5 research outputs found

    The HGR motif is the antiangiogenic determinant of vasoinhibin : implications for a therapeutic orally active oligopeptide

    Get PDF
    The hormone prolactin acquires antiangiogenic and antivasopermeability properties after undergoing proteolytic cleavage to vasoinhibin, an endogenous prolactin fragment of 123 or more amino acids that inhibits the action of multiple proangiogenic factors. Preclinical and clinical evidence supports the therapeutic potential of vasoinhibin against angiogenesis-related diseases including diabetic retinopathy, peripartum cardiomyopathy, rheumatoid arthritis, and cancer. However, the use of vasoinhibin in the clinic has been limited by difficulties in its production. Here, we removed this barrier to using vasoinhibin as a therapeutic agent by showing that a short linear motif of just three residues (His46-Gly47-Arg48) (HGR) is the functional determinant of vasoinhibin. The HGR motif is conserved throughout evolution, its mutation led to vasoinhibin loss of function, and oligopeptides containing this sequence inhibited angiogenesis and vasopermeability with the same potency as whole vasoinhibin. Furthermore, the oral administration of an optimized cyclic retro-inverse vasoinhibin heptapeptide containing HGR inhibited melanoma tumor growth and vascularization in mice and exhibited equal or higher antiangiogenic potency than other antiangiogenic molecules currently used as anti-cancer drugs in the clinic. Finally, by unveiling the mechanism that obscures the HGR motif in prolactin, we anticipate the development of vasoinhibin-specific antibodies to solve the on-going challenge of measuring endogenous vasoinhibin levels for diagnostic and interventional purposes, the design of vasoinhibin antagonists for managing insufficient angiogenesis, and the identification of putative therapeutic proteins containing HGR.“Consejo Nacional de Ciencia y Tecnología” (CONACYT) and UNAM grant.http://link.springer.com/journal/10456ImmunologyNeurolog

    A peptide-based interaction screen on disease-related mutations

    Get PDF
    Zahlreiche pathogene „missense“-Mutation, die verhindern, dass Proteine korrekt gefaltet werden, befinden sich in geordneten Regionen von Proteinen. Andere krankheitsrelevante Mutationen befinden sich in ungeordneten Regionen und beeinflussen somit nur begrenzt die Funktionalität, zum Beispiel durch Veränderungen kurzer linearer Sequenzmotive, die Protein-Protein Interaktionen vermitteln. In dieser Arbeit wird ein peptidbasierter Interaktionsscreen präsentiert mit dem sich Veränderungen im Interaktom identifizieren lassen. Synthetische Peptide von wild-typ und zugehörigen mutierten Proteinregionen ermöglichen die gleichzeitige Untersuchung von mehr als hundert Mutationen mittels Massenspektrometrie. Mehr als ein Drittel aller getesteten Mutationen hatten veränderte Interaktionen zur Folge. Darunter befanden sich auch drei Prolin zu Leucin Mutationen in zytosolischen Regionen von Transmembranproteinen, die zusammen mit dem benachbarten Leucin einem Dileucinmotiv ergeben und dadurch verstärkt mit Clathrin interagieren. Dieses Motiv wurde bereits mit Clathrin-vermittelter Endozytose in Verbindung gebracht. Die hinzugewonnene Endozytose könnte Krankheitsmechanismen erklären, da die Mislokalisation der betroffenen Transmembranproteine zum effektiven Verlust derer Funktion führen würde. Diese Hypothese wurde hier von verschiedenen in vitro und in vivo Experimenten bezüglich der P485L Mutation im Glukose Transporter-1 (GLUT1), die das GLUT1-Defizit-Syndrom hervorruft, bestätigt. Weitere Evidenz wurde außerdem für die Funktionalität anderer mutationsbedingter Dileucinmotive gewonnen. Die systematische Analyse von pathogenen Mutationen hat gezeigt, dass Dileucinmotive signifikant und spezifisch in ungeordneten zytosolischen Regionen von Transmembranproteinen überrepräsentiert sind. Dieser Peptidescreen macht das Potenzial unvoreingenommener Analysen zur Aufklärung von Krankheitsmechanismen deutlich, die von Veränderungen in Protein-Protein Interaktionen hervorgerufen werden.Many disease-associated missense mutations prevent proteins from folding correctly and lead to loss-of-function. These mutations are often found in ordered regions of proteins. Another class of disease-related missense mutations can be found in disordered regions. These are thought to impair only specific parts of a protein’s functions. Those mutations could modify short linear motifs that mediate protein-protein interactions. Here, we designed a peptide-based interaction screen to identify interactions that are affected by mutations in disordered regions. We used synthetic peptides corresponding to the wild type and mutated protein regions spotted on cellulose membrane to pull-down interaction partners. This setup allows for the screening of more than hundred mutations at a time via mass spectrometry. Here, we focused on mutations implicated in neurological diseases. More than one-third of tested variant pairs show differential interactions. Three disease-related proline to leucine mutations in cytosolic tails of transmembrane proteins lead to gain of a dileucine sequence. Several dileucine-containing peptide motifs are involved in clathrin-mediated endocytosis (CME). Also in the presented screen, the newly created motifs mediate interaction with the CME machinery. This could explain the disease mechanisms since mislocalization of the affected transmembrane proteins would lead to their loss of function. This hypothesis has been corroborated for glucose transporter-1 (GLUT1) P485L, causing GLUT1 deficiency syndrome. We were able to provide functional evidence also for additional gained dileucine motifs. A systematic analysis of pathogenic mutations revealed dileucine motifs to be overrepresented in structurally disordered cytosolic regions of transmembrane proteins. The data gained with the peptide screen highlights the power of differential interactome mapping as a generic approach to unravel disease mechanisms caused by changes in protein-protein interactions

    From condition-specific interactions towards the differential complexome of proteins

    Get PDF
    While capturing the transcriptomic state of a cell is a comparably simple effort with modern sequencing techniques, mapping protein interactomes and complexomes in a sample-specific manner is currently not feasible on a large scale. To understand crucial biological processes, however, knowledge on the physical interplay between proteins can be more interesting than just their mere expression. In this thesis, we present and demonstrate four software tools that unlock the cellular wiring in a condition-specific manner and promise a deeper understanding of what happens upon cell fate transitions. PPIXpress allows to exploit the abundance of existing expression data to generate specific interactomes, which can even consider alternative splicing events when protein isoforms can be related to the presence of causative protein domain interactions of an underlying model. As an addition to this work, we developed the convenient differential analysis tool PPICompare to determine rewiring events and their causes within the inferred interaction networks between grouped samples. Furthermore, we present a new implementation of the combinatorial protein complex prediction algorithm DACO that features a significantly reduced runtime. This improvement facilitates an application of the method for a large number of samples and the resulting sample-specific complexes can ultimately be assessed quantitatively with our novel differential protein complex analysis tool CompleXChange.Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken vergleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und -komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichtige biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber versprechen, was in der Zelle bei Veränderungen passiert. PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Proteinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht werden können, kann hierbei sogar alternatives Spleißen berücksichtigen werden. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool PPICompare entwickelt, welches Veränderungen des Interaktoms und deren Ursachen zwischen gruppierten Proben bestimmen kann. Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit aufweist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleXChange quantitativ bewertet werden

    Motivos lineales en proteıínas de virus humanos involucradas en el ciclo celular

    Get PDF
    Los motivos lineales son elementos de secuencia que comúnmente se encuentran en dominios intrínsecamente desordenados. Consisten, en promedio, de cinco residuos que determinan la función y participan en interacciones proteína-proteína. Los virus se enfrentan a una presión de selección constante debido a ambientes cambiantes y a la respuesta inmune del hospedador. Es común que usen motivos para secuestrar la maquinaria celular mimetizando proteínas del hospedador. Se postula que estos motivos, al ser elementos de secuencia cortos, juegan un rol en la evolución adaptativa ya que adquieren o modifican su función con pocas mutaciones. Sin embargo, existen pocas evidencias que apoyen esta hipótesis.Este trabajo se enfoca en el estudio de motivos lineales en dos proteínas virales, E7 de Papilomavirus y E1A de Adenovirus. El objetivo es investigar las relaciones genotipo-fenotipo en virus causantes de infecciones persistentes en humanos, utilizando para esto más de 100 secuencias para cada proteína. La amplia distribución de hospedadores, que involucra amniotas en el caso de E7 y mamíferos en el caso de E1A, y el número de motivos que presentan estas proteínas - ocho y doce respectivamente - permiten estudiar la relación entre motivos y fenotipos y el rol adaptativo de los motivos en la historia evolutiva viral.Este estudio se realizó principalmente mediante tres tipos de análisis. Primero, se realizaron análisis de secuencia incluyendo co-evolución entre pares de residuos. Luego, se realizaron estudios de co-especiación globales y basados en eventos evolutivos - considerando co-especiación, duplicación, cambio de hospedador y extinción parcial. Por último, se realizaron pruebas estadísticas de asociación. Los análisis de secuencia permitieron determinar que la falta de una estructura globular no implica un menor grado de conservación de secuencia. El combinar este tipo de análisis con la filogenia viral permitió afirmar que los motivos en las proteínas estudiadas presentan numerosos eventos de aparición y desaparición. Los estudios de co-evolución en secuencia y las pruebas de asociación revelaron que los distintos motivos y regiones de las proteínas estudiadas no evolucionan de manera independiente. Por último, las pruebas de asociación aplicadas a estudios de filogenia revelaron que dos eventos evolutivos - cambio de hospedador y extinción parcial - y la aparición/desaparición de motivos tampoco son procesos independientes. En conjunto, los resultados obtenidos en este trabajo sugieren que los motivos lineales presentan una alta plasticidad evolutiva, independiente del contexto estructural, y establecen las bases de la contribución de los motivos lineales en la evolución adaptativa viral.Fil: Glavina, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin
    corecore