97 research outputs found

    On the trajectory planning for energy efficiency in industrial robotic systems

    Get PDF
    In this paper, we present an approach for the minimum-energy trajectory planning in industrial robotic systems. The method is based on the dynamic and electro-mechanical modeling of one-degree-of-freedom systems and the derivation of the energy formulation for standard point-to-point trajectories, as, for instance, trapezoidal and cycloidal speed profiles. The proposed approach is experimentally validated on two robotic systems, namely a linear axis of a Cartesian manipulator built in the 1990\u2019s, and a test bench composed of two servomotors directly connected or coupled by means of a planetary gear. During the tests, the electrical power expended by the systems is measured and integrated over time to compute the energy consumption for each trajectory. Despite the limitations of the energy measurement systems, the results reveal a trend in agreement with the theoretical calculations, showing the possibility of applying the method for enhancing the performance of industrial robotic systems in terms of energy consumption in point-to-point motions

    Design synthesis & prototype implementation of parallel orientation manipulators for optomechatronic applications

    Get PDF
    This thesis documents a research endeavor undertaken to develop high-performing designs for parallel orientation manipulators (POM) capable of delivering the speed and the accuracy requirements of a typical optomechatronic application. In the course of the research, the state of the art was reviewed, and the areas in the existing design methodologies that can be potentially improved were identified, which included actuator design, dimensional synthesis of POMs, control system design, and kinematic calibration. The gaps in the current art of designing each of these POM system components were addressed individually. The outcomes of the corresponding development activities include a novel design of a highly integrated voice coil actuator (VCA) possessing the speed, the size, and the accuracy requirements of small-scale parallel robotics. Furthermore, a method for synthesizing the geometric dimensions of a POM was developed by adopting response surface methodology (RSM) as the optimization tool. It was also experimentally shown how conveniently RSM can be utilized to develop an empirical quantification of the actual kinematic structure of a POM prototype. In addition, a motion controller was formulated by adopting the active disturbance rejection control (ADRC) technology. The classic formulation of the ADRC algorithm was modified to develop a resource-optimized implementation on control hardware based on field programmable gate arrays (FPGA). The practicality and the effectiveness of the synthesized designs were ultimately demonstrated by performance benchmarking experiments conducted on POM prototypes constructed from these components. In specific terms, it was experimentally shown that the moving platforms of the prototyped manipulators can achieve highspeed motions that can exceed 2000 degrees/s in angular velocity, and 5Ă—105 degrees/s2 in angular acceleration

    Design, control and error analysis of a fast tool positioning system for ultra-precision machining of freeform surfaces

    Get PDF
    This thesis was previously held under moratorium from 03/12/19 to 03/12/21Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis.Freeform surfaces are widely found in advanced imaging and illumination systems, orthopaedic implants, high-power beam shaping applications, and other high-end scientific instruments. They give the designers greater ability to cope with the performance limitations commonly encountered in simple-shape designs. However, the stringent requirements for surface roughness and form accuracy of freeform components pose significant challenges for current machining techniques—especially in the optical and display market where large surfaces with tens of thousands of micro features are to be machined. Such highly wavy surfaces require the machine tool cutter to move rapidly while keeping following errors small. Manufacturing efficiency has been a bottleneck in these applications. The rapidly changing cutting forces and inertial forces also contribute a great deal to the machining errors. The difficulty in maintaining good surface quality under conditions of high operational frequency suggests the need for an error analysis approach that can predict the dynamic errors. The machining requirements also impose great challenges on machine tool design and the control process. There has been a knowledge gap on how the mechanical structural design affects the achievable positioning stability. The goal of this study was to develop a tool positioning system capable of delivering fast motion with the required positioning accuracy and stiffness for ultra-precision freeform manufacturing. This goal is achieved through deterministic structural design, detailed error analysis, and novel control algorithms. Firstly, a novel stiff-support design was proposed to eliminate the structural and bearing compliances in the structural loop. To implement the concept, a fast positioning device was developed based on a new-type flat voice coil motor. Flexure bearing, magnet track, and motor coil parameters were designed and calculated in detail. A high-performance digital controller and a power amplifier were also built to meet the servo rate requirement of the closed-loop system. A thorough understanding was established of how signals propagated within the control system, which is fundamentally important in determining the loop performance of high-speed control. A systematic error analysis approach based on a detailed model of the system was proposed and verified for the first time that could reveal how disturbances contribute to the tool positioning errors. Each source of disturbance was treated as a stochastic process, and these disturbances were synthesised in the frequency domain. The differences between following error and real positioning error were discussed and clarified. The predicted spectrum of following errors agreed with the measured spectrum across the frequency range. It is found that the following errors read from the control software underestimated the real positioning errors at low frequencies and overestimated them at high frequencies. The error analysis approach thus successfully revealed the real tool positioning errors that are mingled with sensor noise. Approaches to suppress disturbances were discussed from the perspectives of both system design and control. A deterministic controller design approach was developed to preclude the uncertainty associated with controller tuning, resulting in a control law that can minimize positioning errors. The influences of mechanical parameters such as mass, damping, and stiffness were investigated within the closed-loop framework. Under a given disturbance condition, the optimal bearing stiffness and optimal damping coefficients were found. Experimental positioning tests showed that a larger moving mass helped to combat all disturbances but sensor noise. Because of power limits, the inertia of the fast tool positioning system could not be high. A control algorithm with an additional acceleration-feedback loop was then studied to enhance the dynamic stiffness of the cutting system without any need for large inertia. An analytical model of the dynamic stiffness of the system with acceleration feedback was established. The dynamic stiffness was tested by frequency response tests as well as by intermittent diamond-turning experiments. The following errors and the form errors of the machined surfaces were compared with the estimates provided by the model. It is found that the dynamic stiffness within the acceleration sensor bandwidth was proportionally improved. The additional acceleration sensor brought a new error source into the loop, and its contribution of errors increased with a larger acceleration gain. At a certain point, the error caused by the increased acceleration gain surpassed other disturbances and started to dominate, representing the practical upper limit of the acceleration gain. Finally, the developed positioning system was used to cut some typical freeform surfaces. A surface roughness of 1.2 nm (Ra) was achieved on a NiP alloy substrate in flat cutting experiments. Freeform surfaces—including beam integrator surface, sinusoidal surface, and arbitrary freeform surface—were successfully machined with optical-grade quality. Ideas for future improvements were proposed in the end of this thesis

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored

    A superconducting magnet plate:for a planar motor application

    Get PDF

    A superconducting magnet plate:for a planar motor application

    Get PDF

    Inverse Dynamics Problems

    Get PDF
    The inverse dynamics problem was developed in order to provide researchers with the state of the art in inverse problems for dynamic and vibrational systems. Contrasted with a forward problem, which solves for the system output in a straightforward manner, an inverse problem searches for the system input through a procedure contaminated with errors and uncertainties. An inverse problem, with a focus on structural dynamics, determines the changes made to the system and estimates the inputs, including forces and moments, to the system, utilizing measurements of structural vibration responses only. With its complex mathematical structure and need for more reliable input estimations, the inverse problem is still a fundamental subject of research among mathematicians and engineering scientists. This book contains 11 articles that touch upon various aspects of inverse dynamic problems

    Improving Dynamics Estimations and Low Level Torque Control Through Inertial Sensing

    Get PDF
    In 1996, professors J. Edward Colgate and Michael Peshkin invented the cobots as robotic equipment safe enough for interacting with human workers. Twenty years later, collaborative robots are highly demanded in the packaging industry, and have already been massively adopted by companies facing issues for meeting customer demands. Meantime, cobots are still making they way into environments where value-added tasks require more complex interactions between robots and human operators. For other applications like a rescue mission in a disaster scenario, robots have to deal with highly dynamic environments and uneven terrains. All these applications require robust, fine and fast control of the interaction forces, specially in the case of locomotion on uneven terrains in an environment where unexpected events can occur. Such interaction forces can only be modulated through the control of joint internal torques in the case of under-actuated systems which is typically the case of mobile robots. For that purpose, an efficient low level joint torque control is one of the critical requirements, and motivated the research presented here. This thesis addresses a thorough model analysis of a typical low level joint actuation sub-system, powered by a Brushless DC motor and suitable for torque control. It then proposes procedure improvements in the identification of model parameters, particularly challenging in the case of coupled joints, in view of improving their control. Along with these procedures, it proposes novel methods for the calibration of inertial sensors, as well as the use of such sensors in the estimation of joint torques

    Design of a robot for gait rehabilitation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Cataloged from PDF version of thesis.Includes bibliographical references.The ability to walk is important for independent living and when this capacity is affected by injury, gait therapy is the traditional approach to re-train the nervous system, to re-build muscle strength, to improve balance, and to re-train kinematics in order to reduce the stresses applied to bones and muscles. The importance of this problem is illustrated by the approximately 5.8 million stroke survivors alive in the US today and an estimated 700,000 strokes occurring each year. In fact, for stroke survivors with mild to moderate impairment, only 37% regain the ability to walk within one week post-stroke and 73% fall within the first six months. Falls are a leading cause of injury among Americans over 65 years old with over one third of this population experiencing a fall each year and an unsteady gait increases this risk. This growing population will require gait therapy. This thesis presents the design, development, fabrication, and proof-of-concept testing for a novel device to deliver gait therapy. While robotic devices exist, none of them take advantage of the concept of passive walkers and most focus on reproducing gait kinematics for impaired patients. Yet research has found that appropriate neural input is an important factor in efficacious therapy. For gait, this input would be the collision between the foot and the ground at heel-strike. The goal of this novel device is to allow patients to begin gait therapy before they are able to independently walk overground while maximizing the amount interface driven neural input during stepping in a safe environment.by Caitlyn Joyce Bosecker.S.M

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions
    • …
    corecore