15,725 research outputs found

    Minimum Scan Cover and Variants - Theory and Experiments

    Get PDF
    We consider a spectrum of geometric optimization problems motivated by contexts such as satellite communication and astrophysics. In the problem Minimum Scan Cover with Angular Costs, we are given a graph G that is embedded in Euclidean space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan their edge, two vertices need to face each other; changing the heading of a vertex incurs some cost in terms of energy or rotation time that is proportional to the corresponding rotation angle. Our goal is to compute schedules that minimize the following objective functions: (i) in Minimum Makespan Scan Cover (MSC-MS), this is the time until all edges are scanned; (ii) in Minimum Total Energy Scan Cover (MSC-TE), the sum of all rotation angles; (iii) in Minimum Bottleneck Energy Scan Cover (MSC-BE), the maximum total rotation angle at one vertex. Previous theoretical work on MSC-MS revealed a close connection to graph coloring and the cut cover problem, leading to hardness and approximability results. In this paper, we present polynomial-time algorithms for 1D instances of MSC-TE and MSC-BE, but NP-hardness proofs for bipartite 2D instances. For bipartite graphs in 2D, we also give 2-approximation algorithms for both MSC-TE and MSC-BE. Most importantly, we provide a comprehensive study of practical methods for all three problems. We compare three different mixed-integer programming and two constraint programming approaches, and show how to compute provably optimal solutions for geometric instances with up to 300 edges. Additionally, we compare the performance of different meta-heuristics for even larger instances

    Advanced space communications architecture study. Volume 2: Technical report

    Get PDF
    The technical feasibility and economic viability of satellite system architectures that are suitable for customer premise service (CPS) communications are investigated. System evaluation is performed at 30/20 GHz (Ka-band); however, the system architectures examined are equally applicable to 14/11 GHz (Ku-band). Emphasis is placed on systems that permit low-cost user terminals. Frequency division multiple access (FDMA) is used on the uplink, with typically 10,000 simultaneous accesses per satellite, each of 64 kbps. Bulk demodulators onboard the satellite, in combination with a baseband multiplexer, convert the many narrowband uplink signals into a small number of wideband data streams for downlink transmission. Single-hop network interconnectivity is accomplished via downlink scanning beams. Each satellite is estimated to weigh 5600 lb and consume 6850W of power; the corresponding payload totals are 1000 lb and 5000 W. Nonrecurring satellite cost is estimated at 110million,withthefirstunitcostat110 million, with the first-unit cost at 113 million. In large quantities, the user terminal cost estimate is $25,000. For an assumed traffic profile, the required system revenue has been computed as a function of the internal rate of return (IRR) on invested capital. The equivalent user charge per-minute of 64-kbps channel service has also been determined

    The Next-Generation Multimission U.S. Surveillance Radar Network

    Get PDF
    The U.S. Government operates seven distinct radar networks, providing weather and aircraft surveillance for public weather services, air traffic control, and homeland defense. In this paper, we describe a next-generation multimission phased-array radar (MPAR) concept that could provide enhanced weather and aircraft surveillance services with potentially lower life cycle costs than multiple single-function radar networks. We describe current U.S. national weather and aircraft surveillance radar networks and show that by reducing overlapping airspace coverage, MPAR could reduce the total number of radars required by approximately one-third. A key finding is that weather surveillance requirements dictate the core parameters of a multimission radar—airspace coverage, aperture size, radiated power, and angular resolution. Aircraft surveillance capability can be added to a phased array weather radar at low incremental cost because the agile, electronically steered beam would allow the radar to achieve the much more rapid scan update rates needed for aircraft volume search missions, and additionally to support track modes for individual aircraft targets. We describe an MPAR system design that includes multiple transmit–receive channels and a highly digitized active phased array to generate independently steered beam clusters for weather, aircraft volume search, and aircraft track modes. For each of these modes, we discuss surveillance capability improvements that would be realized relative to today's radars. The Federal Aviation Administration (FAA) has initiated the development of an MPAR “preprototype” that will demonstrate critical subsystem technologies and multimission operational capabilities. Initial subsystem designs have provided a solid basis for estimating MPAR costs for comparison with existing, mechanically scanned operational surveillance radars.United States. Federal Aviation Administration (FA8721-05-C-0002

    Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy

    Get PDF
    The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts
    corecore