144 research outputs found

    Joint Routing and STDMA-based Scheduling to Minimize Delays in Grid Wireless Sensor Networks

    Get PDF
    In this report, we study the issue of delay optimization and energy efficiency in grid wireless sensor networks (WSNs). We focus on STDMA (Spatial Reuse TDMA)) scheduling, where a predefined cycle is repeated, and where each node has fixed transmission opportunities during specific slots (defined by colors). We assume a STDMA algorithm that takes advantage of the regularity of grid topology to also provide a spatially periodic coloring ("tiling" of the same color pattern). In this setting, the key challenges are: 1) minimizing the average routing delay by ordering the slots in the cycle 2) being energy efficient. Our work follows two directions: first, the baseline performance is evaluated when nothing specific is done and the colors are randomly ordered in the STDMA cycle. Then, we propose a solution, ORCHID that deliberately constructs an efficient STDMA schedule. It proceeds in two steps. In the first step, ORCHID starts form a colored grid and builds a hierarchical routing based on these colors. In the second step, ORCHID builds a color ordering, by considering jointly both routing and scheduling so as to ensure that any node will reach a sink in a single STDMA cycle. We study the performance of these solutions by means of simulations and modeling. Results show the excellent performance of ORCHID in terms of delays and energy compared to a shortest path routing that uses the delay as a heuristic. We also present the adaptation of ORCHID to general networks under the SINR interference model

    Millimeter-wave backhaul for 5G networks: challenges and solutions

    No full text
    The trend for dense deployment in future 5G mobile communication networks makes current wired backhaul infeasible owing to the high cost. Millimetre-wave (mm-wave) communication, a promising technique with the capability of providing a multi-gigabit transmission rate, offers a flexible and cost-effective candidate for 5G backhauling. By exploiting highly directional antennas, it becomes practical to cope with explosive traffic demands and to deal with interference problems. Several advancements in physical layer technology, such as hybrid beamforming and full duplexing, bring new challenges and opportunities for mm-wave backhaul. This article introduces a design framework for 5G mm-wave backhaul, including routing, spatial reuse scheduling and physical layer techniques. The associated optimization model, open problems and potential solutions are discussed to fully exploit the throughput gain of the backhaul network. Extensive simulations are conducted to verify the potential benefits of the proposed method for the 5G mm-wave backhaul design

    Optimal scheduling and fair servicepolicy for STDMA in underwater networks with acoustic communications

    Get PDF
    In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index

    On the performance of STDMA Link Scheduling and Switched Beamforming Antennas in Wireless Mesh Networks

    Get PDF
    Projecte final de carrera realitzat en col.laboraciĂł amb King's College LondonWireless Mesh Networks (WMNs) aim to revolutionize Internet connectivity due to its high throughput, cost-e ectiveness and ease deployment by providing last mile connectivity and/or backhaul support to di erent cellular networks. In order not to jeopardize their successful deployment, several key issues must be investigated and overcome to fully realize its potential. For WMNs that utilize Spatial Reuse TDMA as the medium access control, link scheduling still requires further enhancements. The rst main contribution of this thesis is a fast randomized parallel link swap based packing (RSP) algorithm for timeslot allocation in a spatial time division multiple access (STDMA) wireless mesh network. The proposed randomized algorithm extends several greedy scheduling algorithms that utilize the physical interference model by applying a local search that leads to a substantial improvement in the spatial timeslot reuse. Numerical simulations reveal that compared to previously scheduling schemes the proposed randomized algorithm can achieve a performance gain of up to 11%. A signi cant bene t of the proposed scheme is that the computations can be parallelized and therefore can e ciently utilize commoditized and emerging multi-core and/or multi-CPU processors. Furthermore, the use of selectable multi-beam directional antennas in WMNs, such as beam switched phase array antennas, can assist to signi cantly enhance the overall reuse of timeslots by reducing interference levels across the network and thereby increasing the spectral e ciency of the system. To perform though a switch on the antenna beam it may require up to 0.25 ms in practical deployed networks, while at the same time very frequent beam switchings can a ect frame acquisition and overall reliability of the deployed mesh network. The second key contribution of this thesis is a set of algorithms that minimize the overall number of required beam switchings in the mesh network without penalizing the spatial reuse of timeslots, i.e., keeping the same overall frame length in the network. Numerical investigations reveal that the proposed set of algorithms can reduce the number of beam switchings by almost 90% without a ecting the frame length of the network

    Cross layer optimization in 4G Wireless mesh networks

    Get PDF
    Wireless networks have been rapidly evolving over the past two decades. It is foreseen that Fourth generation (4G) wireless systems will involve the integration of wireless mesh networks and the 3G wireless systems such as WCDMA. Moreover their wireless mesh routers will provide service to wireless local networks (WLANs) and possibly incorporate MIMO system and smart admission control policies among others. This integration will not only help the service providers cost effectiveness and users connectivities but will also improve and guarantee the QoS criteria. On the other hand, cross layer design has emerged as a new and major thrust in improving the quality of service (QoS) of wireless networks. Cross layer design involves the interaction of various layers of the network hierarchy which could further improve the QoS of the 4G integrated networks. In this work we seek new techniques for improving the overall QoS of integrated 4G systems. Towards this objective we start with the local low tier WLAN access. We then investigate CDMA alternatives to the TDMA access for wireless mesh networks. Cross layer design in wireless mesh networks is then pursued. In the first phase of this thesis a new access mechanism for WLANs is developed, in which users use an optimum transmission probability obtained by estimating the number of stations from the traffic conditions in a sliding window fashion, thereby increasing the throughput compared to the standard DCF and RTS/CTS mechanism while maintaining the same fairness and the delay performance. In the second phase we introduce a code division multiple access/Time division duplex technique CDMA/TDD for wireless mesh networks, we outline the transmitter and receiver for the relay nodes and evaluate the efficiency, delay and delay jitter performances. This CDMA based technique is more amenable to integrating the two systems (Mesh networks and WCDMA or CDMA 2000 of3G). We compare these results with the TDMA operation and through analysis we prove that the CDMA system outperforms the TDMA counterparts. In the third phase we proceed to an instance of cross layer optimized networks, where we develop an overall optimization routine that finds simultaneously the best route and the best capacity allocation to various nodes. This optimization routine minimizes the average end to end packet delay over all calls subject to various contraints. In the process we use a new adaptive version of Spatial TDMA as a platform for comparison purposes of the MAC techniques involved in the cross layer design. In this phase we also combine CDMA/TDD and optimum routing for cross layer design in wireless mesh networks. We compare the results of the CDMA/TDD system with results obtained from the STDMA system. In our analysis we consider the parallel transmissions of mesh nodes in a mesh topology. These parallel transmissions will increase the capacity resulting in a higher throughput with a lower delay. This will allow the service providers to accommodate more users in their system which will obviously reduce the colt and the end users will enjoy a better service paying a lower amount

    Topology design and scheduling in STDMA based wireless ad hoc networks

    Get PDF
    Cataloged from PDF version of article.With current advances in technology, wireless networks are increasing in popularity. Wireless networks allow users the freedom to travel from one location to another without interruption of their communication activities. Ad hoc networks, a subset of wireless networks, allow the formation of a wireless network without the need for a base station. Since no fixed infrastructure is involved in the communication, the nodes of ad hoc networks can communicate with each other or can relay data to other nodes. With this flexibility, wireless ad hoc networks have the ability to form a network anywhere, at any time, as long as two or more wireless users are willing to communicate. Managing ad hoc networks is a significantly more difficult task than managing wireline networks. The network requirements should be met by combined efforts of all the mobile nodes themselves. The nodes of ad hoc networks often operate under severe constraints, such as limited battery power, variable link quality and limited shared bandwidth. In this study, the topology design issue in ad hoc wireless networks is investigated. We employ hierarchical routing where the network topology is composed of clusters interconnected via a root node. Cluster-based topologies are suitable for military services, an important application area for ad hoc networks. The common power control technique (COMPOW) is used in this thesis where all nodes transmit at the same power level. Nodes employ the spatial TDMA (STDMA) scheme in order to access the channel. An important task is how to produce a minimum STDMA frame length, and this problem is known to be NP complete. We develop a heuristic algorithm for generating the minimum STDMA frame length. A new interference model for ad hoc networks is proposed which utilizes a hypergraph model. The relationship between the frame length, number of clusters and the transmit power level are investigated through numerical examples using a 15- node network.Ergin, Sadettin AlpM.S

    Joint Link Scheduling and Routing for Load Balancing in STDMA Wireless Mesh Networks

    Get PDF
    In wireless mesh networks, it is known to be effective to use a TDMA based MAC than a contention-based CSMA. In addition, if spatial TDMA is used, network performance can be improved further because of its spatial reuse effect. However this scheme still has a disadvantage in the system performance aspect without a load-balanced routing because the resource of links that are not used is wasted and frequently used links are out of resources. That is, the number of available flows in network is limited because load balancing is not performed. In this paper, we propose joint link scheduling and routing through a cross-layer scheme. For this, we propose a load balancing routing method to maximize available resources under the given traffic pattern and scheduling method for maximizing link utilization on the given route. These two methods are iterated until an optimized solution can be obtained. The proposed algorithm can be formulated using a mathematical LP problem and we show that it is very effective for load balancing compared to simple adoption of IEEE 802.11s which is a standard TDMA protocol in wireless mesh network. If the proposed algorithm is applied to initial design solution such as Smart Grid, the number of available flows can be increased and the load on each link can be balanced

    Achieving reliable and enhanced communication in vehicular ad hoc networks (VANETs)

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirement for the degree of Doctor of PhilosophyWith the envisioned age of Internet of Things (IoTs), different aspects of Intelligent Transportation System (ITS) will be linked so as to advance road transportation safety, ease congestion of road traffic, lessen air pollution, improve passenger transportation comfort and significantly reduce road accidents. In vehicular networks, regular exchange of current position, direction, speed, etc., enable mobile vehicle to foresee an imminent vehicle accident and notify the driver early enough in order to take appropriate action(s) or the vehicle on its own may take adequate preventive measures to avert the looming accident. Actualizing this concept requires use of shared media access protocol that is capable of guaranteeing reliable and timely broadcast of safety messages. This dissertation investigates the use of Network Coding (NC) techniques to enrich the content of each transmission and ensure improved high reliability of the broadcasted safety messages with less number of retransmissions. A Code Aided Retransmission-based Error Recovery (CARER) protocol is proposed. In order to avoid broadcast storm problem, a rebroadcasting vehicle selection metric η, is developed, which is used to select a vehicle that will rebroadcast the received encoded message. Although the proposed CARER protocol demonstrates an impressive performance, the level of incurred overhead is fairly high due to the use of complex rebroadcasting vehicle selection metric. To resolve this issue, a Random Network Coding (RNC) and vehicle clustering based vehicular communication scheme with low algorithmic complexity, named Reliable and Enhanced Cooperative Cross-layer MAC (RECMAC) scheme, is proposed. The use of this clustering technique enables RECMAC to subdivide the vehicular network into small manageable, coordinated clusters which further improve transmission reliability and minimise negative impact of network overhead. Similarly, a Cluster Head (CH) selection metric ℱ(\u1d457) is designed, which is used to determine and select the most suitably qualified candidate to become the CH of a particular cluster. Finally, in order to investigate the impact of available radio spectral resource, an in-depth study of the required amount of spectrum sufficient to support high transmission reliability and minimum latency requirements of critical road safety messages in vehicular networks was carried out. The performance of the proposed schemes was clearly shown with detailed theoretical analysis and was further validated with simulation experiments
    • …
    corecore