38,916 research outputs found

    Beyond Volume: The Impact of Complex Healthcare Data on the Machine Learning Pipeline

    Full text link
    From medical charts to national census, healthcare has traditionally operated under a paper-based paradigm. However, the past decade has marked a long and arduous transformation bringing healthcare into the digital age. Ranging from electronic health records, to digitized imaging and laboratory reports, to public health datasets, today, healthcare now generates an incredible amount of digital information. Such a wealth of data presents an exciting opportunity for integrated machine learning solutions to address problems across multiple facets of healthcare practice and administration. Unfortunately, the ability to derive accurate and informative insights requires more than the ability to execute machine learning models. Rather, a deeper understanding of the data on which the models are run is imperative for their success. While a significant effort has been undertaken to develop models able to process the volume of data obtained during the analysis of millions of digitalized patient records, it is important to remember that volume represents only one aspect of the data. In fact, drawing on data from an increasingly diverse set of sources, healthcare data presents an incredibly complex set of attributes that must be accounted for throughout the machine learning pipeline. This chapter focuses on highlighting such challenges, and is broken down into three distinct components, each representing a phase of the pipeline. We begin with attributes of the data accounted for during preprocessing, then move to considerations during model building, and end with challenges to the interpretation of model output. For each component, we present a discussion around data as it relates to the healthcare domain and offer insight into the challenges each may impose on the efficiency of machine learning techniques.Comment: Healthcare Informatics, Machine Learning, Knowledge Discovery: 20 Pages, 1 Figur

    Rough sets theory and uncertainty into information system

    Get PDF
    This article is focused on rough sets approach to expression of uncertainty into information system. We assume that the data are presented in the decision table and that some attribute values are lost. At first the theoretical background is described and after that, computations on real-life data are presented. In computation we wok with uncertainty coming from missing attribute values

    HANDLING MISSING ATTRIBUTE VALUES IN DECISION TABLES USING VALUED TOLERANCE APPROACH

    Get PDF
    Rule induction is one of the key areas in data mining as it is applied to a large number of real life data. However, in such real life data, the information is incompletely specified most of the time. To induce rules from these incomplete data, more powerful algorithms are necessary. This research work mainly focuses on a probabilistic approach based on the valued tolerance relation. This thesis is divided into two parts. The first part describes the implementation of the valued tolerance relation. The induced rules are then evaluated based on the error rate due to incorrectly classified and unclassified examples. The second part of this research work shows a comparison of the rules induced by the MLEM2 algorithm that has been implemented before, with the rules induced by the valued tolerance based approach which was implemented as part of this research. Hence, through this thesis, the error rate for the MLEM2 algorithm and the valued tolerance based approach are compared and the results are documented

    A Comparison of the Quality of Rule Induction from Inconsistent Data Sets and Incomplete Data Sets

    Get PDF
    In data mining, decision rules induced from known examples are used to classify unseen cases. There are various rule induction algorithms, such as LEM1 (Learning from Examples Module version 1), LEM2 (Learning from Examples Module version 2) and MLEM2 (Modified Learning from Examples Module version 2). In the real world, many data sets are imperfect, either inconsistent or incomplete. The idea of lower and upper approximations, or more generally, the probabilistic approximation, provides an effective way to induce rules from inconsistent data sets and incomplete data sets. But the accuracies of rule sets induced from imperfect data sets are expected to be lower. The objective of this project is to investigate which kind of imperfect data sets (inconsistent or incomplete) is worse in terms of the quality of rule induction. In this project, experiments were conducted on eight inconsistent data sets and eight incomplete data sets with lost values. We implemented the MLEM2 algorithm to induce certain and possible rules from inconsistent data sets, and implemented the local probabilistic version of MLEM2 algorithm to induce certain and possible rules from incomplete data sets. A program called Rule Checker was also developed to classify unseen cases with induced rules and measure the classification error rate. Ten-fold cross validation was carried out and the average error rate was used as the criterion for comparison. The Mann-Whitney nonparametric tests were performed to compare, separately for certain and possible rules, incompleteness with inconsistency. The results show that there is no significant difference between inconsistent and incomplete data sets in terms of the quality of rule induction

    Explanation-Based Auditing

    Full text link
    To comply with emerging privacy laws and regulations, it has become common for applications like electronic health records systems (EHRs) to collect access logs, which record each time a user (e.g., a hospital employee) accesses a piece of sensitive data (e.g., a patient record). Using the access log, it is easy to answer simple queries (e.g., Who accessed Alice's medical record?), but this often does not provide enough information. In addition to learning who accessed their medical records, patients will likely want to understand why each access occurred. In this paper, we introduce the problem of generating explanations for individual records in an access log. The problem is motivated by user-centric auditing applications, and it also provides a novel approach to misuse detection. We develop a framework for modeling explanations which is based on a fundamental observation: For certain classes of databases, including EHRs, the reason for most data accesses can be inferred from data stored elsewhere in the database. For example, if Alice has an appointment with Dr. Dave, this information is stored in the database, and it explains why Dr. Dave looked at Alice's record. Large numbers of data accesses can be explained using general forms called explanation templates. Rather than requiring an administrator to manually specify explanation templates, we propose a set of algorithms for automatically discovering frequent templates from the database (i.e., those that explain a large number of accesses). We also propose techniques for inferring collaborative user groups, which can be used to enhance the quality of the discovered explanations. Finally, we have evaluated our proposed techniques using an access log and data from the University of Michigan Health System. Our results demonstrate that in practice we can provide explanations for over 94% of data accesses in the log.Comment: VLDB201

    Rough-set-based ADR signaling from spontaneous reporting data with missing values

    Get PDF
    AbstractSpontaneous reporting systems of adverse drug events have been widely established in many countries to collect as could as possible all adverse drug events to facilitate the detection of suspected ADR signals via some statistical or data mining methods. Unfortunately, due to privacy concern or other reasons, the reporters sometimes may omit consciously some attributes, causing many missing values existing in the reporting database. Most of research work on ADR detection or methods applied in practice simply adopted listwise deletion to eliminate all data with missing values. Very little work has noticed the possibility and examined the effect of including the missing data in the process of ADR detection.This paper represents our endeavor towards the exploration of this question. We aim at inspecting the feasibility of applying rough set theory to the ADR detection problem. Based on the concept of utilizing characteristic set based approximation to measure the strength of ADR signals, we propose twelve different rough set based measuring methods and show only six of them are feasible for the purpose. Experimental results conducted on the FARES database show that our rough-set-based approach exhibits similar capability in timeline warning of suspicious ADR signals as traditional method with missing deletion, and sometimes can yield noteworthy measures earlier than the traditional method

    Analyzing the solutions of DEA through information visualization and data mining techniques: SmartDEA framework

    Get PDF
    Data envelopment analysis (DEA) has proven to be a useful tool for assessing efficiency or productivity of organizations, which is of vital practical importance in managerial decision making. DEA provides a significant amount of information from which analysts and managers derive insights and guidelines to promote their existing performances. Regarding to this fact, effective and methodologic analysis and interpretation of DEA solutions are very critical. The main objective of this study is then to develop a general decision support system (DSS) framework to analyze the solutions of basic DEA models. The paper formally shows how the solutions of DEA models should be structured so that these solutions can be examined and interpreted by analysts through information visualization and data mining techniques effectively. An innovative and convenient DEA solver, SmartDEA, is designed and developed in accordance with the proposed analysis framework. The developed software provides a DEA solution which is consistent with the framework and is ready-to-analyze with data mining tools, through a table-based structure. The developed framework is tested and applied in a real world project for benchmarking the vendors of a leading Turkish automotive company. The results show the effectiveness and the efficacy of the proposed framework
    corecore