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Structured Least Squares Problems and
Robust Estimators

Mert Pilanci, Student Member, IEEE, Orhan Arikan, Member, IEEE, and Mustafa C. Pinar

Abstract—A novel approach is proposed to provide robust and
accurate estimates for linear regression problems when both the
measurement vector and the coefficient matrix are structured and
subject to errors or uncertainty. A new analytic formulation is de-
veloped in terms of the gradient flow of the residual norm to ana-
lyze and provide estimates to the regression. The presented analysis
enables us to establish theoretical performance guarantees to com-
pare with existing methods and also offers a criterion to choose the
regularization parameter autonomously. Theoretical results and
simulations in applications such as blind identification, multiple
frequency estimation and deconvolution show that the proposed
technique outperforms alternative methods in mean-squared error
for a significant range of signal-to-noise ratio values.

Index Terms—Blind identification, deconvolution, errors-in-
variables, frequency estimation, least squares, robust least squares,
structured total least squares.

I. INTRODUCTION

I N various signal processing applications including de-
convolution, signal modeling, frequency estimation, blind

channel identification and equalization, it is important to pro-
duce robust estimates for an unknown vector from a set of
measurements . Typically, a linear model is used to relate the
unknowns to the available measurements: , where
the matrix describes the linear relationship and
is additive measurement noise. Over the years, a multitude of
techniques have been developed to obtain better estimates for

. For instance, if is a random vector with known first and
second order statistics, the Wiener estimator, which minimizes
the mean-squared error (MSE) over all linear estimators, can
be used with proven success [1]. In the absence of such a
statistical information on , the least squares (LS) criterion is
commonly used. The well known LS method for solving the
overdetermined linear equations for , yields
the maximum likelihood (ML) estimate of the deterministic
unknown when the observations are subject to indepen-
dent identically distributed (i.i.d.) Gaussian noise and has the
minimum MSE over all unbiased estimators [2]. In practice,
the observation is noisy and the elements of matrix are
also subject to errors since they may be results of some other
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measurements or obtained under some modeling assumptions.
When the errors in and are zero-mean i.i.d. Gaussian
random variables, the ML estimate can be obtained by the total
least squares (TLS) technique, which ”corrects” the system
with minimum perturbation so that it becomes consistent
[3], [4]. However in many applications, the linear system of
equations has a structure, e.g., Toeplitz, Hankel, Vandermonde,
hence the i.i.d. assumption on the errors is not valid. For that
reason, the structured total least squares (STLS) techniques
and its regularized versions (RSTLS) have been developed to
obtain an accurate estimate by employing minimal norm struc-
tured perturbations on the original system until consistency is
reached [5]–[7].

In two alternative min-max optimal approaches, the estimator
that minimizes the worst case MSE: , [8], [9] or
residual: , [10] is sought respectively. Min-max ap-
proaches reduce to convex optimization problems. However, the
worst case residual approach which is known as structured ro-
bust least squares (SRLS), can also be applied to any linear
structured uncertainty. Furthermore, the SRLS problem can be
efficiently solved using second-order cone programming [11].
The solution can be interpreted as a Tikhonov regularization in
the unstructured case [12], [13]. When is ill-conditioned, the
min-max solution produces a biased to avoid the residual norm
becoming unacceptably large. As a result the min-max approach
may be overly conservative and its average performance is usu-
ally undesirable in many applications. Furthermore, the perfor-
mance of the min-max techniques varies significantly based on
the uncertainty bounds that might not be readily available.

In this paper, we propose and analyze a new method,
Structured Least Squares with bounded data uncertain-
ties (SLS-BDU), to provide a better tradeoff between the
accuracy and robustness of the estimates for the solution to

under structured and bounded uncertainty in and
. Unlike the SRLS technique that minimizes the worst case

error, the proposed SLS-BDU technique minimizes the best
case residual. For ill-conditioned problems, it is demonstrated
both in theory and simulations that a small norm bound on the
perturbation regularizes the solution and prevents numerical
instability which is usually exhibited by the STLS estimator.
The proposed estimator does not force the consistency of given
equations, which is the primary reason of instability in practice.
Instead, the most likely solution that is within the confidence
bounds of the perturbations is found. There are important signal
processing applications where such bounds on the perturbations
are known. Hence, the proposed approach is well suited for
such applications including array signal processing, channel
estimation [14] and equalization [15], system identification
[16], spectral estimation [17], signal modeling [18], where
STLS is readily applied. When bounds on the perturbations
are not available, the bound can be treated as a regularization
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parameter. For this case, we propose a simple strategy to de-
termine the value of the bound that yields accurate and robust
estimates.

The analysis of known estimators and solution of the pro-
posed formulation relies mostly on the Fréchet derivatives of
pseudoinverses which was studied in numerical optimization for
nonlinear least squares fitting [19]. The geometry of gradient
flow of the cost function reveals how the known techniques be-
have differently and their respective performance over different
scenarios. The discussion on the gradient flow leads to a version
of SLS-BDU that automatically chooses the bound parameter
when it is not available to us. It is shown in numerical examples
that the proposed estimator achieves smaller MSE than other al-
ternatives for a large set of SNR values.

In the next section, we present a review of existing ap-
proaches for an overdetermined system of linear equations.
In Section III, we introduce the SLS-BDU approach and pro-
vide an MSE bound. The proposed SLS-BDU technique and
alternatives are studied on a simple example in Section IV.
Section V presents an analysis of the gradient with Fréchet
derivatives and states theorems to formalize the introduced
ideas. Three alternatives to perform the proposed SLS-BDU
optimization and a criterion to select the bound of optimization
are discussed in Sections VI and VII. Finally, Section VIII
presents the performance of the SLS-BDU technique in three
signal processing applications.

II. REVIEW OF EXISTING APPROACHES

In this section, we provide a short review of algorithms that
have been proposed for linear system of equations with errors
in variables. The following approaches can be first divided in to
two categories, namely the structured and unstructured pertur-
bations. The total least squares and unstructured bounded errors
in Variables approaches are in the first category. The structured
total least squares approach is proposed to fulfill the goals of
TLS in case of an existing structure. The structured robust least
squares approach has been proposed to provide min-max op-
timal robust solutions to structured least squares problems. In
the following, each approach will be briefly reviewed.

Throughout the paper, we denote by and the trans-
pose and Moore–Penrose pseudoinverse of the matrix respec-
tively. is the spectral norm of , i.e., the largest singular
value and is the minimum singular value. For an in-
teger , is the th largest singular
value. denotes the Frobenious norm of

. denotes the Hadamard, i.e., elementwise product of
two matrices of the same size. and are the gradient and
Fréchet derivative operators respectively. denotes expecta-
tion of a random variable. denotes the positive part of a
real scalar and denotes the th subarray of an array of num-
bers.

A. The Total Least Squares Approach

In Total Least Squares (TLS) approach, the minimum norm
perturbation on that results in a consistent
system is found. The TLS problem
can be solved by using the singular value decomposition (SVD)
as [3]

(1)

where is the smallest singular value of . However,
the subtraction of from the diagonal of deregu-
lates the inverse operation, hence, results in an increased sen-
sitivity to noise. It is known that the variance of the TLS esti-
mator is always higher than that of the ordinary least squares
estimator, and increases with the condition number of the true
matrix [20]. A weighted TLS solution provides the ML es-
timate for the random Gaussian linear model [4]. See [21] for
other generalizations of the TLS.

B. Regularized-Structured Total Least Squares Approach

Often the imprecisions on and have a structure that is
desired to be kept intact during the perturbations to obtain a
consistent system. For this purpose, the STLS approaches have
been proposed as a constrained optimization problem [5], [6],
[22]:

and

has the same structure as

where for , is a penalty term that is used to regu-
larize the solution. If the perturbations are such that the columns
of can be written as

(2)

where is a white noise vector with variance , the RSTLS
optimization can be reduced to the following nonlinear mini-
mization [23], [24] :

(3)

where

(4)

Except for block circulant matrices [22], this optimization
problem is nonconvex and the developed solution techniques
are based on local optimization. In [24], it is shown that for
high SNR the covariance matrix of the STLS estimator
can be approximated by

(5)

If has a large condition number, the variance can be ex-
tremely large. It is usually noted in applications that at low SNR,
the error variance is even larger than its approximation in (5)
[25], [26].

C. Structured Robust Least Squares Approach

As a member of min-max class of techniques, the SRLS esti-
mates as the solution to the following optimization problem:

(6)

SRLS minimizes the worst case residual over a set of perturba-
tions structured with constant matrices and vectors . As
the bound gets larger, the obtained solutions become more



PILANCI et al.: STRUCTURED LEAST SQUARES PROBLEMS AND ROBUST ESTIMATORS 2455

regularized. Hence, the SRLS approach trades accuracy for ro-
bustness. Since the min-max criterion is convex, the solution to
the SRLS problem can be obtained efficiently by using convex,
second-order cone programming [10].

D. Unstructured Bounded Errors-in-Variables (UBEV) Model

One of the important unstructured techniques is known as
the bounded errors-in-variables approach, where the inner maxi-
mization of the unstructured robust least squares is replaced with
a minimization over the allowed perturbations [27], [28]:

As opposed to the cautious approach taken by the min-max tech-
niques, this technique has an optimistic approach and searches
for the most favorable perturbation in the allowed set of pertur-
bations. In this sense, it is closer to the TLS approach, but more
robust since it does not pursue the consistency as in TLS re-
sulting in sensitivity issues. However, unlike the min-max case,
the min-min approach may be degenerate if the residual be-
comes zero [28]. The nondegenerate and unstructured case has
the same form as the TLS solution

for some positive valued which depends on the pertur-
bation bounds and can be solved using secular equation
techniques [29]. For small enough bounds on the perturbations,
it can be shown that the value of is less than that of in
the TLS solution given in (1), resulting in less de-regularization
than the TLS, hence more robust solutions.

The extended least squares (XLS) criterion [30], which is a
blend of LS and STLS is another technique worth noting. In
XLS and similar techniques [31], the model errors and measure-
ment errors are distinguished using a weighted minimization.

III. STRUCTURED LEAST SQUARES WITH

BOUNDED DATA UNCERTAINTIES

We will consider the following deterministic relationship be-
tween the true variables of a linear system:

(7)

where the true matrix maps the unknowns to
. However neither nor is available to us directly. The

measured is related to as

(8)

where nonzero values of cause structured uncertainty and
is additive i.i.d. noise vector with variance . Furthermore, the
observed untrue matrix is a structurally perturbed version of

:

(9)

Here, both and are fixed matrices with known structure
and is the th element of the perturbation vector . Note that

the structured errors in and may be correlated in this setup
as in the case of linear prediction equations used in harmonic su-
perresolution, AR and ARMA modeling [24], [32]. In those ap-
plications, such as deconvolution or system identification where
no structure exists in the measurement vector, all ’s can be set
to zero.

A. The Proposed Optimization Problem

Borrowing the uncertainty set idea from the min-max frame-
work we formulate the following optimization problem that is
closer to the maximum likelihood solution in spirit:

(10)

which is a generalization of the bounded errors-in-variables
model to the structured case [27]. Here, is a positive-defi-
nite weighting matrix which may be used to incorporate prior
knowledge of perturbations, e.g., imposing frequency domain
constraints. Unlike the min-max case this optimization problem
is nonconvex in general. In the following, we consider the cases
of deterministic and random perturbations, and we will assume
that is small enough so that the objective of (10) is always
positive.

1) Deterministic Perturbations: In Appendix A, given ob-
servations of and , we show that there is no unbiased es-
timator of with finite variance if . This is be-
cause of the fact that for the Fisher Information
Matrix is singular for a deterministic unknown vector . In par-
ticular this result applies to commonly encountered Toeplitz and
Hankel structures which have . If the uncertainty
bounds of measurements are known beforehand, a reasonable
biased estimate can be obtained even though the Cramér–Rao
lower bound is infinite, by using the proposed constrained op-
timization. This case is demonstrated in the signal restoration
application in Section VIII-B where the impulse response has
an uncertainty with known bounds.

2) Random Perturbations: As a data preprocessing step, if
the actual perturbation is modeled as a random vector with
nonzero-mean and positive-definite covariance matrix ,
one can define a new set of matrices and vectors:

(11)

(12)

where is the Cholesky factor of the covariance matrix,
. These new set of matrices enable us to use a whitened

perturbation vector. Hence, without loss of generality, we can
assume is a zero-mean random vector containing independent
identically distributed elements with variance . Then we have
the expectation

(13)

(14)
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For Toeplitz or Hankel structures, this expression can be further
simplified to

(15)

The above expression and also (14) illustrate the fact that, as
a result of the diagonal loading term, even if is an ill-con-
ditioned matrix, the observed matrix may be well-conditioned.
Hence, searching for a consistent system by em-
ploying perturbations on the observed system could re-
sult in an inadmissible estimator with large variance. Adding
a regularization term as in the RSTLS formulation may be a
remedy for this problem. However as will be shown next, by
using the proposed approach defined in (10), it is possible to
find an estimator with smaller MSE.

B. The Mean Squared Error of the SLS-BDU Estimate

The proposed estimator falls into the class of biased estima-
tors for the linear model where bias-variance tradeoff is of pri-
mary importance [33], [34]. To provide further insight, we next
derive an MSE bound which indicates a similar tradeoff. We
begin with the following definitions.

Definition 1: For a constant define functions,

(16)

Without loss of generality, we will assume that in
the rest of the paper, since they can be embedded into

’s as follows:

(17)

Then the following theorem characterizes the MSE of the pro-
posed estimator.

Theorem 3.1: For which is of full column rank for
, the optimal for the proposed optimization in

(10) has the following MSE upper bound:

where is the optimal of (10) and is the minimum sin-
gular value of .

Proof: By analytically minimizing (10) over for a fixed
as an ordinary least squares problem, (10) reduces to

(18)

where is the projector matrix of the
subspace perpendicular to the and we assumed

is of full column rank for . Thus, SLS-BDU
estimator chooses the that minimizes the norm of the obser-
vation which lies out of the range of .

The SLS-BDU estimate which minimizes (10) can be
written in terms of the optimal of (18) as

(19)

Since , the MSE of (19) can be written as [33]

(20)

Since ,
we get

(21)
The following inequalities that are valid for full column rank
matrices and help to obtain the desired upper bound:

and

Using the previous inequality, we can upper bound (21) using

The obtained upper bound clearly shows that the MSE of the
estimate has two parts: the part that increase with the difference
between and its estimate and the part that increases
with the Frobenious norm of the . Since the Frobenious
norm of can be very large for an ill-conditioned
when the estimate gets close to , the second part of the
bound can get extremely large. Therefore, the main idea behind
the proposed estimator is to bound the allowed perturbations
such that the MSE in (21) is near optimal. It is straightforward
to show that when , the SLS-BDU solution is equal to the
ordinary Least Squares solution. Since the STLS optimization
seeks a minimal norm perturbation to zero out the cost function
in (10), the solution given by STLS is identical to the SLS-BDU
solution for a large enough value of the perturbation magnitude
bound . However that choice of usually results a large MSE
in (21) as previously noted in numerical results of [30].

C. MSE Comparison of SLS-BDU and STLS

Using the MSE bound in (3.1) we derive the condition in
which the proposed estimator has smaller MSE then the Max-
imum Likelihood STLS estimator and interpret the result.

Theorem 3.2: For deterministic and bounded perturbations
, let and be the minimum singular values of and ,

respectively, and define

Arbitrary structure
Nonoverlapping structure
Toeplitz or Hankel.

(22)
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Fig. 1. Cost ���� ���� in (26) plotted for a set of estimators on top of each other.

If the following holds:

(23)

then the asymptotically MSE of SLS-BDU with weight ,
is strictly smaller than STLS.

Proof: See Appendix B.
Remark 1: Note that the expression in (23)

denotes the signal-to-noise ratio (SNR), e.g., if were a zero-
mean Gaussian vector with variance , then .

Remark 2: The right-hand side of (23) is expected to be larger
than 1 since, by the observation in (15).

Therefore, Theorem 3.2 asserts that, when SNR is suffi-
ciently low, the condition in (23) is satisfied and the proposed
SLS-BDU has smaller error than STLS. Furthermore, for
ill-conditioned problems where is small, the condition (23)
may hold also for large SNR values. In Section VIII, we show
that this theoretical result is in good agreement with numerical
experiments.

IV. ANALYSIS OF ESTIMATOR PERFORMANCE IN AN

ILLUSTRATIVE EXAMPLE

Consider the single parameter equation
below:

(24)

The corresponding structures are

(25)

Define the cost of given by

(26)

which corresponds to a constant multiple of the negative log-
likelihood given for the observation

where is a zero-mean Gaussian random variable. Fig. 1 de-
picts for several values of plotted on top of each other
for . The lower
bound achievable for any is given by

(27)

which can be easily shown to be zero only for at most two values
of given by

(28)

By carefully inspecting Fig. 1, the two solutions of (28)
and yields the following estimates for :

and

(29)

neither of which is robust since they have steeply rising linear
costs for a small change in . We utilize this observation later
in Section VII by using the gradient of the lower bound as a
measure of this sensitivity. Note that given any random or de-
terministic perturbation , because of the consistency require-
ment, STLS and RSTLS methods produce either or . If the
system were consistent originally, i.e., , the expected
MSE and residual of such consistency constrained estimators
would be large because of the distance . Note that the
residual of is extremely large if is the true parameter.

In Fig. 1, the cost corresponding to a min-max solutions
is also shown. Although the cost min-max solution is less

sensitive to the variations in , its average is considerably large.
However, the SLS-BDU solution given by (10) achieves the

lower bound in (27) for some , which corresponds to an in-
consistent system , but balances robustness and
accuracy by abandoning the consistency condition. An example
of one such solution is given by , which is neither
over conservative as the min-max solution or over optimistic
as the STLS solution .
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V. FRÉCHET DERIVATIVES AND GRADIENT FLOW

In this section, Fréchet derivatives are introduced to analyze
the gradient of the SLS-BDU cost function in detail. In addition,
some analytical results on the rotation of the gradient around
singularities, and the existence of consistencies as hyperplanes
are presented.

A. Differentiation of Pseudoinverses and Projectors

The matrix function
is a mapping between and the space of linear transfor-
mations . Assuming is constant for

, the pseudoinverse and the projector
are both Fréchet differentiable with

respect to and closed form formulas were derived in [19].
Formalism on Fréchet derivatives can be found in [35]. Here
we provide some known facts as well as new results relevant to
our application.

Definition 2: The Fréchet derivative of denoted by
is a tridimensional tensor, formed with matrices of

size containing partial derivatives of the elements of
with respect to , i.e., .

The Fréchet derivative of is given in [19] as

(30)

The following lemma characterizes each entry in the gradient
vector of the SLS-BDU cost function given in (18).

Lemma 5.1: Let and
then,

(31)

Proof:

since and .

B. The Gradient Flow in a Simple Illustrative Case

Consider the following two parameter case:

(32)

which is consistent, i.e., for . The
vector field , which is calculated by (31) is
shown in Fig. 2. The gradient norm is zero on two straight lines

and denoting minimum and maximum of
(18) which intersect at the singular point . The gra-
dient field rotates around the singularity by flowing from the
maximum to minimum and the gradient
norm increases gradually as gets closer to the singular point

Fig. 2. Negative gradient field for the two parameter case in (32). All vectors
rotate around the singularity at �������.

Fig. 3. Gradient flow diagram for the two parameter case in (32). The points �

and � indicate the perturbations done by STLS and SLS-BDU, respectively.

. In Fig. 3, the solution of STLS and the proposed solu-
tion (10) are compared on a diagram for the example in (32). The
points and denote the corrected vectors for STLS
and proposed SLS-BDU for a given and , respec-
tively. denotes the closest consistent system while is the
tangent point of the line passing through singularity to the cir-
cular boundary with radius . This tangent point geometry was
also encountered in unstructured min-min and min-max prob-
lems [29]. It is evident that with a small , the corrected system
is better conditioned with the proposed method. Note that for
a larger value of , the consistency lines will be in the allowed
set of perturbations and the SLS-BDU and the STLS solutions
would be identical.

C. Analytical Results on the Gradient Flow

In this section we present theoretical results which shed light
on the interesting geometry of Fig. 2.

Theorem 5.2: Rotation Around a Singularity: If
, the gradient field

is orthogonal to , i.e.,

(33)
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Proof: By using Lemma 5.1, we get

(34)

Because implies
,

, thus (34) is zero.
Remark 3: Theorem 5.2 reveals the interesting geometry of

Fig. 2, where all vectors absolutely rotate around the singularity
, since is of rank zero.

The next theorem states that every singularity is arbitrarily
close to a consistency for a range of structures which are com-
monly encountered in applications.

Theorem 5.3: If there is no structure, or the structure is of
Toeplitz or Hankel type, then, for singular, there
exists a vector with arbitrarily small norm, satisfying

for any arbitrary .
Proof: First consider the unstructured case and let

. Then

(35)

which implies . For the Toeplitz case, let
, then

(36)

where and .
Because of the Toeplitz structure, it is straightforward to show

that is of full row rank if [36]. Then, for any ,
satisfies as desired. The same

argument follows similarly for the Hankel structure or any other
structure for which is of full row rank.

Theorem 5.4: For Toeplitz or Hankel structured problems,
every point such that is singular, lies on an -
dimensional hyperplane of consistent systems.

Proof: Let and be the
SVD [37] of defined after (36). Then
has solution

(37)

(38)

for all . Therefore, since and are
orthogonal, any vector is in Range for any which
is in the -dimensional columnspace of .

Theorems 5.3 and 5.4 illustrate the ill-conditioned nature of
the consistency constraints. Note that the structure in (32) is
Toeplitz and the singularity lies in a one-dimensional plane of

consistent systems. Theorems 5.2 and 5.4 show that the rotation
property and the proximity of consistencies to singularities are
valid for many systems of interest with arbitrary dimensions.
Therefore, the above observations for the simple example (32)
are commonly encountered in practice.

VI. SOLVING THE SLS-BDU OPTIMIZATION PROBLEM

In this section, three iterative techniques are presented to
solve the nonconvex optimization problem of the SLS-BDU
approach.

A. Individual Optimization by Alternating Minimizations

Although the SLS-BDU cost function is nonconvex in and
together, it is convex for and individually. It is easy to

see that for a fixed , the cost in (10) is convex over . The
following derivation shows that for a fixed , the cost is convex
over as well.

where

which is convex over for a fixed . Therefore, alternating min-
imizations, as in the minimization of extended least squares cri-
terion [30], can be performed:

Algorithm 1: Alternating Minimizations

,

while do

end while

Note that for the update in the alternating minimizations, a
Quadratically constrained quadratic program (QCQP) needs to
be solved [38]. The advantage of this simple algorithm is that,
the QCQP can be replaced with any other convex optimization
and any choice of norm , can also be used. It
is also possible to bound the perturbations by using multiple
constraints of the form , as well.

This alternating minimizations approach is widely used for
optimizing a nonconvex function over two sets of variables in
applications such as superresolution and image deblurring [39].
By Proposition 2.7.1 of [40], Algorithm 1 is guaranteed to con-
verge globally to a stationary point of the problem.

B. Joint Optimization by Linearization

The SLS-BDU cost function can also be linearized around
a given for a small perturbation by ignoring
second order terms as in [41]:

(39)
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Then, the solution to the following optimization provides an up-
date on the estimated and :

(40)
The following Newton iterations can be used to yield an estimate
for the solution to the SLS-BDU problem in (10):

Algorithm 2: Newton’s Method

, ,

while do
Solve (40) for and by using QCQP

end while

This algorithm is a hybrid of Gauss–Newton method and se-
quential quadratic programming (SQP). Assuming is non-
singular for , it converges locally quadratically to a
stationary point by Theorem 12.4.1 [42].

C. Fixed Point Iteration Using the Fréchet Derivatives

By using Theorem 5.1, the gradient of the Lagrangian of
problem (18) can be written as

(41)

By solving under the constraint of , we obtain

(42)

where , .
As given below, a fixed point iteration to solve (42) can be used
to find the SLS-BDU estimate. Note that although this fixed
point iteration converges faster, it can only be used for the Eu-
clidean norm.

Algorithm 3: Fixed Point Iteration

,

while do

end while

,

In our numerical experiments, we observed that this
fixed point iteration has superior convergence. In the ap-
pendix we give a proof for the local Lipschitz continuity of

provided that there exists no singularity or
consistency inside the constraint set . Then, by

Proposition A.26 of [40], Algorithm 3 convergences to a sta-
tionary point with geometric rate of convergence.

Remark 4: The convergence criterion of Algorithm 3 makes
the need of such a norm constraint clearer. Note that the Lips-
chitz continuity would fail near a singularity.

VII. CHOOSING THE BOUND PARAMETER

BASED ON THE GRADIENT NORM

The SLS-BDU technique requires a bound on . Such a
bound may be readily available when uncertainty bounds on
the matrix elements are known. However, for those cases when
there exists no such descriptive information on the bound on ,
it is desirable to have a robust scheme to determine the bound
which yields a good tradeoff between and

. In this section we provide such a criterion based
on the gradient norm. Inspecting the example of Section IV in
Fig. 1, it can be concluded that an abrupt increase in the gradient
norm of the lower bound results in estimates which are highly
sensitive to , loosing robustness. Hence, we investigated the
following simple strategy in the choice of the bound . As
given in Algorithm 4, we start with and increase it with
small steps till the gradient norm starts to increase.
In a wide range of experiments we observed that this simple
scheme provides highly effective results. In the next section, we
illustrate its performance over a range of simulations conducted
at different noise levels.

Algorithm 4: Automated Selection of Bound Parameter

, , ,

while do

end while

VIII. APPLICATIONS AND SIMULATIONS

A. Verification of Theorem 3.2

First, we verify the accuracy of our result in (23). A Toeplitz
matrix with smallest singular value is generated and per-
turbed with an unknown to obtain the measured matrix as
in (9). Based on the observation and only,

is estimated using SLS-BDU and STLS for a range of
and values while is fixed and

. The theorem specifies a region in (SNR, ) plane where
the MSE of SLS-BDU is smaller than STLS asymptotically
as shown in Fig. 4(a). For comparison, the empirical proba-
bility of in 100 trials is
shown in Fig. 4(b). Although the theoretical region is conser-
vative, it clearly indicates the ill-conditioned small and low
SNR region where SLS-BDU outperforms with probability ap-
proaching one.

Next we discuss three signal processing applications of the
SLS-BDU approach to illustrate its effectiveness in ill-condi-
tioned problems.
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Fig. 4. Comparison of SLS-BDU and STLS: (a) Theoretical bound and (b) empirical probability.

Fig. 5. Deconvolution under Impulse Response Uncertainties (a) True (dashed) and observed (solid) impulse responses (b) Actual and restored input signals �
are shown in dashed and solid lines respectively.

B. Deconvolution Under Impulse Response Uncertainties

Suppose that the observed signal is the output of an LTI
system with impulse response :

(43)

where and is white Gaussian noise and

(44)

with bounded data uncertainties on coefficients and
damping terms , . We want to recover

under this structured uncertainty on the impulse response
. The uncertainties in ’s can be linearized by a first order

approximation, , to obtain the
following:

with the constraint . Here, and are Toeplitz
structured matrices which perform convolution operation with
the terms in the summation of (44) and ’s stand for the un-
known perturbations .

The impulse response with uncertainties is shown
in Fig. 5(a). As shown in Fig. 5(b), the SLS-BDU estimate
closely approximates the actual input signal. Table I provides
comparison results between the SLS-BDU and least squares
estimates for both the input signal and the impulse response
estimates at two different uncertainty levels. As expected based
on Theorem 3.2, the tabulated results show that the SLS-BDU
technique provides significantly better estimates for both the
input and the impulse response. Note that STLS estimate is
unsatisfactory since the perturbations are not bounded and
linear approximation is not valid for large perturbations.

C. Frequency Estimation of Multiple Sinusoids

Consider the case where parameters of two complex sinusoids
which are close in frequency need to be estimated with frequen-
cies and in white noise :

(45)
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TABLE I
� , � AND �

�

CORRESPOND TO ACTUAL SIGNAL AND

ESTIMATES, � , �, �
�

CORRESPOND TO ACTUAL,
NOMINAL AND CORRECTED MATRICES, RESPECTIVELY

Fig. 6. Histogram of frequency estimation errors for LS, STLS, HTLS, and
SLS-BDU. Note that the distribution of the estimation error is heavy-tailed for
STLS and HTLS.

The following Linear prediction equations can be solved to es-
timate the parameters of sinusoids [24]:

. .
. ...

... . .
. ...

(46)

The frequency estimation error defined by

is evaluated for the esti-
mates with SLS-BDU with parameters and in
1000 independent trials at various SNR values. In Table II, a
comparison of LS, TLS, STLS, HTLS [43], and SLS-BDU is
given. Histograms of estimation errors are plotted in Fig. 6.
As expected based on Theorem 3.2, the tabulated results
and histograms reveal that the SLS-BDU estimator not only
provides more accurate estimates on the average but it is also
significantly more robust than the STLS estimator. As indicated
by the obtained histograms, the errors of SLS-BDU estimates
have higher concentration around zero, whereas STLS and
HTLS estimates have heavy-tailed distributions.

D. System Identification

Consider the system identification setup depicted in Fig. 8.
An input sequence is applied to the FIR filter and the
output is generated. Measurements of the input and the output
contain noise and respectively. The identification of the
filter can be cast as the following regression problem [16]:

(47)

TABLE II
AVERAGE FREQUENCY ESTIMATION ERRORS FOR LS,

TLS, STLS, HTLS AND SLS-BDU

Fig. 7. MSE of Algorithm 4 and RSTLS solutions for a range of regularization
parameters versus SNR.

Fig. 8. System identification with noisy input � and noisy output �.

where is the observed noisy Toeplitz matrix and
is the observed noisy output. The filter coefficients

were set to , the training signal was
selected as a random sequence of ’s and equal variance inde-
pendent white noise was added to input and output. SLS-BDU
estimates are generated with autonomously chosen bound by
using Algorithm 4. The MSE in 10 000 independent trials of the
SLS-BDU estimator, and RSTLS for a range of regularization
parameters are shown in Fig. 7. As seen from these results, the
SLS-BDU estimator with autonomously chosen bound pro-
vides lower MSE than the RSTLS estimates that are obtained
with a range of regularization parameters. In this example, to il-
lustrate the effectiveness of the criterion by which Algorithm 4
determines , we included the performance of SLS-BDU esti-
mates with hand tuned as well. As seen from the obtained re-
sults, the autonomous choice provides performance results that
are close to the hand tuned case.

The implementations of STLS and RSTLS used in numerical
comparisons are [44], [45], respectively, and both available on-
line. And for TLS and HTLS methods direct implementations
of corresponding references are used.
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IX. CONCLUSION

We considered linear regression problems with structured er-
rors in all variables. A novel estimator, SLS-BDU is proposed in
terms of a nonconvex optimization problem. The analysis of the
MSE of the SLS-BDU estimator reveals the advantage over the
alternative estimators. Three different methods are presented for
iterative solution of the optimization problem. Among the three
methods, the Fréchet gradient approach provides the fastest con-
vergence. Furthermore, the gradient flow space enables us to
study alternative approaches and be able to compare their per-
formances. New theorems that characterize the gradient flow for
practical cases of interest are proven. A simple but efficient cri-
terion to select the optimization parameter based on the gra-
dient norm is proposed. Extensive comparison results on the
SLS-BDU estimator reveal the superior performance of the pro-
posed technique in signal restoration, multiple frequency esti-
mation and system identification applications. The automated
selection of the optimization parameter adaptively regularizes
the solution based on SNR and achieves improved MSE com-
pared to the notable alternative RSTLS technique.

APPENDIX A
SINGULARITY OF THE FISHER INFORMATION MATRIX

It is known that for a singular Fisher information matrix, there
exists no unbiased estimator with finite variance except under
unusual circumstances [46]. In the following proof, we show
that the information matrix is singular for the deterministic per-
turbation case when .

Proof: The observation is related to unknowns and
as

Define and . Given that
is a zero-mean Gaussian random vector with covariance ,

the log-likelihood can be written as

Defining the vector of unknowns and

, the gradient of the log-likelihood can be
obtained as

and the corresponding Fisher information matrix can be ex-
pressed as

Next, we use the following fact: Assume is invertible, the
block matrix

is invertible if and only if is invertible. Since
we assumed is invertible, is invertible if
and only if

is nonzero. By using , this condi-
tion can be simplified to

Therefore, is invertible if and only if
is full column rank. Since it is
easy to show that

which implies that is not invertible for and hence
there exists no unbiased estimator with finite variance.

APPENDIX B
PROOF OF THEOREM 3.2

Proof: First, for any , the following bounds can be
obtained:

(48)

And for nonoverlapping structures, i.e., :

(49)

In particular Toeplitz and Hankel structures are nonoverlapping
and both have . Next, we use the bound

of SLS-BDU and Weyl’s theorem [47] and get

(50)

Also, observe that

(51)
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Using (51) and (50) in Theorem 3.1, another MSE bound of
SLS-BDU can be stated as follows:

(52)

Since STLS is an ML estimator it is asymptotically unbiased
and the asymptotic MSE is equivalent to the second part of (21)
when is replaced by :

(53)

Therefore, when (23) is satisfied, we get

asymptotically.

APPENDIX C
LOCAL LIPSCHITZ CONTINUITY

Proposition C.1: Assume is of full column rank and
for , then is

locally Lipschitz continuous.
Proof: Let be any two vectors satisfying

. And let be the minimum
singular value of in . Using Lemma 5.1, we
get

(54)

(55)

(56)

Now let and
. In [48], the following are derived

for pseudoinverses and projectors having the same rank:

(57)

(58)

Using the above bounds with (47) yields that is
Lipschitz continuous with constant

(59)

Using the above result, we will next prove that the Algorithm
3 converges geometrically provided that is sufficiently small:

Theorem C.2: If satisfies

(60)

where is the condition number of , then
(42) is a contraction mapping and Algorithm 3 converges to a
minimum of (26) with a geometric rate.

Proof: Define the contraction mapping of Algorithm 3 as
. Then, we have

(61)

(62)

In Proposition A.26 of [40], it is shown that geometric con-
vergence is assured when with

. Then, using (59) in (62), we arrive at (60) which satis-
fies the specified condition.
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