1,432 research outputs found

    Equivalence of the filament and overlap graphs of subtrees of limited trees

    Get PDF
    The overlap graphs of subtrees of a tree are equivalent to subtree filament graphs, the overlap graphs of subtrees of a star are cocomparability graphs, and the overlap graphs of subtrees of a caterpillar are interval filament graphs. In this paper, we show the equivalence of many more classes of subtree overlap and subtree filament graphs, and equate them to classes of complements of cochordal-mixed graphs. Our results generalize the previously known results mentioned above

    On dominating set polyhedra of circular interval graphs

    Get PDF
    Clique-node and closed neighborhood matrices of circular interval graphs are circular matrices. The stable set polytope and the dominating set polytope on these graphs are therefore closely related to the set packing polytope and the set covering polyhedron on circular matrices. Eisenbrand et al. [18] take advantage of this relationship to propose a complete linear description of the stable set polytope on circular interval graphs. In this paper we follow similar ideas to obtain a complete description of the dominating set polytope on the same class of graphs. As in the packing case, our results are established for a larger class of covering polyhedra of the form Q ∗ (A, b) := conv {x ∈ Z n + : Ax ≥ b}, with A a circular matrix and b an integer vector. These results also provide linear descriptions of polyhedra associated with several variants of the dominating set problem on circular interval graphs.Fil: Bianchi, Silvia María. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Tolomei, Paola Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Torres, Luis Miguel. Escuela Politécnica Nacional; Ecuado

    A network flow approach to a common generalization of Clar and Fries numbers

    Full text link
    Clar number and Fries number are two thoroughly investigated parameters of plane graphs emerging from mathematical chemistry to measure stability of organic molecules. We consider first a common generalization of these two concepts for bipartite plane graphs, and then extend it to a framework on general (not necessarily planar) directed graphs. The corresponding optimization problem can be transformed into a maximum weight feasible tension problem which is the linear programming dual of a minimum cost network flow (or circulation) problem. Therefore the approach gives rise to a min-max theorem and to a strongly polynomial algorithm that relies exclusively on standard network flow subroutines. In particular, we give the first network flow based algorithm for an optimal Fries structure and its variants

    Combinatorics and geometry of finite and infinite squaregraphs

    Full text link
    Squaregraphs were originally defined as finite plane graphs in which all inner faces are quadrilaterals (i.e., 4-cycles) and all inner vertices (i.e., the vertices not incident with the outer face) have degrees larger than three. The planar dual of a finite squaregraph is determined by a triangle-free chord diagram of the unit disk, which could alternatively be viewed as a triangle-free line arrangement in the hyperbolic plane. This representation carries over to infinite plane graphs with finite vertex degrees in which the balls are finite squaregraphs. Algebraically, finite squaregraphs are median graphs for which the duals are finite circular split systems. Hence squaregraphs are at the crosspoint of two dualities, an algebraic and a geometric one, and thus lend themselves to several combinatorial interpretations and structural characterizations. With these and the 5-colorability theorem for circle graphs at hand, we prove that every squaregraph can be isometrically embedded into the Cartesian product of five trees. This embedding result can also be extended to the infinite case without reference to an embedding in the plane and without any cardinality restriction when formulated for median graphs free of cubes and further finite obstructions. Further, we exhibit a class of squaregraphs that can be embedded into the product of three trees and we characterize those squaregraphs that are embeddable into the product of just two trees. Finally, finite squaregraphs enjoy a number of algorithmic features that do not extend to arbitrary median graphs. For instance, we show that median-generating sets of finite squaregraphs can be computed in polynomial time, whereas, not unexpectedly, the corresponding problem for median graphs turns out to be NP-hard.Comment: 46 pages, 14 figure

    Unit Interval Editing is Fixed-Parameter Tractable

    Full text link
    Given a graph~GG and integers k1k_1, k2k_2, and~k3k_3, the unit interval editing problem asks whether GG can be transformed into a unit interval graph by at most k1k_1 vertex deletions, k2k_2 edge deletions, and k3k_3 edge additions. We give an algorithm solving this problem in time 2O(klogk)(n+m)2^{O(k\log k)}\cdot (n+m), where k:=k1+k2+k3k := k_1 + k_2 + k_3, and n,mn, m denote respectively the numbers of vertices and edges of GG. Therefore, it is fixed-parameter tractable parameterized by the total number of allowed operations. Our algorithm implies the fixed-parameter tractability of the unit interval edge deletion problem, for which we also present a more efficient algorithm running in time O(4k(n+m))O(4^k \cdot (n + m)). Another result is an O(6k(n+m))O(6^k \cdot (n + m))-time algorithm for the unit interval vertex deletion problem, significantly improving the algorithm of van 't Hof and Villanger, which runs in time O(6kn6)O(6^k \cdot n^6).Comment: An extended abstract of this paper has appeared in the proceedings of ICALP 2015. Update: The proof of Lemma 4.2 has been completely rewritten; an appendix is provided for a brief overview of related graph classe
    corecore