105 research outputs found

    Projection methods for clustering and semi-supervised classification

    Get PDF
    This thesis focuses on data projection methods for the purposes of clustering and semi-supervised classification, with a primary focus on clustering. A number of contributions are presented which address this problem in a principled manner; using projection pursuit formulations to identify subspaces which contain useful information for the clustering task. Projection methods are extremely useful in high dimensional applications, and situations in which the data contain irrelevant dimensions which can be counterinformative for the clustering task. The final contribution addresses high dimensionality in the context of a data stream. Data streams and high dimensionality have been identified as two of the key challenges in data clustering. The first piece of work is motivated by identifying the minimum density hyperplane separator in the finite sample setting. This objective is directly related to the problem of discovering clusters defined as connected regions of high data density, which is a widely adopted definition in non-parametric statistics and machine learning. A thorough investigation into the theoretical aspects of this method, as well as the practical task of solving the associated optimisation problem efficiently is presented. The proposed methodology is applied to both clustering and semi-supervised classification problems, and is shown to reliably find low density hyperplane separators in both contexts. The second and third contributions focus on a different approach to clustering based on graph cuts. The minimum normalised graph cut objective has gained considerable attention as relaxations of the objective have been developed, which make them solvable for reasonably well sized problems. This has been adopted by the highly popular spectral clustering methods. The second piece of work focuses on identifying the optimal subspace in which to perform spectral clustering, by minimising the second eigenvalue of the graph Laplacian for a graph defined over the data within that subspace. A rigorous treatment of this objective is presented, and an algorithm is proposed for its optimisation. An approximation method is proposed which allows this method to be applied to much larger problems than would otherwise be possible. An extension of this work deals with the spectral projection pursuit method for semi-supervised classification. iii The third body of work looks at minimising the normalised graph cut using hyperplane separators. This formulation allows for the exact normalised cut to be computed, rather than the spectral relaxation. It also allows for a computationally efficient method for optimisation. The asymptotic properties of the normalised cut based on a hyperplane separator are investigated, and shown to have similarities with the clustering objective based on low density separation. In fact, both the methods in the second and third works are shown to be connected with the first, in that all three have the same solution asymptotically, as their relative scaling parameters are reduced to zero. The final body of work addresses both problems of high dimensionality and incremental clustering in a data stream context. A principled statistical framework is adopted, in which clustering by low density separation again becomes the focal objective. A divisive hierarchical clustering model is proposed, using a collection of low density hyperplanes. The adopted framework provides well founded methodology for determining the number of clusters automatically, and also identifying changes in the data stream which are relevant to the clustering objective. It is apparent that no existing methods can make both of these claims

    Minimum spectral connectivity projection pursuit:Divisive clustering using optimal projections for spectral clustering

    Get PDF
    We study the problem of determining the optimal low-dimensional projection for maximising the separability of a binary partition of an unlabelled dataset, as measured by spectral graph theory. This is achieved by finding projections which minimise the second eigenvalue of the graph Laplacian of the projected data, which corresponds to a non-convex, non-smooth optimisation problem. We show that the optimal univariate projection based on spectral connectivity converges to the vector normal to the maximum margin hyperplane through the data, as the scaling parameter is reduced to zero. This establishes a connection between connectivity as measured by spectral graph theory and maximal Euclidean separation. The computational cost associated with each eigen problem is quadratic in the number of data. To mitigate this issue, we propose an approximation method using microclusters with provable approximation error bounds. Combining multiple binary partitions within a divisive hierarchical model allows us to construct clustering solutions admitting clusters with varying scales and lying within different subspaces. We evaluate the performance of the proposed method on a large collection of benchmark datasets and find that it compares favourably with existing methods for projection pursuit and dimension reduction for data clustering. Applying the proposed approach for a decreasing sequence of scaling parameters allows us to obtain large margin clustering solutions, which are found to be competitive with those from dedicated maximum margin clustering algorithms

    Low-Density Cluster Separators for Large, High-Dimensional, Mixed and Non-Linearly Separable Data.

    Get PDF
    The location of groups of similar observations (clusters) in data is a well-studied problem, and has many practical applications. There are a wide range of approaches to clustering, which rely on different definitions of similarity, and are appropriate for datasets with different characteristics. Despite a rich literature, there exist a number of open problems in clustering, and limitations to existing algorithms. This thesis develops methodology for clustering high-dimensional, mixed datasets with complex clustering structures, using low-density cluster separators that bi-partition datasets using cluster boundaries that pass through regions of minimal density, separating regions of high probability density, associated with clusters. The bi-partitions arising from a succession of minimum density cluster separators are combined using divisive hierarchical and partitional algorithms, to locate a complete clustering, while estimating the number of clusters. The proposed algorithms locate cluster separators using one-dimensional arbitrarily oriented subspaces, circumventing the challenges associated with clustering in high-dimensional spaces. This requires continuous observations; thus, to extend the applicability of the proposed algorithms to mixed datasets, methods for producing an appropriate continuous representation of datasets containing non-continuous features are investigated. The exact evaluation of the density intersected by a cluster boundary is restricted to linear separators. This limitation is lifted by a non-linear mapping of the original observations into a feature space, in which a linear separator permits the correct identification of non-linearly separable clusters in the original dataset. In large, high-dimensional datasets, searching for one-dimensional subspaces, which result in a minimum density separator is computationally expensive. Therefore, a computationally efficient approach to low-density cluster separation using approximately optimal projection directions is proposed, which searches over a collection of one-dimensional random projections for an appropriate subspace for cluster identification. The proposed approaches produce high-quality partitions, that are competitive with well-established and state-of-the-art algorithms

    PPCI: an R Package for Cluster Identification using Projection Pursuit

    Get PDF
    This paper presents the R package PPCI which implements three recently proposed projection pursuit methods for clustering. The methods are unified by the approach of defining an optimal hyperplane to separate clusters, and deriving a projection index whose optimiser is the vector normal to this separating hyperplane. Divisive hierarchical clustering algorithms that can detect clusters defined in different subspaces are readily obtained by recursively bi-partitioning the data through such hyperplanes. Projecting onto the vector normal to the optimal hyperplane enables visualisations of the data that can be used to validate the partition at each level of the cluster hierarchy. PPCI also provides a simplified framework in which the clustering models can be modified in an interactive manner. Extensions to problems involving clusters which are not linearly separable, and to the problem of finding maximum hard margin hyperplanes for clustering are also discussed

    Nonlinear Dimensionality Reduction for Clustering

    Get PDF
    We introduce an approach to divisive hierarchical clustering that is capable of identifying clusters in nonlinear manifolds. This approach uses the isometric mapping (Isomap) to recursively embed (subsets of) the data in one dimension, and then performs a binary partition designed to avoid the splitting of clusters. We provide a theoretical analysis of the conditions under which contiguous and high density clusters in the original space are guaranteed to be separable in the one dimensional embedding. To the best of our knowledge there is little prior work that studies this problem. Extensive experiments on simulated and real data sets show that hierarchical divisive clustering algorithms derived from this approach are effective

    Discretize and Conquer: Scalable Agglomerative Clustering in Hamming Space

    Get PDF
    Clustering is one of the most fundamental tasks in many machine learning and information retrieval applications. Roughly speaking, the goal is to partition data instances such that similar instances end up in the same group while dissimilar instances lie in different groups. Quite surprisingly though, the formal and rigorous definition of clustering is not at all clear mainly because there is no consensus about what constitutes a cluster. That said, across all disciplines, from mathematics and statistics to genetics, people frequently try to get a first intuition about the data through identifying meaningful groups. Finding similar instances and grouping them are two main steps in clustering, and not surprisingly, both have been the subject of extensive study over recent decades. It has been shown that using large datasets is the key to achieving acceptable levels of performance in data-driven applications. Today, the Internet is a vast resource for such datasets, each of which contains millions and billions of high-dimensional items such as images and text documents. However, for such large-scale datasets, the performance of the employed machine-learning algorithm quickly becomes the main bottleneck. Conventional clustering algorithms are no exception, and a great deal of effort has been devoted to developing scalable clustering algorithms. Clustering tasks can vary both in terms of the input they have and the output that they are expected to generate. For instance, the input of a clustering algorithm can hold various types of data such as continuous numerical, and categorical types. This thesis on a particular setting; in it, the input instances are represented with binary strings. Binary representation has several advantages such as storage efficiency, simplicity, lack of a numerical-data-like concept of noise, and being naturally normalized. The literature abounds with applications of clustering binary data, such as in marketing, document clustering, and image clustering. As a more-concrete example, in marketing for an online store, each customer's basket is a binary representation of items. By clustering customers, the store can recommend items to customers with the same interests. In document clustering, documents can be represented as binary codes in which each element indicates whether a word exists in the document or not. Another notable application of binary codes is in binary hashing, which has been the topic of significant research in the last decade. The goal of binary hashing is to encode high-dimensional items, such as images, with compact binary strings so as to preserve a given notion of similarity. Such codes enable extremely fast nearest neighbour searches, as the distance between two codes (often the Hamming distance) can be computed quickly using bit-wise operations implemented at the hardware level. Similar to other types of data, the clustering of binary datasets has witnessed considerable research recently. Unfortunately, most of the existing approaches are only concerned with devising density and centroid-based clustering algorithms, even though many other types of clustering techniques can be applied to binary data. One of the most popular and intuitive algorithms in connectivity-based clustering is the Hierarchical Agglomerative Clustering (HAC) algorithm, which is based on the core idea of objects being more related to nearby objects than to objects farther away. As the name suggests, HAC is a family of clustering methods that return a dendrogram as their output: that is, a hierarchical tree of domain subsets, having a singleton instance in their leaves and the whole data instances in their root. Such algorithms need no prior knowledge about the number of clusters. Most of them are deterministic and applicable to different cluster shapes, but these advantages come at the price of high computational and storage costs in comparison with other popular clustering algorithms such as k-means. In this thesis, a family of HAC algorithms is proposed, called Discretized Agglomerative Clustering (DAC), that is designed to work with binary data. By leveraging the discretized and bounded nature of binary representation, the proposed algorithms can achieve significant speedup factors both in theory and practice, in comparison to the existing solutions. From the theoretical perspective, DAC algorithms can reduce the computational cost of hierarchical clustering from cubic to quadratic, matching the known lower bounds for HAC. The proposed approach is also be empirically compared with other well-known clustering algorithms such as k-means, DBSCAN, average, and complete-linkage HAC, on well-known datasets such as TEXMEX, CIFAR-10 and MNIST, which are among the standard benchmarks for large-scale algorithms. Results indicate that by mapping real points to binary vectors using existing binary hashing algorithms and clustering them with DAC, one can achieve several orders of magnitude speed without losing much clustering quality, and in some cases, achieving even more

    Module hierarchy and centralisation in the anatomy and dynamics of human cortex

    Get PDF
    Systems neuroscience has recently unveiled numerous fundamental features of the macroscopic architecture of the human brain, the connectome, and we are beginning to understand how characteristics of brain dynamics emerge from the underlying anatomical connectivity. The current work utilises complex network analysis on a high-resolution structural connectivity of the human cortex to identify generic organisation principles, such as centralised, modular and hierarchical properties, as well as specific areas that are pivotal in shaping cortical dynamics and function. After confirming its small-world and modular architecture, we characterise the cortexā€™ multilevel modular hierarchy, which appears to be reasonably centralised towards the brainā€™s strong global structural core. The potential functional importance of the core and hub regions is assessed by various complex network metrics, such as integration measures, network vulnerability and motif spectrum analysis. Dynamics facilitated by the large-scale cortical topology is explored by simulating coupled oscillators on the anatomical connectivity. The results indicate that cortical connectivity appears to favour high dynamical complexity over high synchronizability. Taking the ability to entrain other brain regions as a proxy for the threat posed by a potential epileptic focus in a given region, we also show that epileptic foci in topologically more central areas should pose a higher epileptic threat than foci in more peripheral areas. To assess the influence of macroscopic brain anatomy in shaping global resting state dynamics on slower time scales, we compare empirically obtained functional connectivity data with data from simulating dynamics on the structural connectivity. Despite considerable micro-scale variability between the two functional connectivities, our simulations are able to approximate the profile of the empirical functional connectivity. Our results outline the combined characteristics a hierarchically modular and reasonably centralised macroscopic architecture of the human cerebral cortex, which, through these topological attributes, appears to facilitate highly complex dynamics and fundamentally shape brain function

    Signal and image processing methods for imaging mass spectrometry data

    Get PDF
    Imaging mass spectrometry (IMS) has evolved as an analytical tool for many biomedical applications. This thesis focuses on algorithms for the analysis of IMS data produced by matrix assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometer. IMS provides mass spectra acquired at a grid of spatial points that can be represented as hyperspectral data or a so-called datacube. Analysis of this large and complex data requires efficient computational methods for matrix factorization and for spatial segmentation. In this thesis, state of the art processing methods are reviewed, compared and improved versions are proposed. Mathematical models for peak shapes are reviewed and evaluated. A simulation model for MALDI-TOF is studied, expanded and developed into a simulator for 2D or 3D MALDI-TOF-IMS data. The simulation approach paves way to statistical evaluation of algorithms for analysis of IMS data by providing a gold standard dataset. [...

    Multivariate Analysis in Management, Engineering and the Sciences

    Get PDF
    Recently statistical knowledge has become an important requirement and occupies a prominent position in the exercise of various professions. In the real world, the processes have a large volume of data and are naturally multivariate and as such, require a proper treatment. For these conditions it is difficult or practically impossible to use methods of univariate statistics. The wide application of multivariate techniques and the need to spread them more fully in the academic and the business justify the creation of this book. The objective is to demonstrate interdisciplinary applications to identify patterns, trends, association sand dependencies, in the areas of Management, Engineering and Sciences. The book is addressed to both practicing professionals and researchers in the field
    • ā€¦
    corecore