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ABSTRACT 

Rule induction is one of the key areas in data mining as it is applied to a large 

number of real life data. However, in such real life data, the information is 

incompletely specified most of the time. To induce rules from these incomplete 

data, more powerful algorithms are necessary. This research work mainly 

focuses on a probabilistic approach based on the valued tolerance relation.  

 

This thesis is divided into two parts. The first part describes the implementation 

of the valued tolerance relation. The induced rules are then evaluated based on 

the error rate due to incorrectly classified and unclassified examples. The second 

part of this research work shows a comparison of the rules induced by the 

MLEM2 algorithm that has been implemented before, with the rules induced by 

the valued tolerance based approach which was implemented as part of this 

research. Hence, through this thesis, the error rate for the MLEM2 algorithm and 

the valued tolerance based approach are compared and the results are 

documented. 
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CHAPTER 1: INTRODUCTION 

In data mining different algorithms exist to process large amounts of data. 

However, real life data are characterized by missing values which renders the 

classification process difficult. 

1.1 Motivation 

The data mining algorithms are used for classifying critical and sensitive real life 

data. Hence, accurate classification becomes very essential. Many different 

algorithms were proposed to address this issue. The technique of learning from 

inconsistent examples, which is based on the concept of rough set theory, is one 

such example.  

Rule induction algorithms deal with missing examples in two ways. One is by 

preprocessing the incomplete decision table to make it complete and then 

performing rule induction on it. The other is by performing rule induction on 

incomplete data directly. MLEM2 algorithm that is based on rough set theory is 

one such rule induction algorithm which acts on missing examples directly. 

When an incomplete decision table is provided, rough set theory handles it by 

approximating the inconsistent or missing data with two approximations, lower 

and upper. Similar to MLEM2, a valued tolerance relation, as introduced by Jerzy 

Stefanowski and Alexis Tsoukias, works on the incomplete decision tables 

directly. The valued tolerance approach is based on a probabilistic relation and 

captures the similarity between objects more intuitively [2]. 
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Results on experiments published so far on the valued tolerance approach have 

no mention of the accuracy of the induced decision rules. This research work 

mainly focuses on implementing the valued tolerance approach for rule 

induction and evaluating the induced decision rules based the error rate. These 

results are then compared with the existing results of the MLEM2 algorithm. 

 

1.2 Organization of the document 

This thesis is organized into six chapters that include a detailed background of 

rule induction, a description of the MLEM2 and valued tolerance approaches, the 

related experimentation and results. 

Chapter1 gives an overview of the motivation for the thesis.  An overall idea 

about the topic and the main focus of the thesis is explained.  

Chapter 2 provides the background information related to the thesis. It is divided 

into two parts. The first part explains some basic concepts related to rule 

induction. It also explains the concept of missing attribute values in decision 

tables and the different approaches to induce rules from these incomplete 

decision tables. The second part describes rough set approach and the related 

concepts in detail. Finally, it describes the MLEM2 algorithm with an example on 

how to induce rules from incomplete decision tables. 

Chapter 3 introduces the tolerance and valued tolerance relations. It outlines the 

rule induction process using the valued tolerance approach. This chapter also 

describes the implementation of the valued tolerance approach. 
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Chapter 4 deals with the experiments done for both approaches. It explains the 

tools used for evaluating the decision rules and also provides the results of a 

comparative study between the valued tolerance algorithm and the MLEM2 

algorithm. 

Chapter 5 contains the conclusions of the thesis and also gives suggestions for 

future areas of exploration. 

 

 

 

 

 

 

 

 

 

 



 10 

CHAPTER 2: BACKGROUND 

This chapter gives an overview of the fundamental concepts of rough set theory 

and the MLEM2 algorithm. 

2.1 Decision tables and decision rules 

In the field of data mining the information available about real world data is 

represented in the form of a decision table. A decision table is a powerful and 

clear way of representing data. 

2.1.1 Information representation in decision tables 

A decision table describes a set of examples. Each example is presented in the 

form of a set of attribute values and a decision value. The attribute values 

provide information about the object and the decision value provides a way of 

categorizing the object. Also, each example belongs to a class, known as the 

concept. Such a class is represented by a set of examples having the same value 

for a decision. A decision table describing cars is shown in Table 2.1. 

Table 2.1: An example of the decision table 

Case Year Mileage Decision 

1 1990 300000 Least Reliable 

2 2000 150000 Less Reliable 

3 2008 6000 Very Reliable 

 

In the above decision table, Least Reliable, Less Reliable and Very Reliable are 

concepts about the car. Mileage and Year are attributes that describe the car. 
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Decision tables are a precise yet compact way to model complicated situations. 

In mathematical terms, a decision table ‘DT’ is an information table of the form  

(U, C ∪  {d}) where d is a distinguished attribute called a decision, U is a set of 

objects and elements of C are called condition attributes.  

 

2.1.2 Decision rules  

Decision rules classify the data in the decision table into different concepts. 

Usually decision rules are expressed in the form: 

          If (attribute1 = value1) & (attribute2 = value2) - > (decision = value) 

The left hand side represents the attribute-value pairs and the right hand side 

represents the concept. A case x is covered by a rule r if and only if every 

condition or attribute-value pair of r is satisfied by the corresponding attribute 

value for x. For example, from Table 2.1, the following rule can be extracted 

If (Year = 2000) -> (Decision = Less Reliable) 

Since case 2 with the concept “Less Reliable” satisfies this rule, it is said to be 

covered by the rule.  

Decision rules can be described using two important terms – completeness and 

consistency. The basic idea is to compute rules which are both complete and 

consistent. Such a rule set R is called discriminant. Consider a concept C. This is 

completely covered by a rule set R if for every case x from C there exists a rule 

such that r covers x. A rule set R is complete if every concept from the data set is 

completely covered by R. It is consistent with the data set, if every case x is 
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covered by R, where x is a member of the concept C indicated by R. In other 

words, a rule set R is consistent if and only if every rule r R∈  is consistent with 

the data set.  

Decision rule induction is the process by which rules are induced from the 

decision tables. It involves extraction of high level information from low level 

data and is the most fundamental data mining technique. Examples for rule 

induction algorithms are LEM1 and LEM2 [6]. 

 

2.1.3 Handling missing attribute values in decision tables 

Until recently, data represented in decision tables were assumed to be complete 

and consistent. In recent times, the need for new algorithms to deal with 

uncertain input, lost input or erroneous information has risen.  Hence, handling 

missing attribute values is an active topic of research in data mining.  

One of the general assumptions made in all these rule induction algorithms is 

that, in a particular case at least one value should be present which means we 

cannot induce a rule from a case which has all of its attributes missing [2]. 

In general, it is assumed that there are three specific types of missing data: 

 (1) The attribute value might be lost, i.e., either erased or missed out.  These are 

called “lost conditions”, represented by ‘?’. 
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(2) The attribute value might be irrelevant to the current classification. In other 

words, the value is unnecessary. So, we do not care if they are missing or not. 

Hence, they are called “do not care” conditions. These missing attribute values 

are represented by ‘*’. 

 (3) The missing attribute values are assumed to belong to a particular concept.  

These are called “attribute-concept” values, represented by ‘-‘. 

The theories that provide solution to the missing attribute value problem follow 

two main approaches. 

1) The input data is preprocessed, that is the missing attribute values are filled 

up using some heuristics that the application demands. Some examples are: 

replacing the missing attribute value with the most frequently occurring value, 

replacing the missing attribute value with the attribute average, replacing the 

missing attribute value with the most frequently occurring value in that concept 

etc. Hence, the data becomes complete after preprocessing. Now, the rule 

induction becomes the same as the traditional approach [5]. 

2) Inducing rules with the incompletely specified table itself.  Examples for this 

approach are MLEM2 and C4.5 algorithms [2]. 

Table2.2 illustrates the three types of missing data using an example. 
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Table 2.2: An incomplete decision table: example 1 

Attributes Decision 
Case 

Temperature Headache Nausea Flu 

1 High - No Yes 

2 Very_high Yes Yes Yes 

3 ? No No No 

4 High Yes Yes Yes 

5 High ? Yes No 

6 Normal Yes No No 

7 Normal No Yes No 

8 * Yes * Yes 

In the above table, there are three attributes namely ‘Temperature’, ‘Headache’, 

‘Nausea’ and one decision ‘Flu’. It has eight cases of which four have missing 

attribute values. Cases 3 and 5 have “lost conditions”, case 8 has two “do not 

care” conditions and case 1 has an “attribute-concept” value. There are two 

concepts ‘Yes’ and ‘No’ for classification. 

2.2 Rough set theory 

Rough set theory, introduced by Z.Pawlak, brings a mathematical approach to 

data mining. It has evolved into a very powerful tool for analyzing the ambiguity 

of data elements and has served as the foundation for innumerable theories. It 

has also proved its usefulness in many real life applications. 

 

2.2.1 Preliminary concepts of rough set theory 

The main idea behind rough set theory is the indiscernibility relation between 

objects which can be explained as follows:  
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Any two objects in the universe can be assumed to be indiscernible if the 

available or known facts about them are similar. In other words, they are 

categorized based on the available information about them. The unknown 

information might show them to be different. But according to the facts available, 

they are classified to be similar [11, 12].   

In mathematical terms, the indiscernibility relation can be explained as: A 

decision table IT is a pair (U, C) where U is a non empty set of objects and C is a 

non empty set of attributes [3, 14, 15]. For each subset of attributesB C⊆ , the 

indiscernibility relation IND (B) can be defined as: 

( ) {( , ) : , ( ) ( )}i i iIND B x y U U c B c x c y= ∈ × ∀ ∈ =   

where x and y are two objects and ( )
i

c x and ( )
i

c y are the values of attribute 
i

c for 

x and y respectively. According to rough set theory, with each set, a pair of 

precise sets called lower and upper approximation is associated. For any element 

x of U, the equivalence class of IND containing x will be denoted by [ ]
IND

x .  A 

lower approximation of X in (U, IND), denoted by RX, is the set  

{ | [ ] }
IND

x U x X∈ ⊆ . 

An upper approximation of X in (U, IND), denoted byRX , is the set 

{ | [ ] }
IND

x U x X∈ ∩ ≠ ∅ . 

Lower approximation represents data that certainly belong to the set and hence 

the rules extracted using lower approximation are called certain rules. Upper 
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approximation represents data that may possibly belong to the set and hence the 

rules induced this way are called possible rules [3, 16]. 

Let U be a non-empty set called the universe and let IND be the indiscernibility 

relation. An ordered pair (U, IND) is called an approximation space. Let X be a 

subset of U. X is defined in terms of the set in (U, IND). Any finite union of 

elementary sets in (U, IND) is called the definable set in (U, R). The lower 

approximation of X in (U, R) is the greatest definable set in (U, IND), contained 

in X. The upper approximation of X in (U, IND) is the least definable set in (U, 

IND), containing X [1].  

The main idea behind the approximations is that if it looks impossible to 

completely categorize a set of objects using the available information, it can be 

approximated using the lower and upper approximations. The set that separates 

the lower and the upper approximation is the boundary region for the rough set.  

The main advantage of rough set theory is that it does not require any additional 

information about data, unlike a lot of statistical approaches. Thus, it is possible 

to find hidden information about data more efficiently [2]. 

 

2.2.2 Rule induction algorithms based on rough set theory 

Rule induction is one of the most important techniques of data mining that 

extracts regularities from the real life data.  The critical task of rule induction is to 

induce a rule set R that is consistent and complete. That said, rule induction has 

its own challenges. For example, the input data can be affected by errors, may 
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contain numeric attributes (which need to be converted to symbolic attributes 

before or during rule induction), may be incomplete due to missing values or 

inconsistent due to two cases having the same attribute values but a different 

decision value. There are two important kinds of rule induction algorithms, 

global and local. In global algorithms all the attribute values are considered 

where as in local algorithms the concept of attribute-value pairs come into 

picture. The two important rule induction algorithms based on rough set theory 

are LEM1 (Learning by Examples) and LEM2 [6]. 

Let B be a nonempty subset of a set C of all attributes. LEM1 is a global algorithm 

that is based on rough set theory and uses the indiscernibility concept IND (B). 

The family of all B-elementary sets will be denoted by B*. According to the 

definition of LEM1, for a decision d we say that {d} depends on B if and only if B* 

<= {d}* where {d}* is the family of elementary sets of d. A global covering of {d} is 

a subset B of C such that {d} depends on B and B is minimal in C. The main idea 

behind LEM1 is to compute a single global covering. The computed rules then 

undergo a process called dropping conditions. This is done by scanning through 

all the computed rules, dropping conditions one by one and then, checking if the 

consistency of the rule set is affected by dropping the condition. If the rules with 

dropped conditions are consistent and cover the same number of cases, then the 

condition can be termed as a redundant condition and dropped forever. 

On the other hand, LEM2 is a local algorithm, which takes into account attribute-

value pairs and then converts them into a rule set.  LEM2 works better than 
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LEM1 because it works on lower and upper approximations separately and 

hence the input files for LEM2 are always consistent.  

For an attribute-value pair (a, v) = t, a block of t, denoted by [t], is a set of all 

cases from the universe U which have attribute a and value v. Let B be a 

nonempty lower or upper approximation of a concept represented by a decision-

value pair (d, w).  Set B depends on a set T of attribute-value pairs t = (a, v) if and 

only if no proper subset T’ of T exists such that B depends on that subset T’. 

[ ] [ ]
t T

T t B∈∅ ≠ = ∩ ⊆  

Thus in LEM2, the first step is to compute a set of all attribute-value blocks [a, v]. 

After that, an iterative process is followed to identify the minimal complex.  A 

detailed description of the LEM2 procedure is given in Appendix A [6]. 

 

2.2.3 Classification system in LERS 

LERS (Learning from Examples based on Rough Sets) is a well known data 

mining system that induces rules based on rough set theory and uses the already 

induced rules to further classify more data. LERS associates three basic 

parameters to evaluate the decision rules namely strength, specificity and 

support.  

• Strength is defined as the total number of examples correctly classified by 

the rule during training. It is a measure of how well the rule performed. 
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• Specificity is the total number of conditions or attribute value pairs on the 

left hand side of the rule. Thus, rules with more attribute-value pairs are 

considered to be more specific. 

• Support is defined as the sum of scores of all matching rules from the 

concept [8, 9]. 

 

2.2.4 Characteristic sets and characteristic relations for incomplete decision 

tables 

For decision tables with missing attribute values, modified definitions are 

needed to determine to which attribute-value block the cases with missing 

attribute values can be added.  The following heuristics are followed:  

• If for an attribute a there exists a case x such that the value of a for x is ‘?’, 

i.e., the corresponding value is lost, then the case x should not be included 

in any block [(a, v)] for all values v of attribute a. 

• If for an attribute a there exists a case x such that the value of a for x is ‘*’ 

i.e., the corresponding value is a do not care condition, then the case x 

should be included in blocks [(a, v)] for all specified values v of attribute a. 

• If for an attribute a there exists a case x such that the value is a ‘-‘, i.e., the 

corresponding value is an attribute concept value then the case x should 

be included in blocks [(a, v)] for all specified values v of attribute a 

belonging to that concept [2]. 

For example, the attribute-value block for Table 2.2 can be defined as: 
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[(Temperature, High)] = {1, 4, 5, 8}, 

[(Temperature, Very_high)] = {2, 8}, 

[(Temperature, Normal)] = {6, 7}, 

[(Headache, Yes)] = {1, 2, 4, 6, 8}, 

[(Headache, No)] = {3, 7}, 

[(Nausea, No)] = {1, 3, 6, 8}, 

[(Nausea, Yes)] = {2, 4, 5, 7, 8}. 

A few important terms that need to be defined in rough set theory are 

characteristic sets and characteristic relations. The characteristic set ( )
B

K x for a set 

B, is the intersection of blocks of attribute-value pairs (a, v) for all attributes a 

from B for which ρ(x, a) is specified and ρ(x, a) = v.  For Table 2.2, the 

characteristic set can be defined for B A=  as: 

For Case 1: (1)
A

K  = {1, 4, 5, 8} ∩ {1, 3, 6, 8} = {1, 8}, 

For Case 2: (2)
A

K = {2, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {2, 8}, 

For Case 3: (3)
A

K = {1, 2, 3, 4, 5, 6, 7, 8} ∩ {3, 7} ∩ {1, 3, 6, 8} = {3}, 

For Case 4: (4)
A

K = {1, 4, 5, 8} ∩ {1, 2, 4, 6, 8} ∩ {2, 4, 5, 7, 8} = {4, 8}, 

For Case 5: (5)
A

K = {1, 4, 5, 8}∩ U  ∩ {2, 4, 5, 7, 8} = {4, 5, 8}, 

For Case 6: (6)
A

K = {6, 7} ∩ {1, 2, 4, 6, 8} ∩ {1, 3, 6, 8} = {6}, 

For Case 7: (7)
A

K = {6, 7, 8} ∩ {3, 7} ∩ {2, 4, 5, 7, 8} = {7}, 

For Case 8: (8)
A

K  =  {1, 4, 8}∩ {2,8}∩{1,2,4,6,8}={1,2,4,8}. 
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Thus, for a  given interpretation of missing attribute values, the characteristic set 

( )
B

K x  may be interpreted as the smallest set of cases that are indistinguishable 

from x [2, 10]. 

The characteristic relation R (B) is a relation on a set of all objects U defined for 

objects x, y ∈ U as follows  

(x, y) ∈ R (B) if and only if ( )
B

y K x∈  

The characteristic relation is known if we know all the characteristic sets x ∈ U. 

For Table 2.2, the characteristic relation can be calculated as: 

R(A) = {(1, 1), (1, 8), (2, 2), (2, 8), (3, 3), (4, 4), (4, 8), (5, 4), (5, 5), (5, 8), (6, 6), (6, 8), 

(7, 7), (8, 2), (8, 4), (8, 6), (8, 8)}. 

 

2.2.5 Rough set theory in incomplete decision tables 

In rough set theory incomplete decision tables are described using characteristic 

relations, in the same way complete decision tables are described using the 

indiscernibility relation. For a complete decision table, once the indiscernibility 

relation is fixed and the concept is given, the lower and upper approximations 

are unique. For an incomplete decision table, for a given characteristic relation 

and concept there are three different ways to define lower and upper 

approximations namely singleton, subset and concept.  

In the case of singleton method, the singleton B-lower and B-upper 

approximations of X are defined as follows: 
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{ | ( ) }
B

BX x U K x X= ∈ ⊆  

  { | ( ) }
B

BX x U K x X= ∈ ∩ ≠ ∅  

where ( )
B

K x  is the characteristic set and U is the set of all objects. 

For example, in Table 2.2 the singleton A-lower and A-upper approximations of 

the two concepts {1, 2, 4, 8} and {3, 5, 6, 7} are: 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 

A {3, 5, 6, 7} = {3, 6, 7}, 

A {1, 2, 4, 8} = {1, 2, 4, 5, 8}, 

A {3, 5, 6, 7} = {3, 5, 6, 7}. 

Singleton approximations are not very useful since they cannot be represented as 

union of attribute value blocks. So, the other approach uses characteristic 

relations instead of elementary sets. There are two different ways to do this. The 

first method is called subset approximations.  

A subset B-lower approximation of X is defined as: 

{ ( ) | , ( ) }
B B

BX K x x U K x X= ∪ ∈ ⊆  

A subset B-upper approximation of X is defined as: 

{ ( ) | , ( ) }
B B

BX K x x U K x X= ∪ ∈ ∩ ≠ ∅  

For example, for Table 2.2, the subset lower and upper approximations are given 

as follows: 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 
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A {3, 5, 6, 7} = {3, 6, 7}, 

A {1, 2, 4, 8} = {1, 2, 4, 5, 8}, 

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}. 

The second method is by changing the subset definition by replacing the 

universe U with the concept C. A concept B-lower approximation of the concept 

X is defined as: 

{ ( ) | , ( ) }
B B

BX K x x X K x X= ∪ ∈ ⊆  

A concept B-upper approximation of the concept X is defined as: 

                    { ( ) | , ( ) } { ( ) | }
B B B

BX K x x X K x X K x x X= ∪ ∈ ∩ ≠ ∅ = ∪ ∈  

For example, in Table 2.2, the concept lower approximations for B = A are: 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 

A {3, 5, 6, 7} = {3, 6, 7}, 

A {1, 2, 4, 8} = {1, 2, 4, 8}, 

A {3, 5, 6, 7} = {3, 4, 5, 6, 7, 8}. 

For completely defined decision tables, singleton, subset and concept lower and 

upper approximations are the same. As explained above, they are different for 

incomplete decision tables [2, 4, 10]. 

 

2.2.6 MLEM2 algorithm 

Most of the data mining algorithms are not designed to deal with numerical 

attributes. They take only symbolic (alphanumeric) attributes as inputs. So, to 
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classify data containing numerical attributes, they have to be converted to 

symbolic attributes as a preprocessing step.  Most of the data mining rule 

induction algorithms take the numerical data and preprocess it by a 

discretization process and then conduct the rule induction process. However, 

this approach doubles the processing time. So, the currently developed 

algorithms conduct rule induction and discretization at the same time. Examples 

for the latter approach are Modified LEM2 (MLEM2), C 4.5 etc [5, 9, 10]. 

The key focus in this thesis is the modified LEM2 (MLEM2) which is based on 

the LEM2 algorithm. MLEM2 classifies all attributes into two major types namely 

numerical and symbolic. Approximations are computed in different ways for 

numerical and symbolic attributes. The procedure is as follows: the first step is to 

sort all values of a numerical attribute. The next step is to compute the average of 

any two consecutive values of the sorted list. For each cut point x, MLEM2 works 

by creating two blocks, the first block containing the values smaller than x and 

the second block containing the values larger than x. The search space of MLEM2 

includes both the blocks computed from symbolic attributes as well as the blocks 

computed from numerical attributes. From this point, the rule induction follows 

the same procedure as the LEM2 algorithm [9, 10]. 

With the background literature reviewed, the next chapter deals with the main 

theoretical aspects of the thesis. 
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CHAPTER 3: VALUED TOLERANCE RELATION 

This chapter gives an overview of rule induction using the valued tolerance 

relation.  

3.1 Introduction to valued tolerance relation 

Before we describe the valued tolerance relation, we need to define the tolerance 

relation. Given a decision table IT = (U, C), where U is a set of objects, C is a set 

of attributes and a subset of attributesB C⊆ , tolerance relation ( , )
B

T x y  for can be 

described as the following binary relation,  

            ( , ) , ( ) ( )
B j j j

T x y c B c x c y= ∀ ∈ =  or ( ) *
j

c x =  or ( ) *
j

c y =      

where x and y are two objects and ( )
j

c x  and ( )
j

c x  are the values of attribute 

j
c for x and y respectively.  The tolerance relation is the characteristic relation for 

“do not care” conditions which are represented by ‘*’. Let us denote ( )
B

I x  to be 

the set of objects y for which ( , )
B

T x y  holds. The set ( )
B

I x  is called the tolerance 

class of x. 

Based on the tolerance relation, B-lower and B-upper approximations of X can be 

defined as: 

Lower approximation { | ( ) }
B

BX x U I x X= ∈ ⊆  

  Upper approximation { | ( ) }
B

BX x U I x X= ∈ ∩ = ∅  
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We can see that the definitions of the lower and upper approximations are the 

same as singleton lower and upper approximations with the characteristic 

relation 
B

T . 

 
Table 3.1: An incomplete decision table: example 2 

 

Case 
number 

 
Attributes 

 
Decision 

a1 3 2 1 0 Ф 

a2 2 3 2 0 Ф 

a3 2 3 2 0 Ψ  
a4 * 2 * 1 Ф 

a5 * 2 * 1 Ψ  

a6 2 3 2 1 Ψ  

a7 3 * * 3 Ф 

a8 * 0 0 * Ψ  

a9 3 2 1 3 Ψ  

a10 1 * * * Ф 

a11 * 2 * * Ψ  

a12 3 2 1 * Ф 

 

Table 3.1 shows an incompletely specified decision table. It has twelve examples 

and four attributes with only do not care conditions in missing attribute values. 

Based on Table 3.1, we can deduce the tolerance relation as: 

( 1)
B

I a  = {a1, a11, a12}, 

( 2)
B

I a  = {a2, a3}, 

( 3)
B

I a  = {a2, a3}, 

( 4)
B

I a = {a4, a5, a10, a11, a12}, 
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( 5)
B

I a = {a4, a5, a10, a11, a12}, 

( 6)
B

I a = {a6}, 

( 7)
B

I a  = {a7, a8, a9, a11, a12}, 

( 8)
B

I a  = {a7, a8, a10}, 

( 9)
B

I a  = {a7, a9, a11, a12}, 

( 10)
B

I a  = {a4, a5, a8, a10, a11}, 

( 11)
B

I a  = {a1, a4, a5, a7, a9, a10, a11, a12}, 

( 12)
B

I a  = {a1, a4, a5, a7, a9, a11, a12}. 

From this, the lower and upper approximations can be deduced as 

Lower approximation   { 1, 2, 4, 7, 10, 12}A a a a a a a = ∅ , 

Upper approximation 

{ 1, 2, 3, 4, 7, 10, 12} { 1, 2, 3, 4, 5, 7, 8, 9, 10, 11,12}A a a a a a a a a a a a a a a a a a= , 

Lower approximation  { 3, 5, 6, 8, 9, 11} { 6}A a a a a a a a= , 

Upper approximation 

{ 3, 5, 6, 8, 9, 11} { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12}A a a a a a a a a a a a a a a a a a= . 

With the tolerance relation explained, we now describe the valued tolerance 

relation. Consider three objects A, B and C. Suppose B has two attribute values 

missing and C has only one attribute value missing. The valued tolerance helps 

capture the fact that C is more similar to A than B.  Thus the valued tolerance 

relation is more intuitive than the tolerance relation. 
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3.1.1 Lower and upper approximations based on valued tolerance relation 

Consider Table 3.1 with missing attributes values. The valued tolerance approach 

deals with only the ‘*’ values, that is, the “do not care” conditions. It is a 

probability-based relation. A general assumption made by the valued tolerance 

approach is that there is a uniform probability distribution among the set of all 

attributes and the set of values that each attribute has is discrete. Consider a 

decision table IT (U, C). For every attribute jc , we can associate a set 
j

E  such that 

it contains all the possible values of the attribute 1 2 3
, , ..........{ }n

j j j j jE e e e e= . 

For a given object x U∈ , the probability that ( )
j

c x is equal to e1j is
1

| |
j

E
. Consider 

two objects ,x y U∈  and an attribute 
j

c C∈ .  There are four different situations: 

(a) If the values of x and y are known and ( ) ( )
j j

c x c y= , then the probability that 

both are same in terms of jc  is  

  ( , ) 1c
j

R x y =  

(b) If the values of x and y are known and ( ) ( )
j j

c x c y≠ , then the probability that 

both are same in terms of jc  is  

  ( , ) 0c
j

R x y =  

(c) For one of the objects, the value of jc is known, say ( ) i

j jc x e= , then the 

probability that x and y are same in terms of jc is  

  
1

( , )
| |

c
j

J

R x y
E

=  
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 (d)   If for both the objects, the value of 
j

c  is unknown, then the probability that 

x and y are same in terms of 
j

c  is 

2

1
( , )

| |
c

j
J

R x y
E

=  

 The joint probability for all the attributes 1 2 3
, , ..........{ }n

j j j jC c c c c= , that an object x is 

the same as another object y can be computed as: 

( , ) ( , )cC cj C jR x y R x y∈= ∏  

The joint probability ( , )
C

R x y is the valued tolerance relation for the decision table.  

We know that if two objects have at least one attribute value different, then the 

joint probability is going to be 0. Thus, the first step in rule induction using 

valued tolerance approach is to calculate the valued tolerance relation table. For 

example, for Table 3.1, the set of all possible values for all the attributes are given 

by: 

a1= {1, 2, 3}, 

a2= {0, 2, 3}, 

a3= {0, 1, 2},   

a4= {0, 1, 3}. 

1. Probability that a1 is the same as a2 is given by 0 (an example of case {b}). 

2. Probability that a2 is the same as a3 is given by 1 (an example of case {a}). 

3. Probability that  a4 is the same as a11 is given by  

                (1/3*1/3)  * 1 * (1/3*1/3) * (1/3) = (1/243) 



 30 

Thus, the valued tolerance relation for the entire decision table is computed in 

Table 3.2. It is obvious to note that the relation is symmetric. We can see that the 

values in the shaded region and the non shaded region are the same. 

 

Table 3.2: The valued tolerance relation table 

 a1 A2 a3 a4 a5 A6 a7 a8 a9 a10 a11 a12 

a1 1 0 0 0 0 0 0 0 0 0 0.037 0.33 

a2 0 1 1 0 0 0 0 0 0 0 0 0 

a3 0 1 1 0 0 0 0 0 0 0 0 0 

a4 0 0 0 1 0.012 0 0 0 0 0.004 0.004 0.03 

a5 0 0 0 0.012 1 0 0 0 0 0.004 0.004 0.037 

a6 0 0 0 0 0 1 0 0 0 0 0 0 

a7 0 0 0 0 0 0 1 0.012 0.11 0 0.004 0.037 

a8 0 0 0 0 0 0 0.012 1 0 0.004 0 0 

a9 0 0 0 0 0 0 0.11 0 1 0 0.037 0.33 

a10 0 0 0 0.004 0.004 0 0 0.004 0 1 0.001 0 

a11 0.037 0 0 0.004 0.004 0 0.004 0 0.037 0.001 1 0.12 

a12 0.33 0 0 0.03 0.037 0 0.037 0 0.33 0 0.12 1 

 

Given a set of objects U, a subset of attributes B  C, and an object a1, the lower 

and upper approximations for a set X are given as: 

     Lower approximation => ( 1)
ˆ( 1) (1 ( 1, ) ( 1, ) )c c

BX x IND a
a R a x R a x xµ ∈= ∏ − +  

     Upper approximation => ( 1)
ˆ( 1) 1 (1 ( 1, ) )c

x IND aBX
a R a x xµ ∈= − ∏ −  

where IND (a1) is the tolerance class of object a1, Rc (a1, x) is the joint probability 

that a1 is the same as x and x̂  refers to the implication to the setΦ . In other 
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words, x̂  defines the membership to sets Φ  and Ψ, x̂ ∈{0, 1}. For the Table 3.1, x̂  

takes the values (1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1) for the set Ф and the values (0, 0, 1, 

0, 1, 1, 1, 0, 1, 1, 0, 1, 0) for the set Ψ.  Thus, based on the formula defined above 

the lower and upper approximations for Table 3.1 are given in Table 3.3 

Table 3.3: Lower and upper approximation for valued tolerance 

 
Attributes 

Lower 
approximation  
for set Ф    

Upper 
approximation 
for the set Ф  

Lower 
approximation 
for the set  Ψ     

Upper 
approximation 
for the set  Ψ      

a1 0.97 0 1 0.03 

a2 0 0 1 1 

a3 0 0 1 1 

a4 0.98 0 1 0.01 

a5 0 0.947 0.05 1 

a6 0 1 0 1 

a7 0.87 0 1 0.12 

a8 0 0.98 0.016 1 

a9 0 0.59 0.4 1 

a10 0.99 0 1 0.01 

a11 0 0.94 0.05 1 

a12 0.63 0 1 0.3 

 

3.1.2 Decision rule induction based on the valued tolerance relation 

In this approach, the decision rules are accepted only when they are above a 

certain threshold called the credibility degree. This is based on the fact that 

objects may be similar to the condition part of the rule only to a certain degree. 

Also, the decision part in the rule is considered to be uncertain.  

Thus, we can define rule iρ   such that an element ‘x’ supports the rule iρ .Here, x 

is similar to the condition part of the rule to a certain extent. Thus, we have a 

credibility degree associated with each rule which can be defined as: 
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( ) (1 ( , ) ( , ) )i i i
x S B B BX

S x S xµ ρ ρ ρ µ∈= ∏ − +  for certain rules, 

( ) (1 ( , ) ( , ) )i i i
x S B B BX

S x S xµ ρ ρ ρ µ∈= ∏ − +  for possible rules. 

Here ( , )i
B

S x ρ  represents the support degree of element x to the rule iρ . In other 

words, it is the tolerance degree of each element with respect to the condition 

part of the rule. The 
BX

µ  and 
BX

µ values represent the lower and upper 

approximation values calculated for a particular concept for the set X.  

Further, the rules have to be non-redundant and minimal. So the rules are 

filtered based on the credibility degree threshold. Those that are higher than the 

credibility degree threshold undergo a process called dropping conditions. Rules 

can be generated with shorter condition parts, provided the credibility is still 

above the threshold.   

An example of decision rule induction from Table 3.1 is given below: 

Consider the cases belonging to the set Ф. Among these we consider only the 

cases with no missing attribute values. Thus, if we consider the values for the 

case a1, the rule candidate iρ is 

( 1 3) ^ ( 2 2) ^ ( 3 1) ^ ( 4 0) ( )i a a a a dρ = = = = = − > = Φ  

The support and the approximation values for this rule are given in Table 3.4 

Therefore, using the above formula we can calculate the credibility degree for the 

rule iρ   to be  ( )iµ ρ = 0.8. 
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Table 3.4: Credibility degree table 

 ( , )i
B

S x ρ  
BX

µ  

a1 1 0.97 

a11 0.0156 0 

a12 0.25 0.63 

 

If this ( )iµ ρ  is above the user specified threshold, then the rule is further 

processed by dropping conditions. Similarly, rule induction should be done for 

all the rules in Ψ and Ф. 

 

3.1.3 Dropping conditions 

The simplification process called dropping the redundant conditions is explained 

below: 

Only those rules which have credibility degree ( )iµ ρ  above the threshold 

undergo the dropping conditions process. Other rules which do not meet the 

credibility degree criteria are discarded. For example, for the Table 3.1, for the 

rule  

( 1 3) ^ ( 2 2) ^ ( 3 1) ^ ( 4 0) ( )i a a a a dρ = = = = = − > = Φ  

The condition a1=3 is dropped and the whole process of calculating lower and 

upper approximations and rule induction is repeated and the credibility degree 

is calculated for the rule 

( 2 2) ^ ( 3 1) ^ ( 4 0) ( )a a a d= = = − > = Φ  
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If this credibility degree is below the threshold, then the condition a1=3 cannot 

be discarded and is put back into the rule. If this reduced rule qualifies for 

further simplification, then the whole process is repeated again by eliminating 

the second condition (a2=2) which further reduces the rule to 

( 3 1) ^ ( 4 0) ( )a a d= = − > = Φ  

This rule is again reduced to remove the third condition a3=1 (if credibility 

degree is above the threshold) which further reduces the rule to 

( 4 0) ( )a d= − > = Φ  

At any point in this reduction process, if the credibility threshold is not satisfied 

by removing a condition, the condition is put back in the rule. This process is 

done for all candidate rules. The same method is carried out using lower and 

upper approximations to calculate the certain rules and possible rules 

respectively. 

 

3.2 Implementing the valued tolerance approach 

The implementation of the valued tolerance approach is the primary focus of   

this thesis. This implementation is carried out using C/C++. The program uses 

vectors to store and access the large input data file.  An example input file will 

have the following format: 

< a a a a d > 
<!this is a comment> 
[ a1  a2  a3  a4  d ] 
3 2 1 0 low 
2 3 2 0 low 
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………………….. 

…………………… 

 

The first line indicates that there are four attributes followed by a decision. The 

second line is a comment and is ignored. The third line shows the names of the 

attributes and the decision. This kind of input file adheres to the LERS input 

format. 

The valued tolerance program takes four inputs namely  

1) The name of the input file, 

2) Whether the probability table needs to be written to a file, 

3) Whether the lower and upper approximations have to be written to a file, 

4) The credibility threshold that the user chooses.  

This program has two main classes- the decision table class and the rule class. 

The decision table class has member variables and functions which are used 

mainly for the storage of the input decision table. Also, this class has functions 

that perform the preliminary steps in the valued tolerance approach namely, the 

calculation of probability table, the calculation of lower and upper 

approximations etc. The rule class has members associated with the rule 

induction process and the process of dropping conditions. The member variables 

are used for storage and optimization of rules and the functions are used for 

inducing the rules and removing redundant rules and dropping conditions. A 

detailed explanation of the components of the classes is given in Appendix B. 
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CHAPTER 4: EXPERIMENTS 

This chapter explains the experiments done on the rules induced by the valued 

tolerance relation. 

4.1 Tools used for evaluation of the decision rules 

The main parameter that is used for evaluating the decision rules is the error 

rate.  The validation of the decision rules is done by a process called ten-fold 

cross validation.  In this process, two sets of input data are used namely training 

data and testing data. Training data is used for initial analysis, from which rules 

are induced by either MLEM2 or the valued tolerance approach.  Testing data is 

used for confirming and validating the rules induced by the algorithm. In a k-

fold cross validation algorithm, the initial input data is divided into k sets of 

training and testing data. For this thesis, the value of k is taken to be 10. Hence 

this process is called ten-fold cross validation.  This method is done using the 

following set of tools: 

(a) Sample  

Sample is the first program used that processes the input file to give the files that 

can be used for ten-fold cross validation.  This program shuffles the input file 

and provides ten large files for training and 10 smaller files for testing purposes. 

Sample can work for any n-fold cross validation. 

 The way that sample is used for this thesis is  

sample –f  T-E-M-P.N-foldD  -m  pctg  -c 
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 where -f is to specify the input file, 

 T-E-M-P.N-foldD is the input file, 

-m option is to specify that multiple files will be generated with some 

percentage split, 

pctg is the value of the percentage split for generating the testing and 

training files; for this thesis, the percentage split is taken to be 90-10, 

–c option means that the program uses a constant seed in the random 

number generation. 

(b) Rule checker 

The rule checker program takes the rules induced by the algorithm (MLEM2 or 

valued tolerance) and computes the error rate. Two rule checkers are used 

namely, ‘srch’ and ‘chkrul’. The rule checker ‘srch’ is used to convert the rules 

according to the LERS format since it does not handle missing attribute values.  

The ‘srch’ rule checker takes the following inputs: 

(a) Input rule file –which is the rule file generated by the algorithm, 

(b) Input data file – the file which is given as the input to the algorithm, 

(c) Name of the report file. This report file gives a list of attributes describing 

the rules. One such example report file is: 

This report was created from: valuedresult and from: bank-5.d 

The total number of examples is: 66 
The total number of attributes is: 5 
The total number of rules is: 25 
The total number of conditions is: 100 
The total number of examples that are not classified: 41 
The total number of examples that are incorrectly classified: 0 
The total number of examples that are not classified or are incorrectly classified: 
41 
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Error rate: 62.12 percent 
 
Concept(d, 1): 
The total number of examples that are not classified:  8 
The total number of examples that are incorrectly classified:  0 
The total number of examples that are correctly classified:  25 
The total number of examples in the concept:  33 
 
Concept(d, 2): 
The total number of examples that are not classified:  33 
The total number of examples that are incorrectly classified:  0 
The total number of examples that are correctly classified:  0 
The total number of examples in the concept:  33 

 

(d) Name of the new rule set file. This gives the rule file according to the 

LERS format. One such example rule file is:  

! This rule file was created from: input.txt.r and from: input.txt 
! -------------------------------------------------------- 
 
2, 1, 1 
(a3, 1) & (a4, 0) -> (d, low) 
3, 1, 1 
(a1, 2) & (a3, 2) & (a4, 1) -> (d, high) 
3, 1, 1 
(a2, 2) & (a3, 1) & (a4, 3) -> (d, high) 

 

Where the 3 numbers before the rule specify the Strength, Specificity and 

Support respectively described in Section 2.2.6. In addition to the above input 

files, the rule checker needs to be specified if the error rate has to be computed 

for the certain or possible rules. 

The second rule checker used is ‘chkrul’ which takes the rule file generated by 

srch and gives the error rate for the rules induced. Input rule file for this 

program is the rule file generated by srch according to LERS format. The ‘chkrul’ 

rule checker takes the following inputs: 

(a) Input data file which is the file from which rules are induced, 
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(b) If the rules are to be evaluated using conditional probability or strength, 

(c) If support is to be used or not, 

(d) If specificity is to be used or not, 

(e) If the concept statistics need to be printed, 

(g) If the case classifications need to be printed. 

A typical example report generated by chkrul with the concept statistics is given 

below: 

General Statistics 
 
This report was created from: ru and from: input.txt 
The total number of cases: 12 
The total number of attributes: 4 
The total number of rules: 3 
The total number of conditions: 8 
The total number of cases that are not classified: 0 
      PARTIAL MATCHING 
   The total number of cases that are incorrectly classified: 1 
   The total number of cases that are correctly classified: 2 
      COMPLETE MATCHING 
   The total number of cases that are incorrectly classified: 4 
   The total number of cases that are correctly classified: 5 
      PARTIAL AND COMPLETE MATCHING 
The total number of cases that are not classified or incorrectly classified: 5 
Error rate: 41.67% 
 
Concept (“d”,”low”) 
The total number of cases that are not classified: 0 
 
      PARTIAL MATCHING 
   The total number of cases that are incorrectly classified: 1 
   The total number of cases that are correctly classified: 0 
 
     COMPLETE MATCHING 
   The total number of cases that are incorrectly classified: 4 
   The total number of cases that are correctly classified: 1 
The total number of cases in the concept: 6 
 
Concept (“d”,”high”) 
The total number of cases that are not classified: 0 
 
      PARTIAL MATCHING 
   The total number of cases that are incorrectly classified: 0 
   The total number of cases that are correctly classified: 2 
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     COMPLETE MATCHING 
   The total number of cases that are incorrectly classified: 0 
   The total number of cases that are correctly classified: 4 
The total number of cases in the concept: 6 
 

 

 (c) Error rate calculator  
 
This program ‘nf-sum’ computes the final error rate of all the ten runs of cross 

validation. It computes the ratio between the number of incorrectly classified or 

not classified cases and the total number of cases and gives the error rate in terms 

of percentage.   

(d) MLEM2 

This program generates rules from the input file based on the MLEM2 algorithm. 

Rule induction can be done based on singleton, subset and concept 

approximations (described in Section 2.2.3). This program generates the rule files 

separately for certain and possible rules. A sample execution is given below: 

[svasudev@cycle1 ~]$ ./mlem2 
MLEM2 Modified version 2.0 
Credits: Qiang Zhang        - Original version 
         Sachin S. Siddhaye – Modified v1.0 
         Steven Santoso     - Modified v2.0 
 
Please enter input file name: input.txt 
NOTE: Output file names will be automatically generated 
Certain rules for all concepts will be inside <input_filename>.r.c  
Possible rules will be inside  <input_filename>.r.p  
NOTE: 
The tables will be generated in Heparate files: 
<input_filename>.<concept_name>.l – all lower approximation of every concept 
<input_filename>.<concept_name>.u – all upper approximation of every concept 
 
What approximation definition would you use: Singleton (1), Subset (2), Concept 
(3)? 
1 
..... 
Time for execution is 0 seconds. 
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(e) Valued tolerance 

This program implements the valued tolerance approach and induces rules 

based on the valued tolerance relation. 

This program takes the following inputs: 

(i) The input file, 

(ii) The credibility threshold supplied by the user, 

(iii) If the probability table needs to be stored in a file, 

(iv) If the approximations need to be stored in a file. 

A sample execution is given below: 

[svasudev@cycle1 wine20try]$ ./valued_tolerance –f valued.txt 
valued tolerance Program: 
Credits: Jerzy Grzymala Busse 
 Supriya Vasudevan 
Welcome to the valued tolerance program 
Output Rule file will be generated in the name of INPUTFILE.r 
NOTE: Output file names will be automatically generated 
The execution time is 9 seconds 
 Thank you for using this program!! 

 

Thus, with an easy-to-use and efficient set of tools, the decision rules induced by 

the MLEM2 and the valued tolerance approach are compared and analyzed 

based on the error rate. 

 

4.2 Comparison of valued tolerance approach and MLEM2 

In this thesis, the emphasis is mainly put on comparing the valued tolerance 

approach with the MLEM2 approach based on the error rate which can be 

calculated as: 
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   No of incorrectly classified values or unclassified values 
Error Rate = ----------------------------------------------------------------------------------------- 
   Total number of Values in the Decision Table 
 

The input data sets taken into consideration are the following: 

(a) m-hepatitis.d: This data set contains 155 examples, 19 attributes and 167 

missing attribute values (5% missing values) 

(b) m-wine-aca-5.d: This data set has 178 examples , 13 attributes and 116 

missing values (5% missing values) 

(c) m-wine-aca-20.d: This data set has 178 examples, 13 attributes and 461 

missing values (20% missing values). 

(d) m-lymph-symb.d: This data set contains 148 examples and 18 attributes 

and 133 missing values (5% missing values). 

(e) m-image-aca-5.d: This data set contains 210 examples, 19 attributes and 

200 missing values (5% missing values). 

Rules were induced from these data sets using MLEM2 and valued tolerance 

approaches. A ten-fold cross validation was then performed. The valued 

tolerance approach was used with different credibility thresholds 0.5, 0.6, 0.7, 0.8, 

0.9 and 1.0. The results obtained using the valued tolerance approach with 

different credibility threshold values and the MLEM2 approach for the above 

mentioned data sets are shown in Table 4.1 and Table 4.2.  
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Table 4.1: Error rate for certain rules in MLEM2 and valued tolerance 

Certain rules 

           Valued tolerance approach Input files 

Credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 21.29 
   

21.29  21.94  22.58 
  

22.58 
          

22.58 
  

21.62 

m-lymph-symb.d      27.19 
   

26.62  25.95  25.95 
  

25.95 
  

31.11 
          

18.06 

m-wine-aca-5.d 11.18 
   

10.67  9.55   8.43    11.24  12.36 
          

5.45 

m-image-aca-5.d 11.24 
   

11.24  9.55   8.43    11.24 
  

12.36 
          

26.97 

m-wine-aca-20.d 27.04 
   

26.84  26.84  25.92 
  

19.66 
  

24.07 
          

38.2 

 

Table 4.2: Error rate for possible rules in MLEM2 and valued tolerance 

Possible rules 

           Valued tolerance approach Input files 

Credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 20.65 
   

20.65 
   

20.65  20.65  20.33 
  

20.33 
           

21.62 

m-lymph-symb.d  27.15 
      

31.76  32.43 32.43 33.11 
  

35.21 
           

17.42 

m-wine-aca-5.d  20.65 
   

20.65  20.65  20.65 
  

20.33 
           

20.33 
           

21.62 

m-image-aca-5.d 30.31 
     

31.69  31.69 32.35  32.25 
  

26.63 
          

9.55 

m-wine-aca-20.d 21.69 21.64  21.64 
  

22.25  22.25 
  

26.63 
          

20 

 

4.3 Observations 

The following comparisons were made for both certain and possible rules:  

(a) Comparison of the error rate for MLEM2 and for different values of 

credibility degree for valued tolerance approach using 10-fold cross validation, 

(b) Comparison of the number of rules induced by both the approaches, 
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(c) Comparison of the number of conditions in the rules induced by both the 

approaches. 

From the results for study (a), as shown in Tables 4.1 and 4.2, it can be inferred 

that for certain rules as well as possible rules, MLEM2 usually works better than 

the valued tolerance algorithm. Different credibility degree thresholds are being 

used to filter the rules. It is found that for a majority of the data sets, MLEM2 

usually works better than any credibility degree threshold in the valued 

tolerance approach. The results for study (b) are shown in the Tables 4.3 and 4.4. 

Based on the results obtained, it can be inferred that MLEM2 usually induces 

smaller number of rules with smaller number of conditions than the valued 

tolerance approach. Since the error rate for MLEM2 is also lesser we can 

conclude that MLEM2 algorithm usually induces minimal and more accurate 

rule sets. Tables 4.5 and 4.6 show the results of study (C) based on the number of 

conditions for MLEM2 and valued tolerance. 

Table 4.3: Comparison of the number of certain rules 
 

Number of certain rules 

           Valued tolerance approach Input files 

credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 91 91 91 91 91 90 24 

m-lymph-symb.d 45 45 45 45 45 50 31 

m-wine-aca-20.d 119 120 111 119 109 69 49 

m-wine-aca-5.d 46 47 47 47 40 38 47 

m-image-aca-5.d 99 

  
96 97 94 98 76 21 
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Table 4.4: Comparison of the number of possible rules 
 

Number of possible rules 

           Valued tolerance approach Input files 

Credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 125 125 125 125 125 125 21 

m-lymph-symb.d 57 55 53 53 50 30 31 

m-wine-aca-20.d 22 22 22 22 22 21 29 

m-wine-aca-5.d 29 29 29 29 29 20 21 

m-image-aca-5.d 95 95 95 95 95 91 21 

 
Table 4.5: Comparison of the number of conditions in certain rules 

 
Number of conditions in certain rules 

           Valued tolerance approach Input files 

Credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 522 522 522 522 522 511 76 

m-lymph-symb.d 436 436 436 435 435 455 105 

m-wine-aca-20.d 337 348 348 349 323 311 265 

m-image-aca-5.d 430 475 413 444 434 422 228 

m-wine-aca-5.d 337 348 348 349 323 311 265 
 

 
Table 4.6: Comparison of the number of conditions in possible rules 

 
Number of conditions in possible rules 

           valued tolerance approach Input files 

Credibility degree threshold values 

MLEM2 

 0.5 0.6 0.7 0.8 0.9 1.0  

m-hepatitis.d 250 250 250 250 238 238 89 

m-lymph-symb.d 186 185 182 186 178 103 105 

m-wine-aca-5.d 195 195 195 195 195 160 86 

m-image-aca-5.d 175 171 175 171 171 139 189 

m-wine-aca-20.d 122 122 122 122 122 113 98 
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CHAPTER 5: CONCLUSIONS 

In this research the valued tolerance approach to induce decision rules from 

incompletely specified decision tables was implemented. This implementation 

was evaluated by conducting a series of experiments with the induced rules 

using a set of available tools. A ten-fold cross validation was performed with the 

MLEM2 algorithm and the valued tolerance approach. The error rate of the rules, 

the number of conditions and the number of rules were calculated for both the 

algorithms and a comparative analysis was done. Based on the experiments done 

on five different data sets and the available results, it can be concluded that the 

MLEM2 algorithm, based on rough set theory usually works better than the 

valued tolerance approach for handling missing attribute values.  This is because 

the rules induced by MLEM2 algorithm usually have smaller error rate and 

smaller number of rules and conditions. This makes the rule set minimal as 

opposed to the valued tolerance approach. Thus, for missing attribute values, the 

MLEM2 algorithm usually produces a more accurate classification.  Also, the 

MLEM2 algorithm works with the do-not-care conditions (*), lost values (?) as 

well as attribute-concept values (-). On the other hand, the valued tolerance 

approach works with only the do-not-care conditions. This makes the MLEM2 

algorithm typically a candidate for a wider application domain than the valued 

tolerance approach. 
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5.1 Recommendations and future extensions 

The current design and implementation of the valued tolerance approach deals 

with only the do-not-care type of missing attribute values. Future work can 

include the lost values and the attribute-concept values. Further, this research is 

based only on the probability-based valued tolerance relation. Other kinds of 

valued tolerance relations can be explored and rule induction algorithms can be 

proposed. Analysis of the induced rules can be done based on various other 

parameters besides the error rate and the number of rules. Also, a comparative 

study can be made based on different kinds of n-fold cross validations besides 

the ten-fold cross validation done in this thesis. Thus, the valued tolerance 

relation proves to be a promising area of research in dealing with missing 

attribute values in decision tables.  
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APPENDIX A 

LEM2 algorithm 

The procedure for LEM2 algorithm is given below: [6] 

Procedure LEM2 
(input: a set B, 
output: a single local covering  of set B); 
begin 

G := B; 
 := Ø; 

while G ≠ Ø 
begin 
T := Ø; 

T(G) := {t | [t] ∩G ≠  Ø}; 

while T = Ø or [T] �  B 

     begin 
select a pair t ∈T(G) with the highest attribute priority, 

if a tie occurs, select a pair t ∈T(G) such that |[t] ∩  G| is 
maximum; 
if another tie occurs, select a pair t∈T(G) with the smallest 
cardinality of [t]; if a further tie occurs, select first pair; 
T := T ∪  {t}; 
G := [t] ∩  G; 

T(G) := {t | [t] ∩  G ≠  Ø}; 

T(G) := T(G) – T; 
end {while} 
for each t in T do 
    if [T – {t}] ⊆  B then T: = T – {t}; 

 := ∪ {T}; 
G := B – [ ]T T T∈∪  

end {while}; 
for each T in  do 
   if  S ∈∪ T [ ]S B=  then :=  – {T} 

end {procedure}. 
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APPENDIX B 

Implementation details: 

The following are the components of the decision table class. After processing the 

input file, in addition to storing it in a vector, the number of attributes and the 

number of cases are also calculated. After this, the module for calculating the 

probabilities is executed.  This module takes as inputs the input data vector and 

the number of attributes and has the following structure: 

 void calc_prob_table(vector<string> inputdata,int attr_count); 

This function calculates the probability table and stores that in a two-

dimensional array.  This data structure is chosen since only half the probability 

table is calculated and accessing the values from a 2D array is more efficient. 

Since the probability table is a symmetric structure, it is sufficient to calculate 

only half of the table for further processing. This is one of the code optimization 

techniques used in the program. This probability function is being used multiple 

times in the program while dropping the conditions in the decision rules where 

the entire process is reiterated. If the user had given the option to store the 

probabilities in a file, the module to write the table in a file is called. 

After calculating the probabilities and storing them in proper data structures, the 

lower and upper approximations are calculated using the function, 

   void calc_valuedtolerance_table(); 
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If the user had chosen the option to store the lower and upper approximations, 

then the module to store them in a file is called. 

In addition to these main modules, there are also supplementary functions in the 

decision table class. These are helper functions which perform the tasks of 

accessing the data row wise, calculating the unique concept values etc. 

After this, the job is taken over by the members of the rule class. The module that 

is executed next is the void calculate_I_S_values(decision_table dt). This 

function does a series of function calls to get started with the process of rule 

induction.  First it calculates the rows with no missing attribute values using a 

helper function. Taking these rows as rule candidates or templates, the rows 

which support the rule are calculated. Then the values of I and S are calculated 

by calling the functions get_I_values () and get_S_values () which calculate the I 

values and the S values for the decision rule induction process. The S value 

indicates the support degree that the rule has to the particular element. The I 

value corresponds to the lower and upper approximations.  

After calculating the I and S values, the value of the credibility degree is 

calculated using the function calculate_credibility_degree (). This credibility 

degree is then verified with the threshold and the appropriate 

dropping_conditions () function is called for the simplification process. Also, the 

rules are stored in appropriate vectors. Thus this module acts as the key module 

for the entire rule induction process. 
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Also, in this module, the coverage of rules is calculated, ie, the set of cases 

covered by each rule. The module dropping_conditions () then takes care of the 

simplification process, by removing redundancies. Here, two kinds of 

redundancies are removed. By dropping conditions, the redundant conditions 

are removed. Also one more level of redundancy is removed, that is, the rule 

level redundancy. The rules which cover the same set of cases or a subset of cases 

covered by another rule are eliminated, which is also essential to get a set of 

minimal and complete rules. 

Thus, the dropping conditions module takes the biggest credibility degree value 

and then calls the entire process from the calculation of probabilities to rule 

induction again in a loop until a set of minimal rules are obtained. After the 

entire rule set is obtained and the condition-level redundancy is eliminated, the 

redundant rules are removed using the two-dimensional array storing the 

coverage of all the rules mentioned above thus completing the coverage-level 

redundancy also. 

Thus, this program performs the entire process of rule induction using the 

valued tolerance approach in an efficient way, without any recursion, by a series 

of function calls and loop data structures. Thus the valued tolerance approach for 

decision rule induction is implemented in the C/C++ programming language.  

 


