27,201 research outputs found

    A Multi Hidden Recurrent Neural Network with a Modified Grey Wolf Optimizer

    Full text link
    Identifying university students' weaknesses results in better learning and can function as an early warning system to enable students to improve. However, the satisfaction level of existing systems is not promising. New and dynamic hybrid systems are needed to imitate this mechanism. A hybrid system (a modified Recurrent Neural Network with an adapted Grey Wolf Optimizer) is used to forecast students' outcomes. This proposed system would improve instruction by the faculty and enhance the students' learning experiences. The results show that a modified recurrent neural network with an adapted Grey Wolf Optimizer has the best accuracy when compared with other models.Comment: 34 pages, published in PLoS ON

    Using patterns position distribution for software failure detection

    Get PDF
    Pattern-based software failure detection is an important topic of research in recent years. In this method, a set of patterns from program execution traces are extracted, and represented as features, while their occurrence frequencies are treated as the corresponding feature values. But this conventional method has its limitation due to ignore the pattern’s position information, which is important for the classification of program traces. Patterns occurs in the different positions of the trace are likely to represent different meanings. In this paper, we present a novel approach for using pattern’s position distribution as features to detect software failure. The comparative experiments in both artificial and real datasets show the effectiveness of this method

    Feedback driven adaptive combinatorial testing

    Get PDF
    The configuration spaces of modern software systems are too large to test exhaustively. Combinatorial interaction testing (CIT) approaches, such as covering arrays, systematically sample the configuration space and test only the selected configurations. The basic justification for CIT approaches is that they can cost-effectively exercise all system behaviors caused by the settings of t or fewer options. We conjecture, however, that in practice many such behaviors are not actually tested because of masking effects – failures that perturb execution so as to prevent some behaviors from being exercised. In this work we present a feedback-driven, adaptive, combinatorial testing approach aimed at detecting and working around masking effects. At each iteration we detect potential masking effects, heuristically isolate their likely causes, and then generate new covering arrays that allow previously masked combinations to be tested in the subsequent iteration. We empirically assess the effectiveness of the proposed approach on two large widely used open source software systems. Our results suggest that masking effects do exist and that our approach provides a promising and efficient way to work around them

    Regulating Mobile Mental Health Apps

    Get PDF
    Mobile medical apps (MMAs) are a fast‐growing category of software typically installed on personal smartphones and wearable devices. A subset of MMAs are aimed at helping consumers identify mental states and/or mental illnesses. Although this is a fledgling domain, there are already enough extant mental health MMAs both to suggest a typology and to detail some of the regulatory issues they pose. As to the former, the current generation of apps includes those that facilitate self‐assessment or self‐help, connect patients with online support groups, connect patients with therapists, or predict mental health issues. Regulatory concerns with these apps include their quality, safety, and data protection. Unfortunately, the regulatory frameworks that apply have failed to provide coherent risk‐assessment models. As a result, prudent providers will need to progress with caution when it comes to recommending apps to patients or relying on app‐generated data to guide treatment
    • 

    corecore