1,492 research outputs found

    Improved estimation of the covariance matrix of stock returns with an application to portofolio selection

    Get PDF
    This paper proposes to estimate the covariance matrix of stock returns by an optimally weighted average of two existing estimators: the sample covariance matrix and single-index covariance matrix. This method is generally known as shrinkage, and it is standard in decision theory and in empirical Bayesian statistics. Our shrinkage estimator can be seen as a way to account for extra-market covariance without having to specify an arbitrary multi-factor structure. For NYSE and AMEX stock returns from 1972 to 1995, it can be used to select portfolios with significantly lower out-of-sample variance than a set of existing estimators, including multi-factor models.Covariance matrix estimation, factor models, portofolio selection, shrinkage

    Exploring Estimator Bias-Variance Tradeoffs Using the Uniform CR Bound

    Full text link
    We introduce a plane, which we call the delta-sigma plane, that is indexed by the norm of the estimator bias gradient and the variance of the estimator. The norm of the bias gradient is related to the maximum variation in the estimator bias function over a neighborhood of parameter space. Using a uniform Cramer-Rao (CR) bound on estimator variance, a delta-sigma tradeoff curve is specified that defines an “unachievable region” of the delta-sigma plane for a specified statistical model. In order to place an estimator on this plane for comparison with the delta-sigma tradeoff curve, the estimator variance, bias gradient, and bias gradient norm must be evaluated. We present a simple and accurate method for experimentally determining the bias gradient norm based on applying a bootstrap estimator to a sample mean constructed from the gradient of the log-likelihood. We demonstrate the methods developed in this paper for linear Gaussian and nonlinear Poisson inverse problems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86001/1/Fessler98.pd

    Structured least squares problems and robust estimators

    Get PDF
    Cataloged from PDF version of article.A novel approach is proposed to provide robust and accurate estimates for linear regression problems when both the measurement vector and the coefficient matrix are structured and subject to errors or uncertainty. A new analytic formulation is developed in terms of the gradient flow of the residual norm to analyze and provide estimates to the regression. The presented analysis enables us to establish theoretical performance guarantees to compare with existing methods and also offers a criterion to choose the regularization parameter autonomously. Theoretical results and simulations in applications such as blind identification, multiple frequency estimation and deconvolution show that the proposed technique outperforms alternative methods in mean-squared error for a significant range of signal-to-noise ratio values

    Collinearity and consequences for estimation: a study and simulation

    Get PDF

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Multi-output multilevel best linear unbiased estimators via semidefinite programming

    Full text link
    Multifidelity forward uncertainty quantification (UQ) problems often involve multiple quantities of interest and heterogeneous models (e.g., different grids, equations, dimensions, physics, surrogate and reduced-order models). While computational efficiency is key in this context, multi-output strategies in multilevel/multifidelity methods are either sub-optimal or non-existent. In this paper we extend multilevel best linear unbiased estimators (MLBLUE) to multi-output forward UQ problems and we present new semidefinite programming formulations for their optimal setup. Not only do these formulations yield the optimal number of samples required, but also the optimal selection of low-fidelity models to use. While existing MLBLUE approaches are single-output only and require a non-trivial nonlinear optimization procedure, the new multi-output formulations can be solved reliably and efficiently. We demonstrate the efficacy of the new methods and formulations in practical UQ problems with model heterogeneity.Comment: 22 pages, 5 figures, 3 table

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem
    • …
    corecore