531 research outputs found

    A Fast Minimal Infrequent Itemset Mining Algorithm

    Get PDF
    A novel fast algorithm for finding quasi identifiers in large datasets is presented. Performance measurements on a broad range of datasets demonstrate substantial reductions in run-time relative to the state of the art and the scalability of the algorithm to realistically-sized datasets up to several million records

    Mining frequent itemsets a perspective from operations research

    Get PDF
    Many papers on frequent itemsets have been published. Besides somecontests in this field were held. In the majority of the papers the focus ison speed. Ad hoc algorithms and datastructures were introduced. Inthis paper we put most of the algorithms in one framework, usingclassical Operations Research paradigms such as backtracking, depth-first andbreadth-first search, and branch-and-bound. Moreover we presentexperimental results where the different algorithms are implementedunder similar designs.data mining;operation research;Frequent itemsets

    RESEARCH ISSUES CONCERNING ALGORITHMS USED FOR OPTIMIZING THE DATA MINING PROCESS

    Get PDF
    In this paper, we depict some of the most widely used data mining algorithms that have an overwhelming utility and influence in the research community. A data mining algorithm can be regarded as a tool that creates a data mining model. After analyzing a set of data, an algorithm searches for specific trends and patterns, then defines the parameters of the mining model based on the results of this analysis. The above defined parameters play a significant role in identifying and extracting actionable patterns and detailed statistics. The most important algorithms within this research refer to topics like clustering, classification, association analysis, statistical learning, link mining. In the following, after a brief description of each algorithm, we analyze its application potential and research issues concerning the optimization of the data mining process. After the presentation of the data mining algorithms, we will depict the most important data mining algorithms included in Microsoft and Oracle software products, useful suggestions and criteria in choosing the most recommended algorithm for solving a mentioned task, advantages offered by these software products.data mining optimization, data mining algorithms, software solutions

    Statistical strategies for pruning all the uninteresting association rules

    Get PDF
    We propose a general framework to describe formally the problem of capturing the intensity of implication for association rules through statistical metrics. In this framework we present properties that influence the interestingness of a rule, analyze the conditions that lead a measure to perform a perfect prune at a time, and define a final proper order to sort the surviving rules. We will discuss why none of the currently employed measures can capture objective interestingness, and just the combination of some of them, in a multi-step fashion, can be reliable. In contrast, we propose a new simple modification of the Pearson coefficient that will meet all the necessary requirements. We statistically infer the convenient cut-off threshold for this new metric by empirically describing its distribution function through simulation. Final experiments serve to show the ability of our proposal.Postprint (published version

    On the Complexity of Mining Itemsets from the Crowd Using Taxonomies

    Full text link
    We study the problem of frequent itemset mining in domains where data is not recorded in a conventional database but only exists in human knowledge. We provide examples of such scenarios, and present a crowdsourcing model for them. The model uses the crowd as an oracle to find out whether an itemset is frequent or not, and relies on a known taxonomy of the item domain to guide the search for frequent itemsets. In the spirit of data mining with oracles, we analyze the complexity of this problem in terms of (i) crowd complexity, that measures the number of crowd questions required to identify the frequent itemsets; and (ii) computational complexity, that measures the computational effort required to choose the questions. We provide lower and upper complexity bounds in terms of the size and structure of the input taxonomy, as well as the size of a concise description of the output itemsets. We also provide constructive algorithms that achieve the upper bounds, and consider more efficient variants for practical situations.Comment: 18 pages, 2 figures. To be published to ICDT'13. Added missing acknowledgemen
    corecore