, X., Wei, L., and Ratanamahatana,
C. A. (2010). The UCR Time Series Classification/Clustering. http:www.cs.ucr.edu/

~eamonn/time_series_data.

[Keogh et al., 2001] Keogh, E. J., Chakrabarti, K., Pazzani, M. J., and Mehrotra, S. (2001).
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases.
knowledge and information systems, 3(3):263–286.

[Keogh and Pazzani, 1998] Keogh, E. J. and Pazzani, M. J. (1998). An Enhanced Repre-
sentation of Time Series which Allows Fast and Accurate Classification, Clustering and
Relevance Feedback. In Proceedings of the international conference on Knowledge Discov-
ery and Data mining (SIGKDD).

[Kuramochi and Karypis, 2001] Kuramochi, M. and Karypis, G. (2001). Frequent Subgraph
Discovery. In Proceedings of the International Conference on Data Mining (ICDM).

[Lafferty et al., 2001] Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional Ran-
dom Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In Pro-
ceedings of the International Conference on Machine Learning (ICML).

[Lavrač and Gamberger, 2005] Lavrač, N. and Gamberger, D. (2005). Relevancy in
Constraint-based Subgroup Discovery. In Constraint-Based Mining and Inductive
Databases.

[Lee et al., 2000] Lee, W., Stolfo, S. J., and Mok, K. W. (2000). Adaptive Intrusion Detection:
A Data Mining Approach. Artificial Intelligence Review, 14(6):533–567.

[Leslie et al., 2002] Leslie, C. S., Eskin, E., Weston, J., and Noble, W. S. (2002). Mismatch
String Kernels for SVM Protein Classification. In Neural Information Processing Systems
(NIPS).

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

[Li et al., 2001a] Li, J., Shen, H., and Topor, R. W. (2001a). Mining Optimal Class Associa-
tion Rule Set. In Proceedings of the Pacific-Asia conference on Knowledge Discovery and
Data Mining (PAKDD).

150

http:www.cs.ucr.edu/~eamonn/time_series_data
http:www.cs.ucr.edu/~eamonn/time_series_data

[Li et al., 2009] Li, L., McCann, J., Pollard, N. S., and Faloutsos, C. (2009). DynaMMo:
Mining and Summarization of Coevolving Sequences with Missing Values. In Proceedings
of the international conference on Knowledge Discovery and Data mining (SIGKDD).

[Li et al., 2010] Li, L., Prakash, B. A., and Faloutsos, C. (2010). Parsimonious Linear Fin-
gerprinting for Time Series. PVLDB, 3:385–396.

[Li et al., 2001b] Li, W., Han, J., and Pei, J. (2001b). CMAR: Accurate and Efficient Classi-
fication Based on Multiple Class-Association Rules. In Proceedings of the International
Conference on Data Mining (ICDM).

[Lin et al., 2003] Lin, J., Keogh, E. J., Lonardi, S., and chi Chiu, B. Y. (2003). A Symbolic
Representation of Time Series, with Implications for Streaming Algorithms. In Proceed-
ings of the SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discov-
ery.

[Lin and Lee, 2005] Lin, M. and Lee, S. (2005). Fast Discovery of Sequential Patterns
through Memory Indexing and Database Partitioning. Journal Information Science and
Engineering, 21:109–128.

[Liu et al., 1998] Liu, B., Hsu, W., and Ma, Y. (1998). Integrating Classification and Associ-
ation Rule Mining. Knowledge Discovery and Data Mining, pages 80–86.

[Mampaey et al., 2011] Mampaey, M., Tatti, N., and Vreeken, J. (2011). Tell me what I need
to know: Succinctly Summarizing Data with Itemsets. In Proceedings of the international
conference on Knowledge Discovery and Data mining (SIGKDD).

[Manber and Myers, 1990] Manber, U. and Myers, G. (1990). Suffix Arrays: A New Method
for On-line String Searches. In Proceedings of the first annual SIAM symposium on Dis-
crete algorithms.

[Mannila et al., 1997] Mannila, H., Toivonen, H., and Inkeri Verkamo, A. (1997). Discovery
of Frequent Episodes in Event Sequences. Data Mining and Knowledge Discovery, 1:259–
289.

[Méger and Rigotti, 2004] Méger, N. and Rigotti, C. (2004). Constraint-based Mining of
Episode Rules and Optimal Window Sizes. In Proceedings of the European conference
on Principles and Practice of Knowledge Discovery in Databases (PKDD).

[Mitchell, 1982] Mitchell, T. M. (1982). Generalization as Search. Artificial Intelligence,
18(2):203 – 226.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc.

[Moerchen, 2006a] Moerchen, F. (2006a). Algorithms for Time Series Knowledge Mining.
In Proceedings of the international conference on Knowledge Discovery and Data mining
(SIGKDD).

151

[Moerchen, 2006b] Moerchen, F. (2006b). Time Series Knowledge Mining. PhD thesis,
Philipps-University Marburg.

[Moerchen and Fradkin, 2010] Moerchen, F. and Fradkin, D. (2010). Robust Mining of Time
Intervals with Semi-interval Partial Order Patterns. In Proceedings of the SIAM interna-
tional conference on Data Mining (SDM).

[Moerchen and Ultsch, 2005] Moerchen, F. and Ultsch, A. (2005). Optimizing Time Series
Discretization for Knowledge Discovery. In Proceedings of the international conference on
Knowledge discovery in data mining (SIGKDD).

[Morishita and Sese, 2000] Morishita, S. and Sese, J. (2000). Tranversing Itemset Lat-
tices with Statistical Metric Pruning. In Proceedings of the symposium on Principles of
database systems (PODS).

[Moskovitch and Shahar, 2009] Moskovitch, R. and Shahar, Y. (2009). Medical Temporal-
Knowledge Discovery via Temporal Abstraction. In Proceedings of the American Medical
Informatics Association (AMIA).

[Nijssen et al., 2009] Nijssen, S., Guns, T., and De Raedt, L. (2009). Correlated Itemset
Mining in ROC space: a Constraint Programming Approach. In Proceedings of the inter-
national conference on Knowledge discovery and data mining (SIGKDD).

[Novak et al., 2009] Novak, P. K., Lavrač, N., and Webb, G. I. (2009). Supervised Descriptive
Rule Discovery: A Unifying Survey of Contrast Set, Emerging Pattern and Subgroup
Mining. Journal of Machine Learning Research (JMLR), 10:377–403.

[Papadimitriou et al., 2005] Papadimitriou, S., Sun, J., and Faloutsos, C. (2005). Streaming
Pattern Discovery in Multiple Time-Series. In Proceedings of the international conference
on Very Large Data Bases (VLDB).

[Papapetrou et al., 2005] Papapetrou, P., Kollios, G., Sclaroff, S., and Gunopulos, D. (2005).
Discovering Frequent Arrangements of Temporal Intervals. In Proceedings of the Inter-
national Conference on Data Mining (ICDE).

[Pasquier et al., 1999] Pasquier, N., Bastide, Y., Taouil, R., and Lakhal, L. (1999). Discover-
ing Frequent Closed Itemsets for Association Rules. In Proceedings of the International
Conference on Database Theory (ICDT).

[Patel et al., 2008] Patel, D., Hsu, W., and Lee, M. L. (2008). Mining Relationships among
Interval-based Events for Classification. In Proceedings of the international conference on
Management Of Data (SIGMOD).

[Pei and Han, 2000] Pei, J. and Han, J. (2000). Can we push more Constraints into Frequent
Pattern Mining? In Proceedings of the international conference on Knowledge discovery
and data mining (SIGKDD).

152

[Pei et al., 2001] Pei, J., Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., and chun
Hsu, M. (2001). PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected
Pattern Growth. In Proceedings of the International Conference on Data Engineering
(ICDE).

[Pei et al., 2007] Pei, J., Han, J., and Wang, W. (2007). Constraint-based Sequential Pattern
Mining: the Pattern-growth Methods. Journal of Intelligent Information Systems, 28:133–
160.

[Pendelton et al., 2006] Pendelton, R., Wheeler, M., and Rodgers, G. (2006). Argatroban
Dosing of Patients with Heparin Induced Thrombocytopenia and an Alevated aPTT due
to Antiphospholipid Antibody Syndrome. The Annals of Pharmacotherapy, 40:972Ű–976.

[Plamondon and Srihari, 2000] Plamondon, R. and Srihari, S. N. (2000). Online and Of-
fline Handwriting Recognition: A Comprehensive Survey. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 22(1):63–84.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of Decision Trees. In Machine Learning,
pages 81–106.

[Quinlan, 1990] Quinlan, J. R. (1990). Learning Logical Definitions from Relations. Ma-
chine Learning, 5:239–266.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers Inc.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on Hidden Markov Models and selected
applications in Speech Recognition. In Proceedings of the IEEE, pages 257–286.

[Ratanamahatana and Keogh, 2005] Ratanamahatana, C. and Keogh, E. J. (2005). Three
Myths about Dynamic Time Warping Data Mining. In Proceedings of the SIAM interna-
tional conference on Data Mining (SDM).

[Rojas, 1996] Rojas, R. (1996). Neural Networks: a systematic introduction. Springer, 1st
edition.

[Sacchi et al., 2007] Sacchi, L., Larizza, C., Combi, C., and Bellazzi, R. (2007). Data mining
with Temporal Abstractions: learning rules from time series. Data Mining and Knowledge
Discovery.

[Savasere et al., 1995] Savasere, A., Omiecinski, E., and Navathe, S. B. (1995). An Effi-
cient Algorithm for Mining Association Rules in Large Databases. In Proceedings of the
international conference on Very Large Data Bases (VLDB).

[Schapire and Singer, 1999] Schapire, R. E. and Singer, Y. (1999). Improved Boosting Algo-
rithms Using Confidence-rated Predictions. Machine Learning, pages 80–91.

153

[Sebastiani, 2002] Sebastiani, F. (2002). Machine Learning in Automated Text Categoriza-
tion. ACM Computing Surveys.

[Shahar, 1997] Shahar, Y. (1997). A Framework for Knowledge-Based Temporal Abstrac-
tion. Artificial Intelligence, 90:79-133.

[Shumway and Stoffer, 2006] Shumway, R. H. and Stoffer, D. S. (2006). Time Series Analysis
and Its Applications: With R Examples. Springer, 2nd edition.

[Siebes et al., 2006] Siebes, A., Vreeken, J., and van Leeuwen, M. (2006). Item Sets that
Compress. In Proceedings of the SIAM international conference on Data Mining (SDM).

[Smyth and Goodman, 1992] Smyth, P. and Goodman, R. M. (1992). An Information Theo-
retic Approach to Rule Induction from Databases. IEEE Transactions on Knowledge and
Data Engineering.

[Srikant and Agrawal, 1996] Srikant, R. and Agrawal, R. (1996). Mining Sequential Pat-
terns: Generalizations and Performance Improvements. In Proceedings of the interna-
tional conference on Extending Database Technology (EDBT).

[Srivastava et al., 2008] Srivastava, A., Kundu, A., Sural, S., and Majumdar, A. (2008).
Credit Card Fraud Detection Using Hidden Markov Model. IEEE Transactions on De-
pendable and Secure Computing.

[Toivonen, 1996] Toivonen, H. (1996). Sampling Large Databases for Association Rules. In
Proceedings of the international conference on Very Large Data Bases (VLDB).

[Tseng and Lee, 2005] Tseng, V. S.-M. and Lee, C.-H. (2005). CBS: A New Classification
Method by Using Sequential Patterns. In Proceedings of the SIAM international confer-
ence on Data Mining (SDM).

[Vail et al., 2007] Vail, D. L., Veloso, M. M., and Lafferty, J. D. (2007). Conditional Random
Fields for Activity Recognition. In Proceedings of the international joint conference on
Autonomous Agents and Multiagent Systems (AAMAS).

[Valko and Hauskrecht, 2010] Valko, M. and Hauskrecht, M. (2010). Feature Importance
Analysis for Patient Management Decisions. In Proceedings of medical informatics (Med-
Info).

[Vanetik et al., 2002] Vanetik, N., Gudes, E., and Shimony, S. E. (2002). Computing Fre-
quent Graph Patterns from Semistructured Data. In Proceedings of the International
Conference on Data Mining (ICDM).

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag, NY.

[Veloso et al., 2006] Veloso, A., Meira Jr., W., and Zaki, M. J. (2006). Lazy Associative Clas-
sification. In Proceedings of the International Conference on Data Mining (ICDM).

154

[Villafane et al., 2000] Villafane, R., Hua, K. A., Tran, D., and Maulik, B. (2000). Knowledge
Discovery from Series of Interval Events. Journal of Intelligent Information Systems,
15:71–89.

[Wang and Han, 2004] Wang, J. and Han, J. (2004). BIDE: Efficient Mining of Frequent
Closed Sequences. In Proceedings of the International Conference on Data Engineering
(ICDE).

[Wang et al., 2003a] Wang, J., Han, J., and Pei, J. (2003a). CLOSET+: Searching for the
Best Strategies for Mining Frequent Closed Itemsets. In Proceedings of the international
conference on Knowledge Discovery and Data mining (SIGKDD).

[Wang and Karypis, 2005] Wang, J. and Karypis, G. (2005). HARMONY: Efficiently mining
the best rules for classification. In Proceedings of the SIAM international conference on
Data Mining (SDM).

[Wang et al., 2003b] Wang, K., Jiang, Y., and Lakshmanan, L. V. S. (2003b). Mining Unex-
pected Rules by Pushing User Dynamics. In Proceedings of the international conference
on Knowledge Discovery and Data mining (SIGKDD).

[Warkentin, 2000] Warkentin, T. (2000). Heparin-induced thrombocytopenia: pathogenesis
and management. British Journal of Haematology, 121:535–555.

[Webb, 2007] Webb, G. I. (2007). Discovering Significant Patterns. Machine Learning,
68(1):1–33.

[Weng and Shen, 2008] Weng, X. and Shen, J. (2008). Classification of Multivariate Time
Series using two-dimensional Singular Value Decomposition. Knowledge-Based Systems,
21(7):535 – 539.

[Winarko and Roddick, 2007] Winarko, E. and Roddick, J. F. (2007). ARMADA - An Algo-
rithm for Discovering Richer Relative Temporal Association Rules from Interval-based
Data. Data and Knowledge Engineering, 63:76–90.

[Wong et al., 2005] Wong, W.-K., Moore, A. W., Cooper, G. F., and Wagner, M. M. (2005).
What’s Strange About Recent Events (WSARE): An Algorithm for the Early Detection of
Disease Outbreaks. Journal of Machine Learning Research, 6:1961–1998.

[Wu and Chen, 2007] Wu, S.-Y. and Chen, Y.-L. (2007). Mining Nonambiguous Temporal
Patterns for Interval-Based Events. IEEE Transactions on Knowledge and Data Engi-
neering, 19:742–758.

[Xi et al., 2006] Xi, X., Keogh, E., Shelton, C., Wei, L., and Ratanamahatana, C. A. (2006).
Fast Time Series Classification using Numerosity Reduction. In Proceedings of the Inter-
national Conference on Machine Learning (ICML).

155

[Xin et al., 2006] Xin, D., Cheng, H., Yan, X., and Han, J. (2006). Extracting Redundancy-
aware Top-k Patterns. In Proceedings of the international conference on Knowledge dis-
covery and data mining (SIGKDD).

[Xin et al., 2005] Xin, D., Han, J., Yan, X., and Cheng, H. (2005). Mining Compressed
Frequent-pattern Sets. In Proceedings of the 31st international conference on Very large
data bases (VLDB).

[Xu et al., 2004] Xu, W., Guan, C., Siong, C., Sitaram, R., and Thulasidas, M. (2004). High
Accuracy Classification of EEG Signal. In International Conference of Pattern Recognition
(ICPR).

[Yan et al., 2005] Yan, X., Cheng, H., Han, J., and Xin, D. (2005). Summarizing Itemset
Patterns: a Profile-based Approach. In Proceedings of the international conference on
Knowledge discovery in data mining (SIGKDD).

[Yan and Han, 2002] Yan, X. and Han, J. (2002). gSpan: Graph-Based Substructure Pattern
Mining. In Proceedings of the International Conference on Data Mining (ICDM).

[Yan et al., 2003] Yan, X., Han, J., and Afshar, R. (2003). CloSpan: Mining Closed Sequen-
tial Patterns in Large Datasets. In Proceedings of the SIAM international conference on
Data Mining (SDM).

[Yang, 2004] Yang, G. (2004). The Complexity of Mining Maximal Frequent Itemsets and
Maximal Frequent Patterns. In Proceedings of the international conference on Knowledge
Discovery and Data mining (SIGKDD).

[Yang and Shahabi, 2004] Yang, K. and Shahabi, C. (2004). A PCA-based Similarity Mea-
sure for Multivariate Time Series. In Proceedings of the international workshop on Mul-
timedia databases.

[Yang et al., 2005] Yang, Y., Webb, G. I., and Wu, X. (2005). Discretization Methods. In The
Data Mining and Knowledge Discovery Handbook, pages 113–130. Springer.

[Ye and Keogh, 2009] Ye, L. and Keogh, E. (2009). Time Series Shapelets: A New Primitive
for Data Mining. In Proceedings of the international conference on Knowledge Discovery
and Data mining (SIGKDD).

[Yin and Han, 2003] Yin, X. and Han, J. (2003). CPAR: Classification based on Predictive
Association Rules. In Proceedings of the SIAM international conference on Data Mining
(SDM).

[Yu et al., 2012] Yu, K., Ding, W., Simovici, D. A., and Wu, X. (2012). Mining Emerging
Patterns by Streaming Feature Selection. In Proceedings of the international conference
on Knowledge Discovery and Data mining (SIGKDD).

[Zaki, 2000] Zaki, M. J. (2000). Scalable Algorithms for Association Mining. IEEE Transac-
tion on Knowledge and Data Engineering, 12:372–390.

156

[Zaki, 2001] Zaki, M. J. (2001). SPADE: An Efficient Algorithm for Mining Frequent Se-
quences. Machine Learning, 42:31–60.

[Zaki and Hsiao, 2002] Zaki, M. J. and Hsiao, C.-J. (2002). CHARM: An Efficient Algorithm
for Closed Itemset Mining. In Proceedings of the SIAM international conference on Data
Mining (SDM).

157

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. An example of transaction data
	2. An example of attribute-value data
	3. Transforming attribute-value data into transaction data
	4. The vertical data format
	5. The UCI datasets
	6. AUC of the ROC space representation on the UCI data
	7. Classification performance on the UCI data
	8. The mining time on the UCI data
	9. An example of sequence data
	10. Summary of the temporal datasets
	11. Classification performance on the synthetic data
	12. Classification performance on the HIT data
	13. Area under ROC on the diabetes data
	14. Classification accuracy on the diabetes data
	15. Top MPRTPs on the synthetic data
	16. Top MPRTPs on the HIT data
	17. Top MPRTPs on the diabetes data

	LIST OF FIGURES
	1. The lattice of itemset patterns
	2. An example of a decision tree
	3. The space of patterns versus the space of instances
	4. Pattern-based classification
	5. Spurious patterns
	6. Model Mh of the Bayesian score
	7. The Bayesian score as a function of the true positives and the false positives
	8. The class-specific MPP mining
	9. MPP mining on a small lattice
	10. Illustrating the lossy pruning
	11. Rules in the ROC space
	12. The synthetic data for the rule mining experiments
	13. Comparing rule evaluation measures on the synthetic data
	14. Illustrating the deficiency of the ROC space representation
	15. Comparing rule evaluation measures on the UCI data
	16. The synthetic data for the classification experiments
	17. Classification performance on the synthetic data
	18. A graphical representation of the classification performance on the UCI data
	19. The mining time using different minimum support thresholds
	20. Illustrating several temporal data models
	21. Substring patterns
	22. Episode patterns
	23. Allen's temporal relations
	24. A1 patterns
	25. Höppner's patterns
	26. TSKR patterns
	27. The precedes temporal relation
	28. Representing patterns by state boundaries
	29. SISP patterns
	30. Piecewise linear representation
	31. SAX representation
	32. Temporal classification versus event detection
	33. An example of an EHR instance
	34. Trend abstractions and value abstractions
	35. An example of a temporal pattern
	36. An example of an RTP
	37. Illustrating candidate generation
	38. The synthetic data for temporal pattern mining
	39. The mining time on the synthetic data
	40. The mining time on the HIT data
	41. The mining time on the diabetes data
	42. The mining time using different minimum support thresholds
	43. The mining time using different maximum gap values

	LIST OF ALGORITHMS
	1. Extending a temporal pattern backward with a new state
	2. Candidate Generation for RTP

	1.0 INTRODUCTION
	1.1 Supervised Pattern Mining
	1.2 Temporal Pattern Mining
	1.3 Main Contributions
	1.4 Outline of the Thesis

	2.0 FREQUENT PATTERN MINING
	2.1 Definitions
	2.2 Mining Algorithms
	2.2.1 The Apriori Approach
	2.2.2 The Pattern Growth Approach
	2.2.3 The Vertical Data Approach

	2.3 Concise Representations
	2.3.1 Lossless Compression
	2.3.2 Lossy Compression
	2.3.3 Constraint-based Compression

	2.4 Pattern Mining for Supervised Learning
	2.4.1 Concept Learning
	2.4.2 Decision Tree Induction
	2.4.3 Sequential Covering
	2.4.4 Frequent Patterns for Classification

	2.5 Summary

	3.0 MINING PREDICTIVE PATTERNS
	3.1 Definitions
	3.2 Supervised Descriptive Rule Discovery
	3.3 Pattern-based Classification
	3.4 The Spurious Patterns Problem
	3.5 Mining Minimal Predictive Patterns
	3.5.1 Evaluating Patterns using the Bayesian Score
	3.5.1.1 Classical Evaluation Measures
	3.5.1.2 The Bayesian Score

	3.5.2 Minimal Predictive Patterns
	3.5.3 The Mining Algorithm
	3.5.4 Pruning the Search Space
	3.5.4.1 Lossless pruning
	3.5.4.2 Lossy pruning

	3.6 Experimental Evaluation
	3.6.1 UCI Datasets
	3.6.2 Quality of Top-K Rules
	3.6.2.1 Compared Methods
	3.6.2.2 Performance Measures
	3.6.2.3 Results on Synthetic Data
	3.6.2.4 Results on UCI Datasets

	3.6.3 Pattern-based Classification
	3.6.3.1 Compared Methods
	3.6.3.2 Results on Synthetic Data
	3.6.3.3 Results on UCI Datasets

	3.6.4 Mining Efficiency
	3.6.4.1 Compared Methods
	3.6.4.2 Results on UCI Datasets

	3.7 Summary

	4.0 TEMPORAL PATTERN MINING
	4.1 Temporal Data Models
	4.2 Temporal Data Classification
	4.2.1 The Transformation-based Approach
	4.2.2 The Instance-based Approach
	4.2.3 The Model-based Approach
	4.2.4 The Pattern-based Approach

	4.3 Temporal Patterns for Time Point Data
	4.3.1 Substring Patterns
	4.3.2 Sequential Patterns
	4.3.3 Episode Patterns

	4.4 Temporal Patterns for Time Interval Data
	4.4.1 Allen's Temporal Relations
	4.4.2 Early Approaches
	4.4.3 Höppner Representation
	4.4.4 Other Representations

	4.5 Temporal Abstraction
	4.5.1 Abstraction by Clustering
	4.5.2 Trend Abstractions
	4.5.3 Value Abstractions

	4.6 Summary

	5.0 MINING PREDICTIVE TEMPORAL PATTERNS
	5.1 Problem Definition
	5.2 Temporal Abstraction Patterns
	5.2.1 Temporal Abstraction
	5.2.2 Multivariate State Sequences
	5.2.3 Temporal Relations
	5.2.4 Temporal Patterns

	5.3 Recent Temporal Patterns
	5.4 Mining Frequent Recent Temporal Patterns
	5.4.1 Backward Candidate Generation
	5.4.2 Improving the Efficiency of Candidate Generation
	5.4.3 Improving the Efficiency of Counting

	5.5 Mining Minimal Predictive Recent Temporal Patterns
	5.6 Learning the Event Detection Model
	5.7 Experimental Evaluation
	5.7.1 Temporal Datasets
	5.7.1.1 Synthetic Dataset
	5.7.1.2 HIT Dataset
	5.7.1.3 Diabetes Dataset
	5.7.1.4 Datasets Summary

	5.7.2 Classification
	5.7.2.1 Compared Methods
	5.7.2.2 Results on Synthetic Data
	5.7.2.3 Results on HIT Data
	5.7.2.4 Results on Diabetes Data

	5.7.3 Knowledge Discovery
	5.7.3.1 Results on Synthetic Data
	5.7.3.2 Results on HIT Data
	5.7.3.3 Results on Diabetes Data

	5.7.4 Mining Efficiency
	5.7.4.1 Compared Methods
	5.7.4.2 Results on Synthetic Data
	5.7.4.3 Results on HIT Data
	5.7.4.4 Results on Diabetes Data

	5.8 Summary

	6.0 DISCUSSION
	APPENDIX. MATHEMATICAL DERIVATION AND COMPUTATIONAL COMPLEXITY OF THE BAYESIAN SCORE
	A.1 Definition and Notations
	A.2 Derivation of the Closed-form Solution for Model Mh
	A.3 Four Equivalent Solutions for Model Mh
	A.4 Derivation of the Closed-form Solution for Model Ml
	A.5 Computational Complexity

	BIBLIOGRAPHY

