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Spontaneous reporting systems of adverse drug events have been widely established in many countries
to collect as could as possible all adverse drug events to facilitate the detection of suspected ADR signals
via some statistical or data mining methods. Unfortunately, due to privacy concern or other reasons, the
reporters sometimes may omit consciously some attributes, causing many missing values existing in the
reporting database. Most of research work on ADR detection or methods applied in practice simply
adopted listwise deletion to eliminate all data with missing values. Very little work has noticed the pos-
sibility and examined the effect of including the missing data in the process of ADR detection.
This paper represents our endeavor towards the exploration of this question. We aim at inspecting the

feasibility of applying rough set theory to the ADR detection problem. Based on the concept of utilizing
characteristic set based approximation to measure the strength of ADR signals, we propose twelve differ-
ent rough set based measuring methods and show only six of them are feasible for the purpose.
Experimental results conducted on the FARES database show that our rough-set-based approach exhibits
similar capability in timeline warning of suspicious ADR signals as traditional method with missing dele-
tion, and sometimes can yield noteworthy measures earlier than the traditional method.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Adverse Drug Reactions (ADRs) are uncomfortable or harmful
reactions (side effects) in normal doses of drug usage. In other
words, an ADR expresses the association between drugs and harm-
ful side effects. Some serious ADRs may lead to death or life-
threatening outcomes of patients. For example, in 1950 the new
drug Thalidomide made in German caused more than 12,000 fetus
limb deformities and more than 1300 people were suffering from
polyneuritis for over 20 countries in Europe and Japan. Unfortu-
nately, not all ADRs can be disclosed before the approval of drugs
for marketing. Therefore, spontaneous reporting systems (SRSs)
of adverse drug reactions have been widely established in many
countries to collect as could as possible all adverse drug events
to facilitate the detection of suspected ADR signals via some statis-
tical or data mining methods.

Although different SRSs were running under different reporting
regulations, most of them require, when the patient produces
uncomfortable or harmful adverse reactions by normal drug of
usage, the responsible hospitals, related pharmaceutical compa-
nies should, and/or the patient himself can report the events to
SRSs. Unfortunately, the reporting data usually contain some miss-
ing values due to omitting or personal privacy concern. Data with
missing values may affect results of analysis, which leads to the
development of appropriate processing methods to increase the
accuracy of signal detection.

Most of the reporting systems use listwise deletion [12] to pro-
cess data with missing values; that is, simply deleting records with
null values to maintain data completeness. The advantage of this
simple method is easy to implement for data analysis, while it
may affect the accuracy of the results, especially when the amount
of data is relatively small. Indeed, small non-missing data is not
uncommon for ADR reporting data. Firstly, records of rarely used
or newly marketed drugs usually are in small amount. Secondly,
the data size also decreases significantly when stratified signal
detection is performed [13], e.g., considering a specific group of
patients with dedicated age and/or sex. Although previous research
work has shown that rough set theory can be used to handle data
with missing values in the process of data analysis [11,17], e.g.,
data classification, there has been no work, to the best of our
knowledge, conducted on applying rough set theory to the ADR
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detection problem. This motivates us to study if incorporating
rough-set-based strategies to process the reporting data with miss-
ing values can be helpful for the detection of ADR signals.

In this paper, we present the concept of applying rough set the-
ory to handling ADR detection from incomplete SRS dataset with
missing data, and propose twelve different methods for measuring
the strength of an ADR signal. We discuss the feasibility of the pro-
posed twelve measuring methods and show only six of them are
suitable for ADR signal measuring. We conducted preliminary
experiments using the public FAERS datasets [9] to examine the
effectiveness of rough-set-based ADR detection against traditional
detection, from the viewpoint of timeline surveillance and warning
of marketed drugs. The results show that most of the time the
rough-set-based approach exhibits similar signaling capability to
that of traditional approach. However, in some cases our approach,
by providing an approximate range of signal strength, demon-
strates better warning ability in timeline surveillance. This occurs
especially when the amount of event cases with no missing value
is relatively small, i.e., less than three, but the amount increases
dramatically when missing values are included.

The remainders of this paper are organized as follows. In Sec-
tion 2, we introduce background knowledge related to this work,
including ADR detection and rough set theory. Section 3 presents
our proposed rough set based method for measuring ADR signals
from incomplete SRS data with missing values. In Section 4, we
show and discuss the results of the experiments conducted over
FAERS dataset. Finally, we describe conclusions and future work
in Section 5.

2. Background and related work

2.1. ADR detection

Contemporary detection methods of ADR signals can be broadly
divided into two categories [4]: frequentist methods and Bayesian
methods.

Frequentist methods are widely used in most real ADR monitor-
ing systems due to their simplicity to calculate and interpret. This
category is mainly based on the statistical 2⁄2 contingency table as
shown in Table 1 to estimate the proportion of suspected ADRs in
spontaneous reporting systems caused by the drug of interest vs.
other drugs. If the ratio is higher than a threshold, then dispropor-
tionality occurs, which means the drug of interest is regarded to
have a significant association with the suspected reaction. In the
past decade, there have been various frequentist methods, each
of which differs mainly on the metric for measuring the dispropor-
tionality. The most representative metrics are Proportional Report-
ing Ratio (PRR) [8] and Reporting Odds Ratio (ROR) [7]. Formulas of
these two measures are defined as follows:

PRR ¼ a=ðaþ bÞ
c=ðc þ dÞ ; ROR ¼ a=c

b=d
Table 1
The 2� 2 contingency table for ADR signal detection.

Reaction of interest Other reactions Total

Drug of interest a b aþ b
Other drugs c d c þ d
Total aþ c bþ d N = a + b + c + d

a: number of reports of the suspected drug lead to the suspected reaction.
b: number of reports of the suspected drug lead to all other reactions.
c: number of reports of all other drugs in the database lead to the suspected
reactions.
d: number of reports of all other drugs lead to all other reactions.
Another category of more complex methods, Bayesian methods,
were developed based on Bayesian statistics to estimate the (pos-
terior) probability that the suspected adverse reaction occurs given
the use of the suspected drug. Representatives of this category are
Bayesian Confidence Propagation Neural Network (BCPNN) [2,3]
and Multi-item Gamma Poisson Shrinker (MGPS) [1].

In the field of adverse drug reactions, most of detection meth-
ods can be used and every method has its own advantages and dis-
advantages. Therefore, one can select one or more suitable
detection methods according to different analysis purposes.

2.2. Rough set theory

The rough set theory [16] is a useful tool for the analysis of
imprecise, uncertainly or incomplete data. The theory is based on
the concept of rough set, a formal approximation of a crisp set
composed of objects represented by values of attributes. Classi-
cally, the set of objects concerned is represented as an information
system or information table. In the following, we introduce the
basic concepts of rough set theory and its extension to handle data
with missing values.

(1) Information system and decision table: An information system
is a pair IS ¼ fU;Ag, where U denotes a nonempty finite set
of objects called the universe and A denotes a nonempty
finite set of attributes. A decision table is a special form of
information systems, in which the attribute set A is divided
into a set of conditional attributes C and a decision attribute
d, i.e. A ¼ C [ fdg. For example, in Table 2 there are three
condition attributes A ¼ fHeight;Weight;Ageg and one deci-
sion attribute d ¼ fOverweightg.

(2) Indiscernibility relation: Consider an information system
IS ¼ fU;Ag. Let B#A be a subset of attributes. The indis-
cernibility relation induced by B, denoted as IB, is an equiv-
alence relation defined as
Table 2
An exam

Case

1
2
3
4
5
6
7
8

ðx; yÞ 2 IB if and only if for all a 2 B; aðx; aÞ ¼ aðy; aÞ;
where x and y are two cases in IS, and aðx; aÞ and aðy; aÞ
denote the values of x and y, respectively, in attribute a. In
other words, the indiscernibility relation induced by B
defines a set of equivalence classes, within each of which
the members have the same values in all attributes in B.
For example, if B = {Weight, Age}, clearly ð2;5Þ 2 IB since both
cases have the same weight and age. And all cases in Table 2
will be divided into six equivalence classes, i.e., {1, 4}, {2, 5},
{3}, {6}, {7}, {8}.
(3) Lower and upper approximations: Let X represent a subset of
elements of the universe U. The lower approximation indi-
cates the set of elements certainly belonging to the set X,
while the upper approximation indicates the set of elements
possibly belonging to the set X. Given an information system
IS ¼ ðU;AÞ and P#A, the lower approximation of X induced
by P in IS, denoted as PX, and the upper approximation of
X induced by P in IS, denoted as PX, are defined as follows:
ple of decision table.

Height Weight Age Overweight

170 75 18 Yes
165 50 30 Yes
165 60 18 No
145 75 18 No
145 50 30 No
170 45 45 Yes
145 50 45 No
170 45 30 Yes



Table 3
An exam
missing

Case

1
2
3
4
5
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PX ¼ fe 2 Uj½e�P #Xg; PX ¼ fe 2 Uj½e�P \ X –£g
where ½e�P denotes the equivalence class of e induced by attri-
bute set P. For example, consider Table 2. Let X = {1, 2, 6, 8}
and P = {Weight, Age}. Below are the equivalence classes of
each case.

½1�P ¼ f1;4g; ½2�P ¼ f2;5g; ½3�P ¼ f3g; ½4�P ¼ f1;4g;
½5�P ¼ f2;5g; ½6�P ¼ f6g; ½7�P ¼ f7g; ½8�P ¼ f8g
And the lower and upper approximations of X induced by P
are:

PX ¼ f6;8g; PX ¼ f1;2;4;5;6;8g

(4) Accuracy of approximations: The accuracy of an approxima-

tion of X induced by P, denoted as rPðXÞ, is calculated as
dividing the cardinality of the lower approximation by the
cardinality of the upper approximation, i.e.,
rPðXÞ ¼ jPXj
jPXj : ð1Þ

If rPðXÞ ¼ 1, the lower and upper approximations are identi-
cal, and we say subset X is definable in U in terms of attribute
set P. In other words, X can be regarded as not ‘‘imprecise” in
terms of P, and so there is no room of vagueness needed to be
captured by applying rough set theory. If rPðXÞ < 1, subset X
can be defined by its lower and upper approximation and is
roughly definable in U in terms of P.
2.3. Rough set strategies to data with missing data

In real world applications, a data collection usually contains
missing values, making the data incomplete for analysis. Classi-
cally, the data is usually presented in the form of a decision table,
where missing values can be interpreted from two aspects: lost
and do not care. A ‘‘lost” missing value, denoted as ‘‘?”, indicates
that the value is important but is erased, and a ‘‘don’t care” missing
value, denoted as ‘‘⁄”, indicates that the value is not important or
redundant (see Table 3).

Various researchers have extended rough set theory for dealing
with data with missing values [10,14,18]. We only present the con-
cepts that are useful in our research, including the characteristic
relation, characteristic set, and the refined lower and upper
approximations.

The conventional rough set theory is under the assumption that
information systems are complete, i.e., without missing data, and
relies on the indiscernibility relation to derive the concept of lower
and upper approximations. However, the indiscernibility relation
is not applicable to data with missing values. Different extensions
of the indiscernibility relation have been proposed, including the
tolerance relation [14], similarity relation [18], and characteristic
relation [10], which are described in what follows.

The tolerance relation was proposed by Kryszkiewicz to process
data with ‘‘don’t care” missing values, the similarity relation was
proposed by Stefanowski and Tsoukias to process data with ‘‘lost”
missing values, while the characteristic relation, proposed by
ple of an incomplete decision table containing ‘‘lost” (?) or ‘‘don’t care” (⁄)
values.

Height Weight Gender Overweight

170 50 Male Yes
165 ?/⁄ Female No
170 80 ?/⁄ No
165 50 Female No
?/⁄ ?/⁄ Male Yes
Grzymala-Busse, considers both ‘‘lost” and ‘‘don’t care” missing
values. Since the characteristic relation is a general form of the tol-
erance and similarity relations, in this paper we adopt this term
(denoted as R), and use subscripts T and S to denote the tolerance
(RT) and similarity versions ðRSÞ, respectively.

Definition 1. Let P#A be a subset of attributes. The similarity
characteristic relation, denoted by RSðPÞ, is defined as:

ðx; yÞ 2 RSðPÞ if and only if aðx; aÞ ¼ aðy; aÞ for all
a 2 P such that aðx; aÞ– ?:

And the similarity characteristic set is defined as KSðP; xÞ ¼
fyjðx; yÞ 2 RSðPÞg, where x and y are two cases in the decision table,
and aðx; aÞ denotes the value of x in attribute a.
Definition 2. Let P#A be a subset of attributes. The tolerance
characteristic relation, denoted by RTðPÞ, is defined as:

ðx; yÞ 2 RTðPÞ if and only if aðx; aÞ ¼ aðy; aÞ or
aðx; aÞ ¼ � or aðy; aÞ ¼ � for all a 2 P:

And the tolerance characteristic set is KTðP; xÞ ¼ fyjðx; yÞ 2 RTðPÞg.
Example 1. Consider Table 3. Let P = {Height,Weight, Gender}. Then
the similarity and tolerance characteristic sets of all cases induced
by P are:

KSðP;1Þ ¼ f1g KTðP;1Þ ¼ f1;5g
KSðP;2Þ ¼ f2;4g KTðP;2Þ ¼ f2;4g
KSðP;3Þ ¼ f3g KTðP;3Þ ¼ f3;5g
KSðP;4Þ ¼ f4g KTðP;4Þ ¼ f2;4g
KSðP;5Þ ¼ f1;5g KTðP;5Þ ¼ f1;3;5g

Based on the concept of characteristic relation and characteris-
tic set, Grzymala-Busse [10] proposed three different extensions of
the lower and upper approximations for processing data with
missing values: singleton, subset, and concept approximations.

The first extension is called singleton approximation, which
considers all cases in U and is similar to the original definitions of
lower and upper approximations. Hereafter, for identification
purpose we add subscripts g (singleton), s (subset), and c (concept)
into the approximation, and add superscript K (stand for charac-
teristic relation) to distinguish it from the conventional approxi-
mation derived by indiscernibility relation.
Definition 3. The singleton lower approximation of X induced by
P, denoted by PK

g X, is the set of all cases whose characteristic set
is contained in X, i.e.,

PK
g X ¼ fx 2 UjKðP; xÞ#Xg

The singleton upper approximation of X in P, denoted by PK
g X, is the

set of cases whose characteristic set having an non-empty intersec-
tion with X, i.e.,

PK
g X ¼ fx 2 UjKðP; xÞ \ X –£g
Note that the characteristic set KðP; xÞ presented in the above

definition can be any types of characteristic sets. The second exten-
sion, called subset approximation, uses the union of characteristic
sets to define approximation.
Definition 4. The subset lower approximation of X induced by
P; PK

s X, is the union of characteristic sets that are contained in X, i.e.,

PK
s X ¼ [fKðP; xÞjx 2 U;KðP; xÞ#Xg
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The subset upper approximation of X induced by P; PK
s X, is the

union of characteristic sets which have an nonempty intersection
with X, i.e.,

PK
s X ¼ [fKðP; xÞjx 2 U;KðP; xÞ \ X –£g
The third definition called concept approximation is more strin-

gent than the subset version in that it only considers those cases in
X.
Definition 5. The concept lower and upper approximations of X
induced by P are defined as follows:

PK
c X ¼ [fKðP; xÞjx 2 X;KðP; xÞ#Xg

PK
c X ¼ [fKðP; xÞjx 2 X;KðP; xÞ \ X –£g
Example 2. Let X be the set of cases with Overweight = ‘‘Yes” in
Table 3, i.e., X = {1, 5} and P = {Height, Weight, Gender}. The corre-
sponding singleton, subset, and concept approximations of X are:

PK
g f1;5g ¼ f1g PK

s f1;5g ¼ f1;5g PK
c f1;5g ¼ f1g

PK
g f1;5g ¼ f1;3;5g PK

s f1;5g ¼ f1;3;5g PK
c f1;5g ¼ f1;3;5g

Note that for complete decision tables, all of the three approx-
imations, singleton, subset, and concept, are amalgamated into the
same definition. However, it is not true for incomplete decision
tables.
3. Rough set based ADR detection

3.1. Problem description

As mentioned in Section 1, the SRS data may contain some
missing values due to omitting or personal privacy problem. To
facilitate the discussion, the reporting data is presented as an infor-
mation system IS ¼ ðU;AÞ containing missing values which can be
either one of two categories: lost (?) or don’t care (⁄). Our purpose
is to examine the feasibility of rough set theory to the ADR detec-
tion, focusing on whether the inclusion of missing data through
rough set based approximation can be helpful for the predicting
capability of generated signals. Therefore, the problem can be
described as given a SRS dataset that contains missing values and
is represented in the form of a data table, we like to compute the
strength (using PRR or ROR measure) of any given suspected ADR
rule of the following form:

Predc;drug ! symptom ð2Þ
where Predc denotes extra conditions associated with the signal,
e.g., Sex = ‘‘female”, Age = ‘‘>18”, and we will examine if the strength
Table 4
Description of the attributes selected from the FAERS dataset.

File name Selected attribute
name

Containing
null values

Null
probability (07Q2)

DEMO ISR � 0
EVENT_DT

p
31.3

AGE
p

38.8
GNDR_COD

p
5.8

DRUG DRUGNAME � 0
REAC PT � 0

DEMO: to record personal information for each patient.
DRUG: to record the medicines taken by each patient.
REAC: to record the observed adverse reactions for each report.
of this rule is over a specified threshold to becoming a noteworthy
ADR signal.

In this study, the SRS data was obtained from the FDA Adverse
Event Reporting System (FAERS) database [9]. The FAERS database
is composed of seven data files, including DEMO, DRUG, REAC,
OUTC, RPSR, THER, and INDI. We selected three data files that are
essential for ADR signal detection, i.e., DEMO, DRUG, and REAC.
From the DEMO data file we chosen four attributes about personal
information of patients, including ISR (primary report id),
EVENT_DT, AGE, and GNDR_COD. These attributes except ISR
may contain null values. From the DRUG and REAC files we chosen
the DRUGNAME and PT attributes, which do not contain null val-
ues. Details of the chosen attributes are presented in Table 4.

3.2. Rough set based measuring

Since all contemporary measures relies on the contingency
2� 2 table, our basic idea is applying rough set theory to the cal-
culation of the contingency 2� 2 table. Consider the rule in (2)
and the following corresponding contingency table.
Predc
 symptom
 other symptoms
drug
 a
 b

other drugs
 c
 d
If the information system is complete, then each of the cell val-
ues, a; b; c; d, on the contingency table are deterministic. Unfortu-
nately, as we have shown previously, the attributes involved in
the Predicate may contain missing values, causing the cell values
imprecise. We thus adopt the concept of lower and upper approx-
imations to obtain an approximate range for each cell values and in
accordance compute the strength of the corresponding rule.

For simplicity, let Xa;Xb;Xc , and Xd denote the sets of cases sat-
isfying the corresponding cell conditions in the contingency table.
Clearly, for complete data we have a = jXaj, b = jXbj, c = jXcj, and
d = jXdj. But for incomplete data we need to compute the lower
and upper approximations for Xa;Xb;Xc , and Xd. Let P denote the
set of attributes for the approximation computation. Each cell
value can be denoted by a range, i.e.,

a� : ½a; �a�; b�
: ½b; �b�; c� : ½c; �c�;d�

: ½d; �d� ð3Þ
Accordingly, we have

a ¼ jPKXaj; b ¼ jPKXbj; c ¼ jPKXcj;d ¼ jPKXdj
�a ¼ jPKXaj; �b ¼ jPKXbj; �c ¼ jPKXcj; �d ¼ jPKXdj

ð4Þ

Then the strength (range value) of the rule can be computed by
performing a simple range calculation according to the formula of
PRR and ROR. The resulting formulas are as follows:

aðc þ dÞ
�cð�aþ �bÞ 6 PRR 6

�að�c þ �dÞ
cðaþ bÞ ;

a� d
�c � �b

6 ROR 6
�a� �d
c � b

ð5Þ

We consider two different options for defining the set P: global
covering and local covering. The global covering specifies all attri-
butes in the data to P, i.e., P ¼ A. The local covering instead only
considers the set of attributes forming the rule of concern (and
so the contingency table). For convenience, we denote this attri-
bute set as B, for B#A.

Since there are two different interpretations of missing values,
i.e., lost or don’t care, and three different versions of approxima-
tions, i.e., singleton, subset, and concept approximations, in total,
we obtain twelve different ways for computing the cell values
defined in (3) and (4), as shown in Fig. 1. Fig. 1 also depicts
the research framework adopted in this study, inspecting the



Fig. 1. The research framework for incomplete ADR signal detection.

Table 5
An incompletely data table with lost missing values.

ISR Age Gender Drug PT

1 ? ? d1 s1
2 a2 ? d2, d3 s1, s2
3 a1 g1 d1 s1
4 a1 g1 d2, d3 s1, s2
5 ? ? d2, d3 s1, s2
6 ? g2 d1 s1
7 ? g1 d1 s1
8 a1 g1 d3 s1, s2
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feasibility for applying rough set theory to the ADR signals detec-
tion from an incomplete SRS dataset containing missing values.
We assume that the template of the rule to be discovered is given,
either by the user or generated by a pre-procedure of candidate
rule generation. In the remainder of this section, we will examine
the feasibility of the twelve ways (versions) for computing the cell
values.

3.3. Feasibility analysis

We analyze the feasibility of the twelve different methods by
examining whether each one of them can yield reasonable approx-
imations for data with missing values. To facilitate the discussion,
we first introduce the concept of satisfiable approximation and
indistinguishable approximation.

Consider a rule of the form defined in (2) and the corresponding
contingency table. Let C be the attribute set for defining the extra
conditions, i.e., Predc, for forming the contingency table. For exam-
ple, if Predc = {Sex = ‘‘female”, Age = ‘‘>18”}, then C = {Sex, Age}.

Definition 6. Let y be any case in U. We say y satisfies the Predc
condition if for each attribute t in C, aðy; tÞ ¼ aðPredc; tÞ or
aðy; tÞ ¼ ? or aðy; tÞ ¼ �, where a(Predc, tÞ denotes the condition
value of attribute t in Predc.
Definition 7. An approximation of the contingency set X (X can be
Xa;Xb;Xc , or Xd) defined on an attribute set P is a C-satisfiable
approximation if all members in either the lower approximation

PX or upper approximation PX satisfy the Predc condition specified
by C.
Example 3. Consider the data with lost missing values in Table 3.
We would like to compute the strength of the following rule:

Gender ¼ g1;Drug ¼ d2 ! PT ¼ s1

The corresponding contingency sets are Xa= {4}, Xb ¼ £, Xc= {3, 7,
8}, and Xd ¼ £, and C = {Gender}. Now assume the subset approxi-
mation with similarity characteristic set and global covering is
applied. Then, we obtain the following characteristic sets of all cases
in Table 5.

KSðP;1Þ ¼ f1;3;6;7g KSðP;5Þ ¼ f2;4;5g
KSðP;2Þ ¼ f2g KSðP;6Þ ¼ f6g
KSðP;3Þ ¼ f3g KSðP;7Þ ¼ f3;7g
KSðP;4Þ ¼ f4g KSðP;8Þ ¼ f8g
Below are the lower and upper approximations of Xa;Xb;Xc , and Xd.

PK
s Xa ¼ f4g; PK

s Xb ¼ £; PK
s Xc ¼ f3;7;8g; PK

s Xd ¼ £

PK
s Xa ¼ f4g; PK

s Xb ¼ £; PK
s Xc ¼ f1;3;6;7;8g; PK

s Xd ¼ £
Note that case 6 in the upper approximation of Xc contradicts con-
dition Gender = g1. Therefore, the subset approximation with simi-
larity characteristic set and global covering is not C-satisfiable.
Definition 8. An approximation of the contingency set X (X can be
Xa;Xb;Xc , or Xd) defined on an attribute set P is indistinguishable if
the lower approximation of the contingency set X is always equal
to the corresponding upper approximation, i.e., PKX ¼ PKX.
Example 4. Consider Table 5 and the rule in Example 3 again.
Assume that the concept approximation with similarity character-
istic set and global covering is applied. Below are the lower and
upper approximations of Xa;Xb;Xc , and Xd.

PK
c Xa ¼ f4g; PK

c Xb ¼ £; PK
c Xc ¼ f3;7;8g; PK

c Xd ¼ £

PK
c Xa ¼ f4g; PK

c Xb ¼ £; PK
c Xc ¼ f3;7;8g; PK

c Xd ¼ £

Since the lower and upper approximations are the same, this
approximation is indistinguishable.

In what follows we present the important properties required
to determine the feasibility of the twelve measurements. All
detailed proofs are presented in Appendix to keep the content
more concise and readable.
Lemma 1. The subset approximation defined by tolerance character-
istic set KT for contingency sets Xa;Xb;Xc, and Xd, is not C-satisfiable
with respect to P, for P � B.
Lemma 2. The subset approximation defined by similarity character-
istic set KS for contingency sets Xa;Xb;Xc, and Xd, is not C-satisfiable
with respect to P, for P � B.
Lemma 3. The concept approximation defined by similarity charac-
teristic set KS is indistinguishable for contingency sets Xa;Xb;Xc, and

Xd, with respect to P, for P � B, i.e., PKS
c X ¼ PKS

c X, for X being
Xa;Xb;Xc, or Xd.
Lemma 4. The concept approximation defined by tolerance charac-
teristic set KT is not indistinguishable for contingency sets Xa;Xb;Xc,

and Xd, with respect to P, for P � B, i.e., PKT
c X – PKT

c X, for X being
Xa;Xb;Xc, or Xd.

Finally, we show that the singleton approximation defined
either by similarity or tolerance characteristic set is C-satisfiable
and not indistinguishable.
Lemma 5. The singleton approximation defined by similarity charac-
teristic set KS for contingency sets Xa;Xb;Xc, and Xd, is C-satisfiable
with respect to P, for P � B.
Lemma 6. The singleton approximation defined by tolerance charac-
teristic set KT is not indistinguishable for contingency sets Xa;Xb;Xc,

and Xd, with respect to P, for P � B, i.e., PKT
g X – PKT

g X, for X being
Xa;Xb;Xc, or Xd.



Table 6
Summarization of the feasible and infeasible approximation methods.

Lost Don’t care

Global Local Global Local

Singleton
p p p p

Subset
Concept x x

p p

p
: feasible approximation.
: infeasible approximation, due to unsatisfiable property.

x: infeasible approximation, due to indistinguishable property.

Table 7
The resulting CS_list, corresponding to tolerance characteristic set, in terms of
attribute set {Height, Gender} for the example in Table 3.

Value Pair ID list

165, Male 5
165, Female 2, 4
165, ⁄ 2, 4
170, Male 1, 3, 5
170, Female 3
170, ⁄ 1, 3, 5
⁄, Male 1, 3, 5
⁄, Female 2, 3, 4
⁄, ⁄ 1, 2, 3, 4, 5
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In summary, the twelve approximation methods can be divided
into two categories, the feasible methods and the infeasible meth-
ods, as shown in Table 6. For convenience, we denote the six feasi-
ble methods in terms of characteristic sets (similarity or tolerance),
attribute covering (global or local), and approximation definition
(singleton, subset, or concept) as follows:

Method 1 M(s, g, g): Similarity set, global covering, singleton
approximation.
Method 2 M(s, l, g): Similarity set, local covering, singleton
approximation.
Method 3 M(t, g, g): Tolerance set, global covering, singleton
approximation.
Method 4 M(t, l, g): Tolerance set, local covering, singleton
approximation.
Method 5 M(t, g, c): Tolerance set, global covering, concept
approximation.
Method 6 M(t, l, c): Tolerance set, local covering, concept
approximation.

3.4. Comparative analysis

We further conducted a comparative analysis of the derived six
rough-set-based measurements in terms of the accuracy derived
from (1). To this purpose, we first define the Accuracy ð�Þ of a rough
set based measuring method as the ratio of lower and upper signal
values. That is,

PRRl

PRRu
¼ aðc þ dÞcðaþ bÞ

�að�c þ �dÞ�cð�aþ �bÞ ;
RORl

RORu
¼ a� d� c � b

�a� �d� �c � �b
ð6Þ

We showed that there exists a proper order of the six rough-set-
based methods in terms of the measurement accuracy, summa-
rized in Theorem 7, where M1–M6 refer to the six methods. Details
of the proof are described in Appendix.
Input:  

STab: the SRS data table; 

RTemp: the rule template; 

ACtype: the type of attribute coverings; 

CStype: the type of characteristic sets; 

APtype: the type of approximations; 

MStype: the type of measures. 

Output: The rule and the strength. 

Steps: 

1. Compute the characteristic sets of all records in STab acco

2. Generate the four contingency sets, Xa, Xb, Xc, and Xd, acco

3. Generate the lower and upper approximations of Xa, Xb, Xc

APtype; 

4. Compute the rule strength using the approximate continge

5. Return the rule with the computed strength; 

Fig. 2. Algorithmic framework of the
Theorem 7. Accuracy(M1)P Accuracy(M2)P Accuracy(M5)P
Accuracy(M3)P Accuracy(M4) = Accuracy(M6).
3.5. The detection method

Given a SRS dataset with missing values, we assume that the
rule representing the ADR signal to be discovered is provided by
the user. Our algorithm, as shown in Fig. 2, computes the strength
of the rule according to the following parameters, attribute cover-
ing (global or local), characteristic set (tolerance or similarity),
approximation (singleton, subset, or concept), and the signal mea-
sure (PRR or ROR).

The most expensive step of our algorithm is Step 1. Computing
the characteristic set of a given case requires pairwise case com-
parison throughout the whole SRS table. For a SRS table consisting
of n cases, this procedure consumes Oðn2Þ case comparisons, and so
we developed a more efficient method. The basic idea is as follows.

We introduced a structure called CS_list (Characteristic Set list)
to store the case_IDs that belong to the same characteristic set, i.e.,
indistinguishable in terms of the attributes of concern. For exam-
ple, consider Table 3. The resulting CS_list, corresponding to toler-
ance characteristic set, in terms of attribute set {Height, Gender} is
depicted in Table 7, where column Value Pair denotes the possible
combinations in terms of {Height, Gender} and ID List the set of
cases belong to the characteristic set of this value pair. Once the
CS_list has been pre-computed, the characteristic set of a given case
can be generated in a minute. As such, we performed a preprocess-
ing to generate six different CS_lists corresponding to the six
rough-set-based measurements. Note this process is performed
only once and can be computed offline. With the CS_list available,
we can achieve a near on-line signal measuring for each rule of
interest, as will be demonstrated in the experiments.
rding to ACtype and CStype; 

rding to the rule template RTemp; 

, and Xd, according to the selected approximation 

ncy a*, b*, c*, and d*, according to the measure MStype; 

proposed ADR detection method.



Table 8
Selected drugs marketed in US and associated ADRs.

Rule no. Drug name Adverse reaction Group (age or gender) Marked year Withdrawn or warning year

ADRs of withdrawn drugs
R1-1 AVANDIA Myocardial infarction 18� 1999 2010
R1-2 Death
R1-3 Cerebrovascular accident
R2 TYSABRI Progressive multifocal leukoencephalopathy 18� 2004 2005
R3 ZELNORM Cerebrovascular accident Female 2002 2007

ADRs of non-withdrawn drugs
R4 WARFARIN Myocardial infarction 60� 1940 2014
R5 REVATIO Death �18 2008 2014

Table 9
The accuracy of each rough set based method (For Xa).

Rule Method

M1 M2 M3 M4 M5 M6

R1-1 0.926 0.894 0.854 0.818 0.855 0.818
R1-2 0.909 0.881 0.851 0.822 0.852 0.822
R1-3 0.959 0.947 0.903 0.885 0.903 0.885
R2 0.945 0.940 0.900 0.885 0.900 0.885
R3 1.000 0.994 0.996 0.994 0.996 0.994
R4 1.000 1.000 1.000 1.000 1.000 1.000
R5 0.922 0.918 0.881 0.877 0.881 0.877
Average 0.952 0.939 0.912 0.897 0.912 0.897
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4. Experiments

We conducted a series of experiments to inspect the effective-
ness of our methods. All of the available collections of the FAERS
dataset, from 2004Q1 to 2013Q3, were used. Each quarterly collec-
tion contains around 60,000 to 230,000 reports. All experiments
were performed on a PC with CPU i7-2600, 3 GB RAM, and
120 GB SSD.

We aim to compare the predicting capability of our rough-set-
based methods with deletion method, the most common technique
for handling missing data, on timeline warning of serious ADR sig-
nals. Two variants of deletion method were considered: listwise
deletion and pairwise deletion. The listwise deletion method elim-
inates any records containing missing value in at least one attri-
bute, while pairwise deletion withholds the records with missing
values not occurring on the attributes of concern.

Two groups of drugs were used in these experiments, including
three withdrawn drugs [5,9], AVANDIA, TYSABRI, and ZELNORM,
and two non-withdrawn drugs but labeled in the FDA warning list
(MedWatch) [15], WARFARIN and REVATIO. Other criteria for
choosing these drugs are: (1) There are enough cases associated
with these drugs reported in the FAERS dataset (yearly number
of reports > 3); (2) These drugs yield known ADRs associated with
specific populations. Table 8 lists detailed information of these
drugs and the associated ADRs. For convenience, each ADR is
denoted by a rule. The AGE attribute was discretized into three
levels, ‘‘<18”, ‘‘18–60”, and ‘‘>60”, in accordance with these rules.

All signals were measured by two commonly used criteria, PRR
and ROR, though we only show the results measured by PRR since
similar phenomena were observed for ROR. The threshold for an
ADR rule being significant followed the widely adopted setting,
PRRP 2 and a P 3 [6], where a denotes the number of reports sat-
isfy the rule.

4.1. Accuracy comparison

We first compared the accuracy of the six rough-set-based
methods. For this purpose, we computed for each method the aver-
age accuracy of each rule’s strength over all quarters, and then
obtained the final average over all rules. Since the accuracies of
all contingency sets and rule signals exhibit similar phenomenon,
we only show the results for contingency set Xa (see Table 9). Obvi-
ously, the results are consistent with the analysis presented in Sec-
tion 3.4; Method 1 outperforms all the others, while Methods 4 and
6 exhibit the worst performance.

4.2. Prediction comparison

Since Method 1 exhibits the best accuracy, we then compared
Method 1 with listwise deletion and pairwise deletion. The results
are displayed in Fig. 3, where PRR_ld, PRR_pd, PRR_low, and
PRR_up denote the PRRs generated by listwise deletion, pairwise
deletion, lower and upper approximation by our method, respec-
tively. Note rule R4 is omitted because all methods for this rule
failed to generate significant strength (with PRRP 2). The contin-
gency a values are shown for convenience to inspect the condition
a P 3.

As the results demonstrate, most of the time our method exhibit
similar capability of timeline warning as that of deletion method,
both predicting ADR signals earlier than the time FDA issued warn-
ing or withdrawal announcement. However, in some cases our
method, by providing an approximate range of signal strength,
can predict the signal earlier than both the listwise and pairwise
deletions. For example, for R1-1 our method generates stable
strengths higher than threshold starting from 2007Q2 while the
listwise and pairwise methods do so from 2007Q4, and for R1-2
the result is 2008Q3 (our method) vs. 2008Q4 (listwise and pair-
wise deletions).

We also observe that listwise deletion and pairwise deletion
yields nearly the same signal strength over all cases, though pair-
wise sometimes generate higher strength of rule due to larger a
values it maintains, making pairwise a little better than listwise
in signal prediction. For example, see the results for rule R3 during
07Q3 to 10Q1, and 10Q4 to 12Q2 for R5. This enhancement on the
other hand would bias the signal of concern. For example, for rule
R2 we observe two extraordinary large values yielded by pairwise
deletion at 05Q2 and 07Q2, for which a report containing missing
value that is dismissed by listwise deletion and our method is
taken into account.

Another important phenomenon is solely using quarterly gener-
ated patterns for monitoring ADR signals is not reliable. For exam-
ple, the noteworthy signal for R1-2 generated by our method
during 08Q3 to 10Q3 is faded out and appear again during 12Q4
to 13Q1. This is mainly contributed by the well-known under-
reporting problem [19], causing large variances among the number
of cases reported over different quarters. For this reason, cumula-
tive ADR measurements usually are adopted as auxiliaries.

Fig. 4 shows the cumulative counterpart of Fig. 3. In general, the
results coincide with those exhibited in Fig. 3. The curves gener-
ated by the deletion method, either listwise or pairwise, are situ-
ated between those by our method, which also reinforces the
superiority of our method in earlier detection of high-profile



(a) Rule R1-1 (b) Rule R1-2 

(c) Rule R1-3 (d) Rule R2

(e) Rule R3   (f) Rule R5 

Fig. 3. Comparison of our method and traditional method on quarterly generated signal strengths.
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signals. A noteworthy observation occurs to Fig. 4(b), where both
deletion methods fail to identify Rule 1–2 as significant, while
our method exhibits the potential for this ADR signal.

4.3. Performance comparison

Finally, we compared the execution times of our method with
listwise and pairwise deletions. Two different implementations of
our method were considered, including the naïve approach and
CS_list pre-computed approach. Since the results are similar for
all ADR rules measured by the six methods, we only show the
results of running rule R1-1 with method M1 over 2004Q2 and
2012Q1, where 2004Q2 represents the smallest dataset containing
around 60,000 records, while 2012Q1 is the largest dataset con-
taining around 230,000 records. The preprocessing times for gener-
ating CS_list from 2004Q2 and 2012Q1 requires two and eight



(a) Rule R1-1                                           (b) Rule R1-2 

(c) Rule R1-3 (d) Rule R2

(e) Rule R3  (f) Rule R5 

Fig. 4. Comparison of our method and traditional method on cumulative quarterly signal strengths.

Table 10
Execution time compariosn for rule R1-1 with M1.

Dataset Listwise (s) Pairwise (s) RS method

Naïve CS_list (s)

2004Q2 0.4 0.5 40 min 19
2012Q1 1.7 1.8 20 h 104
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minutes, respectively. From the results shown in Table 10, our
CS_list version, even including the CS_list generation time, signifi-
cantly outperforms naïve implementation, achieving 150x
speedup. Both implementations of our method are relatively
expensive compared with listwise and pairwise deletions.
However, the computation overhead caused by using our method,
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especially the CS_list version, shall be acceptable compared with
quarterly duration for data collection and signal reporting.

5. Conclusions

Although it is well known that the SRS dataset contains lots of
missing data, most of published research work on this topic
adopted listwise deletion to eliminate data with missing values.
No work has noticed the possibility and examined the effect of
including the missing data in the process of ADR detection. In this
paper, we have inspected the feasibility of applying rough set the-
ory to the ADR detection problem. Specifically, we have proposed
twelve different rough-set-based measuring methods and showed
that, in terms of two novel concepts, satisfiable and indistinguish-
able properties, only six of them are feasible for the purpose. We
also have conducted a comparative analysis of these six methods
in terms of measurement accuracy, showing Method 1 the most
effective.

We have compared our method with traditional frequentist
methods with listwise deletion or pairwise deletion in timeline
warning of noteworthy ADR signals. Experimental results show
that most of the time our method exhibits similar capability of
timeline warning as that of traditional method but in some cases
it can yield noteworthy measures earlier. From the preliminary
results, we conclude that rough-set-based ADR signal measuring
method that takes missing data into account is feasible and may
be regarded as an auxiliary for the traditional measuring method.

In the future, we will conduct more comprehensive experi-
ments on other drugs and improve the efficiency of our algorithm.
Besides, our method only applicable to ADR rules with extra condi-
tion, that is, there is at least one incomplete attribute other than
Drug and PT involved in the rule condition. We will also devise
other rough-set-based approaches to eliminate this limitation.

Another restriction of our rough-set-based approach goes into
continuous attributes. The rough set theory is based on the concept
of indiscernibility relation, from which lower and upper approxi-
mations are derived. Although theoretically this relation applies
both for attributes with discrete and continuous domains, in prac-
tice it is only valuable for discrete attributes, because in a decision
table all objects may have been discernible with respect to contin-
uous attributes. This is why discretization is needed for continuous
attributes before employs rough set theory. Since the characteristic
relation for dealing with missing values is derived from the indis-
cernibility relation, discretization for continuous attributes is also
necessary. It will be a challenging issue for how to deal with con-
tinuous attributes without discretization.
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Appendix A

In this appendix, we present the detailed proof of all theorems.
First, we prove Lemmas 1 to 6.

Lemma 1. The subset approximation defined by tolerance character-
istic set KT for contingency sets Xa;Xb;Xc, and Xd, is not C-satisfiable
with respect to P, for P � B.
Proof. We only consider the case of Xa and P = B. It is easy to apply
similar strategies to prove other cases. To prove PKT

s Xa is not C-
satisfiable, we will show that indeed, the upper approximation
PKT
s Xa is not C-satisfiable. h
Lemma 2. The subset approximation defined by similarity character-
istic set KS for contingency sets Xa;Xb;Xc, and Xd, is not C-satisfiable
with respect to P, for P � B.
Proof. The proof is similar to that in Lemma 1. h
Lemma 3. The concept approximation defined by similarity charac-
teristic set KS is indistinguishable for contingency sets Xa;Xb;Xc, and

Xd, with respect to P, for P � B, i.e., PKS
c X ¼ PKS

c X, for X being
Xa;Xb;Xc, or Xd.
Proof. Again, we only consider the case of Xa and P = B. Recall the
following definitions for PKS

c Xa and PKS
c Xa.

PKS
c Xa ¼ [fKSðP; xÞjx 2 Xa;KSðP; xÞ#Xag

PKS
c Xa ¼ [fKSðP; xÞjx 2 Xa;KSðP; xÞ \ Xa –£g
According to the definition of KSðP; xÞ, if a case y 2 KSðP; xÞ, then

aðx; tÞ ¼ aðy; tÞ for any attribute t 2 P and aðx; tÞ – ?. Since x 2 Xa, it
follows that all attribute values of x in B are not lost, i.e., for all
t 2 B, aðx; tÞ – ?, and so are y. This means if y 2 KSðP; xÞ then
y 2 Xa as well. In other words, KSðP; xÞ#Xa and we have

PKS
c Xa ¼ PKS

c Xa ¼ Xa;

which proves the lemma. h
It is interesting to note that in the proof of Lemma 3, if the con-

cept approximation is defined by the tolerance characteristic set,
then a member y 2 KTðP; xÞ may not belong to Xa. This is because
y may contain some don’t care attributes in B, which hinders it
from a member of Xa. This leads to the proof of Lemma 4.

Lemma 4. The singleton approximation defined by similarity char-
acteristic set KS for contingency sets Xa;Xb;Xc, and Xd, is C-satisfiable
with respect to P, for P � B.
Proof. Once again, we only consider the case of Xa and P = B. The
other cases can be proved by similar strategies. According to the
definitions, we have

PKS
g Xa ¼ fx 2 UjKSðP; xÞ#Xag

PKS
g Xa ¼ fx 2 UjKSðP; xÞ \ Xa – £g

Assume that PKS
g Xa is not C-satisfiable, which implies there

exists at least one case x 2 PKS
g Xa and aðx; tÞ– ? such that

aðx; tÞ– aðPredc; tÞ for some attribute t 2 C. According to the defi-
nition of KSðP; xÞ, every member y in KSðP; xÞ should have the same
value on attribute t and so aðy; tÞ – aðPredc; tÞ, which contradicts
the fact that y 2 Xa. Similarly, if PKS

g Xa is not C-satisfiable, we will
conclude KSðP; xÞ \ Xa ¼ £, also a contradiction. h
Lemma 5. The singleton approximation defined by tolerance charac-
teristic set KT is not indistinguishable for contingency sets Xa;Xb;Xc,

and Xd, with respect to P, for P � B, i.e., PKT
g X – PKT

g X, for X being
Xa;Xb;Xc, or Xd.
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Proof. Recall the definition of KTðP; xÞ. A case y in KTðP; xÞ may
have a null value on some attribute t; t 2 B, while aðx; tÞ – �.
Clearly, x does not belong to PKS

g Xa because y is not in Xa, which
invalidates condition KTðP; xÞ#Xa. However, this does not hinder
x from being a member of PKS

g Xa. The lemma follows. h
The next part of this appendix details the proof of Theorem 7. To

this purpose, we first show the subsumptive properties of the two
types of characteristic sets. Let A and B denote the set of attributes
defined in Section 3.2, B#A, and K denote the similarity ðKSÞ or tol-
erance characteristic set ðKTÞ.

Lemma A-1. KðA; xÞ#KðB; xÞ.
Proof. Consider any case y 2 KðA; xÞ. Clearly y 2 KðB; xÞ as well
according to the definition of characteristic set. On the other hand,
consider y 2 KðB; xÞ. If aðy; tÞ – aðx; tÞ and aðx; tÞ – ? or ⁄ for some
attribute t 2 A� B, then y R KðA; xÞ. The lemma follows. h

Let X be Xa;Xb;Xc , or Xc . We further analyze the subsumptive
relations between different types of rough-set-based approxima-
tions. For simplicity, we only show the relations facilitating com-
parative analysis of our proposed six measurements.

Lemma A-2.

(a) AK
g X � BK

g X.

(b) AK
g X#BK

g X.
Proof. Consider x 2 AK
g X. According to the definition, we have

KðA; xÞ#X. Since KðA; xÞ#KðB; xÞ;KðB; xÞ#X may not be held,
which implies x may not be in BK

g X. On the other hand, consider

x 2 BK
g X. By definition and KðA; xÞ#KðB; xÞ, we have KðA; xÞ#X,

leading to x 2 AK
g X. Thus, A

K
g X � BK

g X. By similar approach, we can

show AK
g X#BK

g X. h
Then, according to Lemmas A-2, it is easy to obtain the follow-

ing result.

Corollary A-3. Accuracy(M1) P Accuracy(M2), Accuracy(M3) P
Accuracy(M4).

Next, we compare method M3 with M5, and M4 with M6.
Lemma A-4.

(a) BKT
g X ¼ BKT

c X.

(b) BKT
g X ¼ BKT

c X.
Proof.

(a) Consider any case x 2 BKT
g X. According to the definition, we

have KTðB; xÞ#X and so x 2 X. To show x 2 BKT
c X, we have

to show that there exist some y; x 2 KTðB; yÞ such that y 2 X
and KTðB; yÞ#X. This is trivial since x itself satisfies the con-
dition. Hence, x 2 BKT

c X. Next, we consider any case x 2 BKT
c X.

According to definition, xmust belong to some characteristic
set, say KTðB; yÞ, for y 2 X and KTðB; yÞ#X. Clearly x 2 X.
Then for all t 2 B, aðx; tÞ ¼ aðy; tÞ, leading to
KTðB; xÞ ¼ KTðB; yÞ#X. That it, x 2 BKT

g X, which completes

the proof for BKT
g X ¼ BKT

c X.
(b) Now, consider x 2 BKT
g X. According to definition, we know

KTðB; xÞ \ X –£. To show that x 2 BKT
c X we have to show

that there exists a case y; x 2 KTðB; yÞ, such that y 2 X and
KTðB; yÞ \ X –£. Let y 2 KTðB; xÞ \ X. It is easy to show
x 2 KTðB; yÞ. That is, y is just the case we need. Hence,
x 2 BKT

c X. On the other hand, let x 2 BKT
c X. Then, there must

exist some y 2 X and KTðB; yÞ \ X –£, such that
x 2 KTðB; yÞ. It is easy to show y 2 KTðB; xÞ. Since y 2 X, we
obtain KTðB; xÞ \ X –£, leading to x 2 BKT

c X. This proves
BKT
g X ¼ BKT

c X. h
Corollary A-5. Accuracy(M4) = Accuracy(M6).
Lemma A-6.

(a) AKT
g X#AKT

c X.

(b) AKT
g X ¼ AKT

c X.
Proof. The proof is similar to that for Lemmas A-4. The only differ-
ence is that if x 2 AKT

c X, then x may not be in AKT
g X. This is because

the fact that x 2 X does not guarantee KTðA; xÞ#X even we know
x 2 KTðA; yÞ, for y 2 X and KTðA; yÞ#X. h
Corollary A-7. Accuracy(M3) 6 Accuracy(M5).
Lemma A-8.

(a) BKS
g X � AKT

c X.

(b) BKS
g X ¼ AKT

c X.
Proof.

(a) Consider x 2 BKS
g X. By definition, we know KSðB; xÞ#X and so

x 2 X. To show that x 2 AKT
c X, we have to show that there

exists a case y; x 2 KTðA; yÞ, such that y 2 X and KTðA; yÞ#X.
First, suppose ydoes exist, i.e., x 2 KTðA; yÞ, which implies
that 8t 2 B, aðx; tÞ ¼ aðy; tÞ – � or aðy; tÞ ¼ �. In the latter
case, clearly y R X, while the first case does not guarantee
KTðA; yÞ#X; for example, consider a case w 2 KTðA; yÞ with
aðw; tÞ ¼ � for some t 2 B. Therefore, we conclude that x

may not belong to AKT
c X. On the other hand, suppose

x 2 AKT
c X, which implies 9y 2 X and KTðA; yÞ#X, such that

x 2 KTðA; yÞ. Clearly, x 2 X, implying aðx; tÞ – ? for all t 2 B,
and so 8w 2 KSðB; xÞ, aðw; tÞ ¼ aðx; tÞ or all t 2 B. Thus,
KSðB; xÞ#X, and so x 2 BKS

g X. It follows that BKS
g X � AKT

c X.

(b) Consider x 2 BKS
g X. By definition, we have KSðB; xÞ \ X –£.

Let y 2 KSðB; xÞ \ X. The fact that y 2 KSðB; xÞ means 8t 2 B,
aðx; tÞ = aðy; tÞ = ? or aðx; tÞ = ?, and so we have x 2 KTðB; yÞ
(Note that ‘?’ is interpreted as ‘⁄’ as we consider KTÞ. Since
y 2 KTðB; yÞ;KTðB; yÞ \ X –£. Hence, x 2 AKT

c X. Next, consider
x 2 AKT

c X. By definition, there must exist some y 2 X and
KTðA; yÞ \ X –£, such that x 2 KTðA; yÞ. Clearly, x 2 KTðB; yÞ
by Lemmas A-1. By similar statement, we know y 2 KSðB; xÞ
(In this case, ‘⁄’ is interpreted as ‘?’). Since y 2 X and
y 2 KSðB; xÞ, i.e., KSðB; xÞ \ X –£, we conclude x 2 BKS

g X. It

follows that BKS
g X ¼ AKT

c X. h
Corollary A-9. Accuracy(M2) P Accuracy(M5).
Finally, combing the results in Corollaries A-3, A-5, A-7, and A-9

we obtain the result in Theorem 7.
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